ESKAPE Pathogens in Bloodstream Infections: Dynamics of Antimicrobial Resistance from 2018 to 2024—A Single-Center Observational Study in Poland
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Blood Cultures and Pathogen Detection
2.3. Identification of the Pathogens
2.4. Antimicrobial Susceptibility Testing
2.5. Detection and Resistance Mechanisms
2.6. Statistics and Graphics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CAUTI | Catheter-associated Urinary Tract Infections |
COVID | Coronavirus Disease |
CLABSI | Catheter-associated Bloodstream Infections |
DDST | Double Disk Synergy Test |
ESBL | Extended Spectrum β-lactamases |
ESKAPE | Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. |
EUCAST | European Committee on Antimicrobial Susceptibility Testing |
HAI | Hospital Acquired Infections |
HLR | High-Level Resistance |
ICU | Intensive Care Unit |
KPC | Klebsiella pneumoniae carbapenemase |
MDR | Multidrug Resistant |
MIC | Minimal Inhibitory Concentration |
MRSA | Methicillin-resistant Staphylococcus aureus |
MSSA | Methicillin-susceptible Staphylococcus aureus |
NDM | New Delhi metallo-β-lactamase |
OXA | Oxacillinase |
PCR | Polymerase Chain Reaction |
VRE | Vancomycin-resistant Enterococcus |
References
- Abban, M.K.; Ayerakwa, E.A.; Mosi, L.; Isawumi, A. The Burden of Hospital Acquired Infections and Antimicrobial Resistance. Heliyon 2023, 9, e20561. [Google Scholar] [CrossRef]
- Moradi, S.; Najafpour, Z.; Cheraghian, B.; Keliddar, I.; Mombeyni, R. The Extra Length of Stay, Costs, and Mortality Associated with Healthcare-Associated Infections: A Case-control Study. Health Sci. Rep. 2024, 7, e70168. [Google Scholar] [CrossRef] [PubMed]
- Sentiff, J.L.; Yenugadhati, V.; Spitz, C.; Glassman, S.; Phillips, M.; Frey, S.; Lesho, E.P. The Impact of Healthcare Associated Infections on Costs and Lengths of Stay 2019–2023. Open Forum Infect. Dis. 2023, 10, ofad500.2056. [Google Scholar] [CrossRef]
- Blatnik, P.; Bojnec, Š. Analysis of Impact of Nosocomial Infections on Cost of Patient Hospitalisation. Cent. Eur. J. Public Health 2023, 31, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Pipitò, L.; Rubino, R.; D’Agati, G.; Bono, E.; Mazzola, C.V.; Urso, S.; Zinna, G.; Distefano, S.A.; Firenze, A.; Bonura, C.; et al. Antimicrobial Resistance in ESKAPE Pathogens: A Retrospective Epidemiological Study at the University Hospital of Palermo, Italy. Antibiotics 2025, 14, 186. [Google Scholar] [CrossRef]
- Seid, M.; Bayou, B.; Aklilu, A.; Tadesse, D.; Manilal, A.; Zakir, A.; Kulyta, K.; Kebede, T.; Alodaini, H.A.; Idhayadhulla, A. Antimicrobial Resistance Patterns of WHO Priority Pathogens at General Hospital in Southern Ethiopia During the COVID-19 Pandemic, with Particular Reference to ESKAPE-Group Isolates of Surgical Site Infections. BMC Microbiol. 2025, 25, 84. [Google Scholar] [CrossRef]
- Garrec, H.; Drieux-Rouzet, L.; Golmard, J.-L.; Jarlier, V.; Robert, J. Comparison of Nine Phenotypic Methods for Detection of Extended-Spectrum Beta-Lactamase Production by Enterobacteriaceae. J. Clin. Microbiol. 2011, 49, 1048–1057. [Google Scholar] [CrossRef] [PubMed]
- The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint Tables for Interpretation of MICs and Zone Diameters, versions 8.0–14.0, 2018–2024. Available online: https://www.eucast.org?clinical_breakpoints (accessed on 15 March 2025).
- Ma, J.; Song, X.; Li, M.; Yu, Z.; Cheng, W.; Yu, Z.; Zhang, W.; Zhang, Y.; Shen, A.; Sun, H.; et al. Global Spread of Carbapenem-Resistant Enterobacteriaceae: Epidemiological Features, Resistance Mechanisms, Detection and Therapy. Microbiol. Res. 2023, 266, 127249. [Google Scholar] [CrossRef]
- Ranjbar, R.; Alam, M. Antimicrobial Resistance Collaborators (2022). Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Evid. Based Nurs. 2024, 27, 16. [Google Scholar] [CrossRef]
- Marturano, J.E.; Lowery, T.J. ESKAPE Pathogens in Bloodstream Infections Are Associated With Higher Cost and Mortality but Can Be Predicted Using Diagnoses Upon Admission. Open Forum Infect. Dis. 2019, 6, ofz503. [Google Scholar] [CrossRef]
- Bereanu, A.-S.; Bereanu, R.; Mohor, C.; Vintilă, B.I.; Codru, I.R.; Olteanu, C.; Sava, M. Prevalence of Infections and Antimicrobial Resistance of ESKAPE Group Bacteria Isolated from Patients Admitted to the Intensive Care Unit of a County Emergency Hospital in Romania. Antibiotics 2024, 13, 400. [Google Scholar] [CrossRef]
- De Prisco, M.; Manente, R.; Santella, B.; Serretiello, E.; Dell’Annunziata, F.; Santoro, E.; Bernardi, F.F.; D’Amore, C.; Perrella, A.; Pagliano, P.; et al. Impact of ESKAPE Pathogens on Bacteremia: A Three-Year Surveillance Study at a Major Hospital in Southern Italy. Antibiotics 2024, 13, 901. [Google Scholar] [CrossRef] [PubMed]
- Hetsa, B.A.; Asante, J.; Amoako, D.G.; Abia, A.L.K.; Mbanga, J.; Essack, S.Y. Multidrug-Resistant ESKAPEEc Pathogens From Bloodstream Infections in South Africa: A Cross-Sectional Study Assessing Resistance to WHO AWaRe Antibiotics. Health Sci. Rep. 2025, 8, e70897. [Google Scholar] [CrossRef] [PubMed]
- DeVoe, C.; Segal, M.R.; Wang, L.; Stanley, K.; Madera, S.; Fan, J.; Schouest, J.; Graham-Ojo, R.; Nichols, A.; Prasad, P.A.; et al. Increased Rates of Secondary Bacterial Infections, Including Enterococcus Bacteremia, in Patients Hospitalized with Coronavirus Disease 2019 (COVID-19). Infect. Control Hosp. Epidemiol. 2022, 43, 1416–1423. [Google Scholar] [CrossRef]
- Golli, A.L.; Popa, S.G.; Ghenea, A.E.; Turcu, F.L. The Impact of the COVID-19 Pandemic on the Antibiotic Resistance of Gram-Negative Pathogens Causing Bloodstream Infections in an Intensive Care Unit. Biomedicines 2025, 13, 379. [Google Scholar] [CrossRef]
- Mendes, G.; Ramalho, J.F.; Duarte, A.; Pedrosa, A.; Silva, A.C.; Méndez, L.; Caneiras, C. First Outbreak of NDM-1-Producing Klebsiella Pneumoniae ST11 in a Portuguese Hospital Centre during the COVID-19 Pandemic. Microorganisms 2022, 10, 251. [Google Scholar] [CrossRef] [PubMed]
- Ficik, J.; Andrezál, M.; Drahovská, H.; Böhmer, M.; Szemes, T.; Liptáková, A.; Slobodníková, L. Carbapenem-Resistant Klebsiella Pneumoniae in COVID-19 Era—Challenges and Solutions. Antibiotics 2023, 12, 1285. [Google Scholar] [CrossRef]
- Yek, C.; Mancera, A.G.; Diao, G.; Walker, M.; Neupane, M.; Chishti, E.A.; Amirahmadi, R.; Richert, M.E.; Rhee, C.; Klompas, M.; et al. Impact of the COVID-19 Pandemic on Antibiotic Resistant Infection Burden in U.S. Hospitals: Retrospective Cohort Study of Trends and Risk Factors. Ann. Intern Med. 2025, 178, 796–807. [Google Scholar] [CrossRef]
- Mhango, M.; Sheehan, F.; Marmor, A.; Thirkell, C.; Kennedy, K. An Outbreak of Double Carbapenemase-Producing Klebsiella Pneumoniae, Harbouring NDM-5 and OXA-48 Genes, at a Tertiary Hospital in Canberra, Australia. Commun. Dis. Intell. 2024, 48, 1–11. [Google Scholar] [CrossRef]
- Lazar, D.S.; Nica, M.; Dascalu, A.; Oprisan, C.; Albu, O.; Codreanu, D.R.; Kosa, A.G.; Popescu, C.P.; Florescu, S.A. Carbapenem-Resistant NDM and OXA-48-like Producing K. Pneumoniae: From Menacing Superbug to a Mundane Bacteria; A Retrospective Study in a Romanian Tertiary Hospital. Antibiotics 2024, 13, 435. [Google Scholar] [CrossRef]
- Tomaszewski, D.; Guzek, A.; Rybicki, Z. The Empiric Antimicrobial Therapy: The Comparison of Initial Choice with the Results of Microbiological Investigations. An Observational Study. Pol. J. Aviat. Med. 2023, 29, 5–10. [Google Scholar] [CrossRef]
- Huang, C.; Moradi, S.; Sholeh, M.; Tabaei, F.M.; Lai, T.; Tan, B.; Meng, J.; Azizian, K. Global Trends in Antimicrobial Resistance of Enterococcus Faecium: A Systematic Review and Meta-Analysis of Clinical Isolates. Front. Pharmacol. 2025, 16, 1505674. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, Y.; Jia, P.; Zhu, Y.; Zhang, G.; Zhang, J.; Duan, S.; Kang, W.; Wang, T.; Jing, R.; et al. Global Trends of Antimicrobial Susceptibility to Ceftaroline and Ceftazidime–Avibactam: A Surveillance Study from the ATLAS Program (2012–2016). Antimicrob. Resist. Infect. Control 2020, 9, 166. [Google Scholar] [CrossRef]
- Zhang, X.; Paganelli, F.L.; Bierschenk, D.; Kuipers, A.; Bonten, M.J.M.; Willems, R.J.L.; van Schaik, W. Genome-Wide Identification of Ampicillin Resistance Determinants in Enterococcus Faecium. PLoS Genet. 2012, 8, e1002804. [Google Scholar] [CrossRef]
- Sader, H.S.; Mendes, R.E.; Duncan, L.; Kimbrough, J.H.; Carvalhaes, C.G.; Castanheira, M. Ceftazidime-Avibactam, Meropenem-Vaborbactam, and Imipenem-Relebactam Activities Against Multidrug-Resistant Enterobacterales from United States Medical Centers (2018–2022). Diagn. Microbiol. Infect. Dis. 2023, 106, 115945. [Google Scholar] [CrossRef]
- Bostanghadiri, N.; Narimisa, N.; Mirshekar, M.; Dadgar-Zankbar, L.; Taki, E.; Navidifar, T.; Darban-Sarokhalil, D. Prevalence of Colistin Resistance in Clinical Isolates of Acinetobacter baumannii: A Systematic Review and Meta-Analysis. Antimicrob. Resist. Infect. Control 2024, 13, 24. [Google Scholar] [CrossRef]
- Ramatla, T.; Nkhebenyane, J.; Lekota, K.E.; Thekisoe, O.; Monyama, M.; Achilonu, C.C.; Khasapane, G. Global Prevalence and Antibiotic Resistance Profiles of Carbapenem-Resistant Pseudomonas Aeruginosa Reported from 2014 to 2024: A Systematic Review and Meta-Analysis. Front. Microbiol. 2025, 16, 1599070. [Google Scholar] [CrossRef]
- Rhomberg, P.R.; Fritsche, T.R.; Sader, H.S.; Jones, R.N. Antimicrobial Susceptibility Pattern Comparisons Among Intensive Care Unit and General Ward Gram-Negative Isolates from the Meropenem Yearly Susceptibility Test Information Collection Program (USA). Diagn. Microbiol. Infect. Dis. 2006, 56, 57–62. [Google Scholar] [CrossRef]
- Yan, S.; Sun, Z.; Yang, Y.; Zhu, D.; Chen, Z.; on behalf of the China Antimicrobial Surveillance Network (CHINET) Study Group. Changing Antimicrobial Resistance Profile of Enterobacter spp. Isolates in Hospitals across China: A Seven-Year Analysis from the CHINET Antimicrobial Resistance Surveillance Program (2015–2021). One Health Adv. 2024, 2, 11. [Google Scholar] [CrossRef]
Pathogen | Year | Department | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ICU | Hematology | Cardiology | Gastrology | Nephrology | COVID Ward | Emergency | Pulmonology | Surgery | Plastic Surgery | Rheumatology | Oncology | Neurosurgery | Infectious Dis. | Neurology | Cardiac Surgery | Urology | Orthopedics | Others | ||
Enterococcus faecium | 2018 | 5 | 0 | 1 | 0 | 4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
2019 | 10 | 11 | 2 | 22 | 1 | 0 | 0 | 0 | 4 | 0 | 0 | 3 | 0 | 0 | 2 | 1 | 0 | 0 | 1 | |
2020 | 44 | 5 | 2 | 17 | 4 | 1 | 0 | 1 | 2 | 0 | 7 | 4 | 0 | 5 | 0 | 4 | 3 | 0 | 0 | |
2021 | 5 | 8 | 14 | 16 | 4 | 39 | 0 | 4 | 5 | 1 | 2 | 1 | 0 | 5 | 0 | 4 | 1 | 0 | 0 | |
2022 | 11 | 15 | 8 | 12 | 5 | 7 | 0 | 4 | 1 | 0 | 3 | 0 | 0 | 4 | 0 | 1 | 0 | 0 | 0 | |
2023 | 12 | 25 | 12 | 12 | 9 | 0 | 0 | 3 | 1 | 3 | 1 | 2 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | |
2024 | 12 | 33 | 17 | 22 | 4 | 0 | 0 | 6 | 7 | 2 | 1 | 4 | 0 | 2 | 2 | 1 | 0 | 0 | 0 | |
Staphylococcus aureus | 2018 | 14 | 5 | 10 | 2 | 9 | 0 | 1 | 2 | 0 | 2 | 2 | 3 | 0 | 0 | 8 | 0 | 0 | 0 | 1 |
2019 | 51 | 24 | 20 | 6 | 25 | 0 | 6 | 23 | 8 | 7 | 24 | 11 | 8 | 7 | 6 | 0 | 0 | 1 | 2 | |
2020 | 28 | 14 | 38 | 8 | 8 | 9 | 8 | 9 | 4 | 3 | 5 | 12 | 2 | 3 | 8 | 1 | 0 | 2 | 1 | |
2021 | 12 | 13 | 31 | 14 | 22 | 38 | 3 | 13 | 7 | 3 | 12 | 11 | 4 | 12 | 1 | 2 | 3 | 6 | 3 | |
2022 | 36 | 22 | 27 | 26 | 21 | 16 | 8 | 7 | 2 | 3 | 6 | 6 | 2 | 3 | 3 | 2 | 0 | 5 | 4 | |
2023 | 42 | 19 | 27 | 6 | 22 | 0 | 17 | 6 | 3 | 0 | 12 | 4 | 5 | 10 | 4 | 1 | 0 | 12 | 2 | |
2024 | 46 | 27 | 37 | 9 | 35 | 0 | 36 | 12 | 1 | 3 | 3 | 3 | 6 | 0 | 1 | 0 | 0 | 9 | 5 | |
Klebsiella pneumoniae | 2018 | 15 | 24 | 10 | 2 | 1 | 0 | 0 | 0 | 5 | 0 | 1 | 3 | 2 | 0 | 1 | 4 | 5 | 0 | 0 |
2019 | 54 | 17 | 5 | 20 | 8 | 0 | 1 | 5 | 10 | 3 | 4 | 8 | 5 | 2 | 5 | 3 | 3 | 0 | 0 | |
2020 | 40 | 6 | 7 | 9 | 4 | 1 | 1 | 2 | 3 | 2 | 3 | 6 | 3 | 3 | 5 | 2 | 4 | 1 | 0 | |
2021 | 34 | 25 | 9 | 13 | 4 | 26 | 1 | 4 | 10 | 1 | 2 | 1 | 0 | 3 | 1 | 0 | 4 | 0 | 1 | |
2022 | 36 | 21 | 13 | 5 | 4 | 4 | 5 | 8 | 6 | 10 | 3 | 1 | 6 | 6 | 0 | 9 | 1 | 0 | 0 | |
2023 | 27 | 34 | 23 | 14 | 11 | 0 | 10 | 2 | 5 | 12 | 3 | 4 | 8 | 1 | 3 | 22 | 1 | 0 | 0 | |
2024 | 20 | 43 | 17 | 8 | 4 | 0 | 30 | 4 | 11 | 3 | 0 | 2 | 4 | 4 | 0 | 21 | 7 | 0 | 0 | |
Acinetobacter baumannii | 2018 | 29 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 3 | 5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2019 | 51 | 7 | 2 | 5 | 0 | 0 | 0 | 1 | 0 | 10 | 1 | 0 | 8 | 0 | 3 | 0 | 0 | 0 | 0 | |
2020 | 34 | 2 | 1 | 3 | 3 | 0 | 0 | 2 | 2 | 8 | 0 | 0 | 0 | 1 | 3 | 1 | 0 | 0 | 0 | |
2021 | 34 | 0 | 1 | 12 | 5 | 57 | 0 | 15 | 2 | 2 | 4 | 1 | 3 | 0 | 1 | 0 | 0 | 0 | 0 | |
2022 | 16 | 4 | 2 | 1 | 2 | 5 | 0 | 3 | 0 | 2 | 1 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | |
2023 | 33 | 3 | 0 | 0 | 3 | 0 | 1 | 7 | 1 | 9 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | |
2024 | 11 | 3 | 8 | 7 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | |
Pseudomonas aeruginosa | 2018 | 6 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
2019 | 22 | 6 | 0 | 0 | 2 | 0 | 0 | 1 | 3 | 2 | 1 | 0 | 1 | 0 | 3 | 0 | 0 | 0 | 0 | |
2020 | 42 | 40 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | |
2021 | 17 | 11 | 1 | 1 | 4 | 18 | 3 | 4 | 0 | 0 | 0 | 0 | 11 | 0 | 0 | 0 | 2 | 0 | 2 | |
2022 | 20 | 3 | 3 | 1 | 2 | 1 | 0 | 3 | 0 | 0 | 1 | 2 | 3 | 4 | 2 | 0 | 3 | 2 | 0 | |
2023 | 11 | 5 | 0 | 3 | 1 | 0 | 1 | 1 | 2 | 0 | 0 | 1 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | |
2024 | 14 | 12 | 2 | 8 | 6 | 0 | 5 | 0 | 1 | 2 | 0 | 4 | 3 | 1 | 5 | 0 | 0 | 0 | 0 | |
Enterobacter spp. | 2018 | 8 | 2 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 2 | 0 | 0 | 0 |
2019 | 8 | 13 | 2 | 1 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | |
2020 | 1 | 7 | 0 | 4 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
2021 | 5 | 20 | 2 | 0 | 1 | 0 | 1 | 2 | 0 | 0 | 0 | 5 | 1 | 0 | 0 | 0 | 2 | 2 | 0 | |
2022 | 2 | 7 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | |
2023 | 3 | 12 | 0 | 3 | 2 | 0 | 3 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 2 | 0 | 0 | |
2024 | 8 | 6 | 1 | 4 | 2 | 0 | 0 | 0 | 2 | 0 | 2 | 1 | 2 | 0 | 0 | 0 | 0 | 2 | 0 |
Pathogen | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | |
---|---|---|---|---|---|---|---|---|
Enterococcus faecium | all | 15 | 57 | 59 | 109 | 71 | 84 | 113 |
VRE | 4 (26.7%) | 17 (29.8%) | 23 (39.0%) | 30 (27.5%) | 19 (26.8%) | 26 (31.0%) | 35 (31.0%) | |
Staphylococcus aureus | all | 59 | 229 | 163 | 210 | 199 | 192 | 232 |
MRSA | 11 (18.6%) | 22 (9.6%) | 32 (19.6%) | 33 (15.7) | 34 (17.1%) | 16 (8.3%) | 26 (11.2%) | |
Klebsiella pneumoniae | all | 73 | 153 | 102 | 139 | 138 | 180 | 178 |
ESBL | 5 (6.8%) | 63 (41.2%) | 45 (44.1%) | 33 (23.7%) | 55 (39.9%) | 45 (25.0%) | 57 (32.0%) | |
NDM | - | 4 (2.6%) | 8 (7.8%) | 23 (16.5%) | 16 (11.6%) | 29 (16.1%) | 25 (14.0%) | |
OXA-48 | - | - | - | - | 4 (2.9%) | 2 (1.1%) | - | |
NDM + OXA48 | - | - | - | - | - | 10 (5.6%) | 11 (6.2%) | |
KPC | - | - | - | - | 1 (0.7%) | 4 (2.2%) | 2 (1.1%) | |
Acinetobacter baumannii | all | 40 | 88 | 60 | 137 | 40 | 59 | 37 |
MDR | 34 (85.0%) | 81 (92.0%) | 54 (90.0%) | 128 (93.4%) | 38 (95.0%) | 49 (83.1%) | 37 (100%) | |
Pseudomonas aeruginosa | all | 16 | 41 | 53 | 74 | 50 | 29 | 63 |
MDR | 3 (18.8%) | 7 (17.1%) | 6 (11.3%) | 6 (8.1%) | 8 (16.0%) | 7 (24.1%) | 12 (19.0%) | |
Enterobacter spp. | all | 19 | 31 | 14 | 41 | 15 | 32 | 30 |
ESBL | 1 (5.3%) | 2 (6.5%) | 5 (35.7%) | 10 (24.4%) | 7 (46.7%) | 6 (18.8%) | 3 (10.0%) |
2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | Total | |
---|---|---|---|---|---|---|---|---|
n (%R) | ||||||||
ampicillin | 15 (100.0) | 56 (98.0) | 59 (100.0) | 108 (99.0) | 71 (100.0) | 84 (100.0) | 113 (100.0) | 506 (99.6) |
gentamycin HLR | 8 (53.0) | 34 (60.0) | 42 (71.0) | 85 (78.0) | 55 (77.0) | 60 (71.0) | 87 (77.0) | 371 (73.0) |
imipenem | 15 (100.0) | 56 (98.0) | 59 (100.0) | 108 (99.0) | 71 (100.0) | 84 (100.0) | 112 (99.0) | 505 (99.4) |
linezolid | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
streptomycin HL | 6 (40.0) | 30 (53.0) | 32 (54.0) | 77 (71.0) | 51 (72.0) | 56 (67.0) | 80 (71.0) | 332 (65.3) |
teicoplanin | 1 (7.0) | 14 (25.0) | 23 (39.0) | 30 (28.0) | 19 (27.0) | 23 (27.0) | 26 (23.0) | 136 (28.8) |
vancomycin | 4 (27.0) | 17 (30.0) | 23 (39.0) | 30 (28.0) | 19 (27.0) | 26 (31.0) | 35 (31.0) | 154 (30.3) |
2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | Total | |
---|---|---|---|---|---|---|---|---|
n (%R) | ||||||||
ceftaroline | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
ciprofloxacin | 9 (15.0) | 20 (9.0) | 32 (20.0) | 33 (16.0) | 30 (15.0) | 13 (7.0) | 21 (9.0) | 158 (12.3) |
clindamycin | 18 (31.0) | 85 (37.0) | 52 (32.0) | 75 (36.0) | 78 (39.0) | 69 (36.0) | 78 (34.0) | 455 (35.4) |
cloxacillin | 11 (19.0) | 22 (10.0) | 32 (20.0) | 33 (16.0) | 34 (17.0) | 16 (8.0) | 26 (11.0) | 174 (13.6) |
daptomycin | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
erythromycin | 18 (31.0) | 86 (38.0) | 48 (29.0) | 79 (38.0) | 78 (39.0) | 63 (33.0) | 81 (35.0) | 453 (35.3) |
gentamicin | 6 (10.0) | 5 (2.0) | 13 (8.0) | 15 (7.0) | 8 (4.0) | 9 (5.0) | 9 (4.0) | 65 (5.1) |
levofloxacin | 9 (15.0) | 20 (9.0) | 32 (20.0) | 33 (16.0) | 30 (15.0) | 13 (7.0) | 21 (9.0) | 158 (12.3) |
linezolid | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
oxacillin | 11 (19.0) | 22 (10.0) | 32 (20.0) | 33 (16.0) | 34 (17.0) | 16 (8.0) | 26 (11.0) | 174 (13.6) |
rifampicin | 0 (0.0) | 0 (0.0) | 3 (2.0) | 0 (0.0) | 3 (2.0) | 0 (0.0) | 2 (1.0) | 8 (0.62) |
teicoplanin | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
tigecycline | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
trimethoprim/sulfamethoxazole | 0 (0.0) | 13 (6.0) | 17 (10.0) | 13 (6.0) | 18 (9.0) | 4 (2.0) | 6 (3.0) | 71 (5.5) |
vancomycin | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | Total | |
---|---|---|---|---|---|---|---|---|
n (%R) | ||||||||
amikacin | 0 (0.0) | 0 (0.0) | 13 (12.7) | 29 (20.9) | 31 (22.5) | 65 (31.6) | 43 (24.2) | 181 (18.8) |
amoxicillin/clavulanate | 53 (72.6) | 111 (72.5) | 73 (71.6) | 101 (72.7) | 104 (75.4) | 136 (75.6) | 131 (73.6) | 709 (73.6) |
cefepime | 5 (6.8) | 67 (43.8) | 48 (47.1) | 56 (40.3) | 76 (55.1) | 90 (50.0) | 95 (53.4) | 437 (45.4) |
cefotaxime | 5 (6.8) | 71 (46.4) | 63 (61.8) | 56 (40.3) | 76 (55.1) | 93 (51.7) | 95 (53.4) | 459 (47.7) |
ceftazidime | 5 (6.8) | 67 (43.8) | 48 (47.1) | 56 (40.3) | 76 (55.1) | 90 (50.0) | 95 (53.4) | 437 (45.4) |
ceftazidime/avibactam | 0 (0.0) | 4 (2.6) | 8 (7.8) | 23 (16.5) | 16 (11.6) | 29 (16.1) | 36 (20.2) | 116 (12.0) |
ceftolozane/tazobactam | 0 (0.0) | 4 (2.6) | 8 (7.8) | 23 (16.5) | 16 (11.6) | 29 (16.1) | 36 (20.2) | 116 (12.0) |
cefuroxime | 5 (6.8) | 80 (52.3) | 73 (71.6) | 56 (40.3) | 83 (60.1) | 99 (55.0) | 97 (54.5) | 493 (51.2) |
ciprofloxacin | 8 (11.0) | 128 (83.7) | 60 (58.8) | 62 (44.6) | 90 (65.2) | 103 (57.2) | 75 (42.1) | 526 (54.6) |
gentamicin | 6 (8.2) | 62 (40.5) | 25 (24.5) | 36 (25.9) | 29 (21.0) | 73 (40.6) | 66 (37.1) | 297 (30.8) |
imipenem | 0 (0.0) | 4 (2.6) | 8 (7.8) | 23 (16.5) | 21 (15.2) | 45 (25.0) | 38 (21.3) | 139 (14.4) |
imipenem/relebactam | 0 (0.0) | 4 (2.6) | 8 (7.8) | 23 (16.5) | 16 (11.6) | 29 (16.1) | 36 (20.2) | 116 (12.0) |
2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | Total | |
---|---|---|---|---|---|---|---|---|
n (%R) | ||||||||
amikacin | 34 (85.0) | 81 (92.0) | 56 (93.3) | 129 (94.2) | 38 (95.0) | 51 (86.4) | 37 (100.0) | 426 (82.4) |
ciprofloxacin | 40 (100.0) | 88 (100.0) | 60 (100.0) | 137 (100.0) | 40 (100.0) | 59 (100.0) | 37 (100.0) | 461 (100.0) |
colistin | 0 (0) | 0 (0) | 0 (0) | 2 (1.5) | 1 (2.5) | 1 (1.7) | 1 (2.7) | 5 (1.1) |
gentamicin | 34 (85.0) | 81 (92.0) | 54 (90.0) | 130 (95.0) | 40 (100.0) | 49 (83.1) | 37 (100.0) | 425 (92.2) |
imipenem | 38 (95.0) | 81 (92.0) | 57 (95.0) | 130 (95.0) | 39 (97.5) | 55 (93.2) | 37 (100.0) | 437 (94.8) |
levofloxacin | 40 (100.0) | 88 (100.0) | 60 (100.0) | 137 (100.0) | 40 (100.0) | 59 (100.0) | 37 (100.0) | 461 (100.0) |
meropenem | 38 (95.0) | 81 (92.0) | 56 (93.3) | 128 (93.4) | 38 (95.0) | 53 (89.8) | 37 (100.0) | 431 (93.5) |
tobramycin | 34 (85.0) | 81 (92.0) | 55 (91.7) | 130 (95.0) | 39 (97.5) | 51 (86.4) | 37 (100.0) | 427 (92.6) |
trimethoprim/sulfamethoxazole | 39 (97.5) | 86 (97.7) | 59 (98.3) | 137 (100.0) | 40 (100.0) | 53 (89.8) | 37 (100.0) | 451 (97.8) |
2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | Total | |
---|---|---|---|---|---|---|---|---|
n (%R) | ||||||||
amikacin | 1 (6.3) | 2 (4.9) | 2 (3.8) | 3 (4.1) | 2 (4.0) | 2 (6.9) | 6 (9.5) | 18 (5.5) |
cefepime | 1 (6.3) | 2 (4.9) | 1 (1.9) | 5 (6.8) | 5 (10.0) | 4 (13.8) | 9 (14.3) | 27 (8.3) |
ceftazidime | 1 (6.3) | 3 (7.3) | 2 (3.8) | 5 (6.8) | 6 (12.0) | 4 (13.8) | 10 (15.9) | 31 (9.5) |
ciprofloxacin | 2 (12.5) | 7 (17.1) | 6 (11.3) | 10 (13.5) | 12 (24.0) | 7 (24.1) | 9 (14.3) | 53 (16.3) |
colistin | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
gentamicin | 2 (12.5) | 5 (12.2) | 7 (13.2) | 6 (8.1) | 5 (10.0) | 3 (10.3) | 8 (12.7) | 36 (11.0) |
imipenem | 3 (18.8) | 8 (19.5) | 8 (15.1) | 12 (16.2) | 12 (24.0) | 10 (34.5) | 14 (22.2) | 67 (20.6) |
levofloxacin | 2 (12.5) | 8 (19.5) | 6 (11.3) | 11 (14.9) | 11 (22.0) | 7 (24.1) | 8 (12.7) | 53 (16.3) |
meropenem | 2 (12.5) | 7 (17.1) | 8 (15.1) | 11 (14.9) | 10 (20.0) | 7 (24.1) | 12 (19.0) | 57 (17.5) |
piperacillin/tazobactam | 4 (25.0) | 8 (19.5) | 9 (17.0) | 16 (21.6) | 13 (26.0) | 8 (27.6) | 11 (17.5) | 69 (21.2) |
ticarcillin/clavulanic acid | 5 (31.0) | 11 (26.8) | 15 (28.3) | 18 (24.3) | 13 (26.0) | 9 (31.0) | 18 (28.6) | 89 (27.3) |
tobramycin | 1 (6.3) | 2 (4.9) | 5 (9.4) | 6 (8.1) | 5 (10.0) | 3 (10.3) | 6 (9.5) | 28 (8.6) |
2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | Total | |
---|---|---|---|---|---|---|---|---|
n (%R) | ||||||||
amikacin | 1 (5.3) | 2 (6.5) | 2 (14.3) | 10 (924.4) | 5 (33.3) | 7 (21.9) | 5 (16.7) | 32 (17.6) |
amoxicillin/clavulanic acid | 19 (100.0) | 31 (100.0) | 14 (100.0) | 41 (100.0) | 15 (100.0) | 32 (100.0) | 30 (100.0) | 182 (100.0) |
cefepime | 1 (5.3) | 2 (6.5) | 5 (35.7) | 10 (24.4) | 5 (33.3) | 6 (18.8) | 3 (10.0) | 32 (17.6) |
cefotaxime | 3 (15.8) | 4 (12.9) | 6 (42.9) | 15 (36.6) | 7 (46.7) | 14 (43.8) | 11 (36.7) | 60 (33.0) |
ceftazidime | 1 (5.3) | 2 (6.5) | 5 (35.7) | 14 (34.1) | 5 (33.3) | 9 (28.1) | 6 (20.0) | 42 (23.1) |
cefuroxime | 3 (15.8) | 4 (12.9) | 6 (42.9) | 15 (36.6) | 7 (46.7) | 14 (43.8) | 12 (40.0) | 61 (33.5) |
ciprofloxacin | 1 (5.3) | 4 (12.9) | 5 (35.7) | 14 (34.1) | 5 (33.3) | 9 (28.1) | 6 (20.0) | 44 (24.2) |
gentamicin | 1 (5.3) | 1 (3.2) | 3 (21.4) | 8 (19.5) | 4 (26.6) | 7 (21.9) | 5 (16.7) | 29 (15.9) |
imipenem | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
meropenem | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
piperacillin/tazobactam | 6 (31.6) | 8 (25.8) | 5 (35.7) | 9 (22.0) | 4 (26.6) | 7 (21.9) | 6 (20.0) | 45 (24.7) |
tobramycin | 0 (0) | 1 (3.2) | 4 (28.6) | 8 (19.5) | 5 (33.3) | 7 (21.9) | 5 (16.7) | 30 (16.5) |
trimethoprim/sulfamethoxazole | 1 (5.3) | 5 (16.1) | 3 (21.4) | 7 (17.1) | 3 (20.0) | 6 (18.8) | 5 (16.7) | 30 (16.5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guzek, A.; Tomaszewski, D.; Rybicki, Z.; Piechota, W.; Mackiewicz, K.; Konior, M.; Olczak-Pieńkowska, A. ESKAPE Pathogens in Bloodstream Infections: Dynamics of Antimicrobial Resistance from 2018 to 2024—A Single-Center Observational Study in Poland. J. Clin. Med. 2025, 14, 6932. https://doi.org/10.3390/jcm14196932
Guzek A, Tomaszewski D, Rybicki Z, Piechota W, Mackiewicz K, Konior M, Olczak-Pieńkowska A. ESKAPE Pathogens in Bloodstream Infections: Dynamics of Antimicrobial Resistance from 2018 to 2024—A Single-Center Observational Study in Poland. Journal of Clinical Medicine. 2025; 14(19):6932. https://doi.org/10.3390/jcm14196932
Chicago/Turabian StyleGuzek, Aneta, Dariusz Tomaszewski, Zbigniew Rybicki, Wiesław Piechota, Katarzyna Mackiewicz, Monika Konior, and Anna Olczak-Pieńkowska. 2025. "ESKAPE Pathogens in Bloodstream Infections: Dynamics of Antimicrobial Resistance from 2018 to 2024—A Single-Center Observational Study in Poland" Journal of Clinical Medicine 14, no. 19: 6932. https://doi.org/10.3390/jcm14196932
APA StyleGuzek, A., Tomaszewski, D., Rybicki, Z., Piechota, W., Mackiewicz, K., Konior, M., & Olczak-Pieńkowska, A. (2025). ESKAPE Pathogens in Bloodstream Infections: Dynamics of Antimicrobial Resistance from 2018 to 2024—A Single-Center Observational Study in Poland. Journal of Clinical Medicine, 14(19), 6932. https://doi.org/10.3390/jcm14196932