Percutaneous Atherectomy Versus Balloon Angioplasty/Stenting in the Treatment of Femoropopliteal Arterial Occlusive Disease
Abstract
1. Introduction
2. Materials and Methods
2.1. Database
2.2. Population
2.3. Variables
2.4. Outcomes
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Anatomical Characteristics
3.3. Procedure Details
3.4. Primary Patency Rate of the Propensity-Matched Cohorts
3.5. Functional and Safety Outcomes
3.6. Hazard Ratio
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CLTI | Chronic limb-threatening ischemia |
PA | Percutaneous atherectomy |
DCB | Drug-coated balloon |
US | United States |
KSVS | Korean Society for Vascular Surgery |
WIQ | Walking Impairment Questionnaire |
TASC | TransAtlantic InterSociety Consensus |
SFA | Superficial femoral artery |
CT | Computed tomogram angiography |
MRA | Magnetic resonance image angiography |
ABI | Ankle–brachial index |
HR | Hazard ratio |
CI | Confidence interval |
EPD | Embolic protection device |
PPR | Primary patency rate |
TLR | Target lesion revascularization |
IVUS | Intravascular ultrasound |
EVT | Endovascular treatment |
References
- Conte, M.S.; Pomposelli, F.B.; Clair, D.G.; Geraghty, P.J.; McKinsey, J.F.; Mills, J.L.; Moneta, G.L.; Murad, M.H.; Powell, R.J.; Reed, A.B.; et al. Society for Vascular Surgery practice guidelines for atherosclerotic occlusive disease of the lower extremities: Management of asymptomatic disease and claudication. J. Vasc. Surg. 2015, 61 (Suppl. S3), 2s–41s. [Google Scholar] [CrossRef] [PubMed]
- Tendera, M.; Aboyans, V.; Bartelink, M.-L.; Baumgartner, I.; Clément, D.; Collet, J.-P.; Cremonesi, A.; De Carlo, M.; Erbel, R.; Fowkes, F.G.R.; et al. ESC Guidelines on the diagnosis and treatment of peripheral artery diseases: Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries: The Task Force on the Diagnosis and Treatment of Peripheral Artery Diseases of the European Society of Cardiology (ESC). Eur. Heart J. 2011, 32, 2851–2906. [Google Scholar]
- Thukkani, A.K.; Kinlay, S. Endovascular intervention for peripheral artery disease. Circ. Res. 2015, 116, 1599–1613. [Google Scholar] [CrossRef]
- Ye, M.; Guo, X.; Ni, Q.; Shi, Z.; Guo, L.; Gao, X.; Feng, Z.; Tong, Z.; Wang, X. S.M.A.R.T. Flex vascular stent system in femoropopliteal arteries: 18-month result of a real-world registry. Eur. J. Med. Res. 2025, 30, 653. [Google Scholar] [CrossRef]
- Salamaga, S.; Stępak, H.; Żołyński, M.; Kaczmarek, J.; Błaszyk, M.; Stanišić, M.-G.; Krasiński, Z. Three-year real-world outcomes of interwoven nitinol Supera stent implantation in long and complex femoropopliteal lesions. J. Clin. Med. 2023, 12, 4869. [Google Scholar] [CrossRef]
- Bellissard, L.; Gouya, H.; Brac, A.; Nassef, M.; Ben Abdallah, I.; Julia, P.; Lapeyre, M.; Pineau, J.; Cluzel, P.; Alsac, J.M.; et al. Systematic review of femoral artery stent fractures: Mechanisms, clinical impact, and management. Vasc. Med. 2024, 29, 123–134. [Google Scholar]
- Vu, M.H.; Sande-Docor, G.M.; Liu, Y.; Tsai, S.; Patel, M.; Metzger, C.; Shishehbor, M.H.; Brilakis, E.S.; Shammas, N.W.; Monteleone, P.; et al. Endovascular Treatment and Outcomes for Femoropopliteal In-Stent Restenosis: Insights from the XLPAD Registry. J. Interv. Cardiol. 2022, 2022, 5935039. [Google Scholar] [CrossRef] [PubMed]
- Korosoglou, G.; Giusca, S.; Andrassy, M.; Lichtenberg, M. The Role of Atherectomy in Peripheral Artery Disease: Current Evidence and Future Perspectives. Vasc. Endovasc. Rev. 2019, 2, 12–18. [Google Scholar] [CrossRef]
- Magnowski, A.; Lindquist, J.D.; Herzog, E.C.; Jensen, A.; Dybul, S.L.; Trivedi, P.S. Changes in the National Endovascular Management of Femoropopliteal Arterial Disease: An Analysis of the 2011–2019 Medicare Data. J. Vasc. Interv. Radiol. 2022, 33, 1153–1158. [Google Scholar] [CrossRef]
- Noory, E.; Böhme, T.; Steinhauser, Y.; Salm, J.; Beschorner, U.; de Forest, A.; Bollenbacher, R.; Westermann, D.; Zeller, T. Acute and Mid-Term Results of Atherectomy in Femoropopliteal Lesions. J. Endovasc. Ther. 2024. [Google Scholar] [CrossRef]
- Mehta, M.; Zhou, Y.; Paty, P.S.; Teymouri, M.; Jafree, K.; Bakhtawar, H.; Hnath, J.; Feustel, P. Percutaneous common femoral artery interventions using angioplasty, atherectomy, and stenting. J. Vasc. Surg. 2016, 64, 369–379. [Google Scholar] [CrossRef]
- Shishehbor, M.H.; Scheinert, D.; Jain, A.; Brodmann, M.; Tepe, G.; Ando, K.; Krishnan, P.; Iida, O.; Laird, J.R.; Schneider, P.A.; et al. Drug-coated balloons versus bare-metal stents for femoropopliteal arterial disease. J. Am. Coll. Cardiol. 2022, 79, 1338–1349. [Google Scholar] [CrossRef]
- Patel, S.D.; Popplewell, M.; Berczi, V.; Oklu, R.; Patel, A.V.; Davidson, R.; Gibbs, R.; Loftus, I.; Thompson, M.M. Atherosclerotic Plaque Analysis: A Pilot Study to Assess a Novel Tool to Predict Outcome Following Lower Limb Endovascular Intervention. Eur. J. Vasc. Endovasc. Surg. 2015, 50, 487–493. [Google Scholar] [CrossRef]
- Taneva, G.T.; Pitoulias, A.G.; Avranas, K.; Kazemtash, M.; Abu Bakr, N.; Dahi, F.; Donas, K.P. Midterm outcomes of rotational atherectomy-assisted endovascular treatment of severe peripheral arterial disease. J. Vasc. Surg. 2024, 79, 887–892. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, Q.; Pu, H.; Qin, J.; Wang, X.; Ye, K.; Lu, X. Atherectomy Combined with Balloon Angioplasty versus Balloon Angioplasty Alone for de Novo Femoropopliteal Arterial Diseases: A Systematic Review and Meta-analysis of Randomised Controlled Trials. Eur. J. Vasc. Endovasc. Surg. 2021, 62, 65–73. [Google Scholar] [CrossRef]
- Kim, H.J.; Hwang, D.; Yun, W.-S.; Huh, S.; Kim, H.-K. Effectiveness of Atherectomy and Drug-Coated Balloon Angioplasty in Femoropopliteal Disease: A Comprehensive Outcome Study. Vasc. Specialist Int. 2024, 40, 34. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.; Wang, H.; Ding, W.; Chen, G.; Zhang, Z. Atherectomy plus drug-coated balloon versus drug-coated balloon only for treatment of femoropopliteal artery lesions: A systematic review and meta-analysis. Vascular 2021, 29, 883–896. [Google Scholar] [CrossRef]
- Maehara, A.; Mintz, G.S.; Shimshak, T.M.; Ricotta, J.J.; Ramaiah, V.; Foster, M.T.; Davis, T.P.; Gray, W.A. Intravascular ultrasound evaluation of JETSTREAM atherectomy removal of superficial calcium in peripheral arteries. EuroIntervention 2015, 11, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Yazu, Y.; Fujihara, M.; Takahara, M.; Kurata, N.; Nakata, A.; Yoshimura, H.; Ito, T.; Fukunaga, M.; Kozuki, A.; Tomoi, Y. Intravascular ultrasound-based decision tree model for the optimal endovascular treatment strategy selection of femoropopliteal artery disease—Results from the ONION Study. CVIR Endovasc. 2022, 5, 52. [Google Scholar] [CrossRef]
- Fujihara, M.; Kozuki, A.; Tsubakimoto, Y.; Takahara, M.; Shintani, Y.; Fukunaga, M.; Iwasaki, Y.; Nakama, T.; Yokoi, Y. Lumen Gain After Endovascular Therapy in Calcified Superficial Femoral Artery Occlusive Disease Assessed by Intravascular Ultrasound (CODE Study). J. Endovasc. Ther. 2019, 26, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Sakakura, K.; Yamamoto, K.; Taniguchi, Y.; Tsurumaki, Y.; Momomura, S.-I.; Fujita, H. Intravascular ultrasound enhances the safety of rotational atherectomy. Cardiovasc. Revasc Med. 2018, 19, 286–291. [Google Scholar] [CrossRef]
- Haraguchi, T.; Fujita, T.; Kashima, Y.; Tsujimoto, M.; Otake, R.; Kasai, Y.; Sato, K. Fracking compared to conventional balloon angioplasty alone for calcified common femoral artery lesions using intravascular ultrasound analysis: 12-month results. CVIR Endovasc. 2023, 6, 27. [Google Scholar] [CrossRef]
- Kim, T.-H.; Katsetos, M.; Dahal, K.; Azrin, M.; Lee, J. Use of rotational atherectomy for reducing significant dissection in treating de novo femoropopliteal steno-occlusive disease after balloon angioplasty. J. Geriatr. Cardiol. 2018, 15, 254–260. [Google Scholar]
- Abusnina, W.; Al-Abdouh, A.; Radaideh, Q.; Kanmanthareddy, A.; Shishehbor, M.H.; White, C.J.; Ben-Dor, I.; Shammas, N.W.; Nanjundappa, A.; Lichaa, H.; et al. Atherectomy Plus Balloon Angioplasty for Femoropopliteal Disease Compared to Balloon Angioplasty Alone: A Systematic Review and Meta-analysis. J. Soc. Cardiovasc. Angiogr. Interv. 2022, 1, 100436. [Google Scholar] [CrossRef] [PubMed]
- Chaar, C.I.O.; Shebl, F.; Sumpio, B.; Dardik, A.; Indes, J.; Sarac, T. Distal embolization during lower extremity endovascular interventions. J. Vasc. Surg. 2017, 66, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Shammas, N.W.; Dippel, E.J.; Coiner, D.; Shammas, G.A.; Jerin, M.; Kumar, A. Preventing lower extremity distal embolization using embolic filter protection: Results of the PROTECT registry. J. Endovasc. Ther. 2008, 15, 270–276. [Google Scholar] [CrossRef]
- Mendes, B.C.; Oderich, G.S.; Fleming, M.D.; Misra, S.; Duncan, A.A.; Kalra, M.; Cha, S.; Gloviczki, P. Clinical significance of embolic events in patients undergoing endovascular femoropopliteal interventions with or without embolic protection devices. J. Vasc. Surg. 2014, 59, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Quan, J.; Dong, J.; Ding, N.; Han, Y.; Cong, L.; Lin, Y.; Liu, J. Comparison of mid-outcome among bare metal stent, atherectomy with or without drug-coated balloon angioplasty for femoropopliteal arterial occlusion. Sci. Rep. 2024, 14, 63. [Google Scholar] [CrossRef]
- Gray, B.H.; Sullivan, T.M.; Childs, M.B.; Young, J.R.; Olin, J.W. High incidence of restenosis/reocclusion of stents in the percutaneous treatment of long-segment superficial femoral artery disease after suboptimal angioplasty. J. Vasc. Surg. 1997, 25, 74–83. [Google Scholar] [CrossRef]
- Gökgöl, C.; Diehm, N.; Kara, L.; Büchler, P. Quantification of popliteal artery deformation during leg flexion in subjects with pe-ripheral artery disease: A pilot study. J. Endovasc. Ther. 2013, 20, 828–835. [Google Scholar] [CrossRef]
- Bai, H.; Fereydooni, A.; Zhuo, H.; Zhang, Y.; Tonnessen, B.H.; Guzman, R.J.; Chaar, C.I.O. Comparison of Atherectomy to Balloon Angioplasty and Stenting for Isolated Fem-oropopliteal Revascularization. Ann. Vasc. Surg. 2020, 69, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Allan, R.; Puckridge, P.; Spark, J.; Delaney, C. The Impact of Intravascular Ultrasound on Femoropopliteal Artery Endovascular Interventions: A Randomized Controlled Trial. JACC Cardiovasc. Interv. 2022, 15, 536–546. [Google Scholar] [CrossRef] [PubMed]
Characteristics | All (N = 424) | Atherectomy (n = 90) | PTA ± Stenting (n = 334) | p Value |
---|---|---|---|---|
Age, years | 72 (66–78) | 69 (64–75) | 72 (66–79) | 0.016 |
Male gender | 345 (81.4) | 77 (85.6) | 268 (80.2) | 0.137 |
Body mass index, kg/m2 | 23 (21–25) | 23 (22–25) | 23 (21–25) | 0.306 |
Hypertension | 329 (77.6) | 71 (78.9) | 258 (77.2) | 0.999 |
Diabetes | 266 (62.7) | 56 (62.2) | 210 (64.8) | 0.709 |
Chronic kidney disease | 136 (32.1) | 26 (29.5) | 110 (34.0) | 0.523 |
Hyperlipidemia | 200 (48.3) | 45 (50.0) | 155 (47.8) | 0.722 |
Coronary artery disease | 139 (34.2) | 33 (36.7) | 106 (33.5) | 0.615 |
Pulmonary disease | 118 (29.3) | 39 (43.3) | 79 (25.2) | 0.001 |
Smoking | 0.651 | |||
Ex-smoker | 43 (10.4) | 3 (3.4) | 40 (12.3) | |
Current smoker | 124 (29.2) | 28 (31.5) | 96 (29.4) | |
Medication | ||||
Antiplatelet | 269 (63.4) | 64 (71.1 | 205 (61.4) | 0.001 |
Anticoagulant | 38 (9.0) | 9 (10.0) | 29 (8.7) | 0.001 |
Rutherford category | <0.001 | |||
Claudication | 167 (39.4) | 58 (64.4) | 109 (31.7) | |
Rest pain | 142 (23.5) | 27 (30.0) | 125 (36.3) | |
Minor tissue loss | 62 (14.6) | 4 (4.4) | 58 (16.9) | |
Major tissue loss | 53 (12.5) | 1 (1.1) | 52 (14.5) | |
WIQ score | 51 (33–66) | 55 (37–69) | 50 (31–64) | 0.106 |
ASA classification | 3 (2–3) | 3 (2–3) | 3 (2–3) | 0.125 |
Characteristics | All (N = 424) | Atherectomy (n = 90) | PTA ± Stenting (n = 334) | p Value |
---|---|---|---|---|
Lesion type | 0.725 | |||
De novo | 333 (78.5) | 69 (76.7) | 264 (79.0) | |
In-stent restenosis | 41 (9.7) | 7 (7.8) | 34 (10.2) | |
Re-intervention | 39 (9.2) | 7 (7.8) | 32 (9.6) | |
Lesion site | 0.745 | |||
Proximal SFA | 190 (44.8) | 50 (55.6) | 140 (41.9) | |
Mid-SFA | 217 (51.2) | 45 (50.0) | 172 (51.5) | |
Distal SFA | 204 (48.1) | 48 (53.3) | 156 (46.7) | |
P1 | 117 (27.6) | 29 (32.2) | 88 (26.3) | |
P2 | 60 (14.2) | 13 (14.4) | 47 (14.1) | |
P3 | 35 (8.3) | 6 (6.7) | 29 (8.7) | |
TASC classification | 0.684 | |||
TASC A | 77 (18.2) | 17 (18.9) | 60 (18.0) | |
TASC B | 198 (46.7) | 42 (46.7) | 156 (46.7) | |
TASC C | 65 (15.3) | 16 (17.8) | 49 (14.7) | |
TASC D | 64 (15.1) | 14 (15.6) | 50 (15.0) | |
Calcium grade | 0.063 | |||
No calcification | 91 (21.5) | 16 (17.8) | 75 (22.5) | |
Circumference 1°~89° | 82 (19.3) | 17 (18.9) | 65 (19.5) | |
Circumference 90°~179° | 42 (9.9) | 8 (8.9) | 34 (10.2) | |
Circumference 180°~269° | 49 (11.6) | 11 (12.2) | 38 (11.4) | |
Circumference 270°~360° | 114 (26.9) | 34 (37.8) | 80 (24.0) | |
Concomitant inflow lesions | 0.101 | |||
None | 288 (67.9) | 67 (74.4) | 221 (66.2) | |
Acute | 59 (13.9) | 14 (15.6) | 45 (13.5) | |
Chronic | 77 (18.2) | 9 (10.0) | 68 (20.4) | |
Concomitant outflow lesions | 0.192 | |||
None | 230 (54.2) | 53 (58.9) | 177 (53.0) | |
Acute | 95 (22.4) | 19 (21.1) | 76 (22.8) | |
Chronic | 99 (23.3) | 18 (20.0) | 81 (24.3) |
Characteristics | All (N = 424) | Atherectomy (n = 90) | PTA ± Stenting (n = 334) | p Value |
---|---|---|---|---|
Use of re-entry device | 5 (1.2) | 0 | 5 (1.5) | 0.589 |
Balloon diameter (n = 242) | 0.041 | |||
4–5.5 mm | 159 (65.7) | 11 (45.8) | 148 (67.9) | |
6–7 mm | 83 (34.3) | 13 (54.2) | 70 (32.1) | |
Balloon inflation pressure (n = 118) | 0.007 | |||
<10 atm | 48 (40.7)) | 1 (7.1) | 47 (45.2) | |
10–15 atm | 66 (55.9) | 12 (85.7) | 54 (51.9) | |
>15–20 atm | 4 (3.4) | 1 (7.1) | 3 (2.9) | |
Residual stenosis (n = 211) | 0.017 | |||
<30% | 192 (91.0) | 16 (84.2) | 176 (91.7) | |
30~50% | 14 (6.6) | 0 | 14 (7.3) | |
>50% | 5 (2.4) | 3 (15.8) | 2 (1.0) | |
Use of the drug-coated balloon | 180 (42.5) | 53 (58.9) | 127 (38.0) | <0.001 |
Stent placement | 148 (34.9) | 3 (3.3) | 145 (43.4) | <0.001 |
Stent diameter | 0.646 | |||
4 mm | 2 (1.4) | 0 | 2 (1.4) | |
5 mm | 33 (22.3) | 0 | 33 (22.8) | |
6 mm | 99 (66.9) | 3 (100) | 96 (66.2) | |
7 mm | 14 (9.5) | 0 | 14 (9.7) | |
Use of embolic protection device | 83 (19.6) | 83 (92.2) | 0 | <0.001 |
SpiderFX | 77 (92.8) | 77 (92.8) | 0 | |
Emboshield | 6 (7.2) | 6 (7.2) | 0 | |
Use of closure device | 201 (47.4) | 72 (80.0) | 129 (38.6) | <0.001 |
Characteristics | Atherectomy (n = 90) | PTA ± Stenting (n = 270) | p Value |
---|---|---|---|
Age, years | 69 (64–75) | 71 (66–79) | 0.066 |
Male gender | 77 (85.6) | 215 (79.6) | 0.137 |
Body mass index, kg/m2 | 23.2 (21.6–25.0) | 22.7 (20.6–25.0) | 0.294 |
Hypertension | 0.159 | ||
Controlled with 1 drug | 26 (28.9) | 102 (37.8) | |
Controlled with 2 drugs | 30 (33.3) | 80 (29.6) | |
Requires more than two drugs or is uncontrolled | 15 (16.7) | 29 (10.7) | |
Diabetes mellitus | 0.052 | ||
Controlled by oral drug | 34 (14.4) | 94 (34.8) | |
Controlled by insulin | 6 (6.7) | 19 (7.0) | |
Type I diabetes or uncontrolled | 37 (41.1) | 65 (24.1) | |
Smoking | 0.936 | ||
Ex-smoker | 3 (3.4) | 29 (10.7) | |
Current smoker (<1 pack/day) | 14 (15.7) | 44 (16.3) | |
Current smoker (≥1 pack/day) | 14 (15.7) | 35 (13.0) | |
Indication | 0.077 | ||
Intermittent claudication | 49 (54.4) | 118 (43.7) | |
Rest pain | 34 (37.8) | 102 (37.8) | |
Minor tissue loss | 5 (4.7) | 41 (15.2) | |
Major tissue loss | 2 (2.2) | 9 (3.3) |
Characteristics | All (N = 424) | Atherectomy (n = 90) | PTA ± Stenting (n = 334) | p Value |
---|---|---|---|---|
Ankle–brachial index | ||||
Pre-procedure | 0.41 ± 0.29 | 0.47 ± 0.26 | 0.36 ± 0.31 | 0.003 |
Post-procedure | 0.90 ± 0.24 | 0.94 ± 0.24 | 0.91 ± 0.24 | 0.340 |
p value | <0.001 | <0.001 | <0.001 | |
Walking Impairment Questionnaire score | ||||
Pre-procedure | 51.9 ± 25.0 | 52.3 ± 22.4 | 46.1 ± 25.8 | 0.106 |
Post-procedure | 86.3 ± 16.4 | 87.5 ± 12.9 | 85.8 ± 17.8 | 0.523 |
p value | <0.001 | <0.001 | <0.001 | |
Amputation rate | 29 (6.8) | 11 (12.2) | 18 (5.4) | 0.032 |
Mortality rate | 12 (2.8) | 2 (2.2) | 10 (3.0) | 0.695 |
Cause of death | 3 Myocardial infarction 2 Pneumonia 1 ARDS 1 Cancer progression 1 COVID 1 Hydropneumothorax 1 Ischemic colitis 1 Sepsis 1 Subdural hemorrhage | 1 COVID 1 Pneumonia | 3 Myocardial infarction 1 ARDS 1 Cancer progression 1 Hydropneumothorax 1 Ischemic colitis 1 Pneumonia 1 Sepsis 1 Subdural hemorrhage |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Lee, T.; Yoo, Y.S.; Min, S.-K.; Kang, J.m.; Joh, J.H. Percutaneous Atherectomy Versus Balloon Angioplasty/Stenting in the Treatment of Femoropopliteal Arterial Occlusive Disease. J. Clin. Med. 2025, 14, 6926. https://doi.org/10.3390/jcm14196926
Kim H, Lee T, Yoo YS, Min S-K, Kang Jm, Joh JH. Percutaneous Atherectomy Versus Balloon Angioplasty/Stenting in the Treatment of Femoropopliteal Arterial Occlusive Disease. Journal of Clinical Medicine. 2025; 14(19):6926. https://doi.org/10.3390/jcm14196926
Chicago/Turabian StyleKim, Hyangkyoung, Taeseung Lee, Young Sun Yoo, Seung-Kee Min, Jin mo Kang, and Jin Hyun Joh. 2025. "Percutaneous Atherectomy Versus Balloon Angioplasty/Stenting in the Treatment of Femoropopliteal Arterial Occlusive Disease" Journal of Clinical Medicine 14, no. 19: 6926. https://doi.org/10.3390/jcm14196926
APA StyleKim, H., Lee, T., Yoo, Y. S., Min, S.-K., Kang, J. m., & Joh, J. H. (2025). Percutaneous Atherectomy Versus Balloon Angioplasty/Stenting in the Treatment of Femoropopliteal Arterial Occlusive Disease. Journal of Clinical Medicine, 14(19), 6926. https://doi.org/10.3390/jcm14196926