Hemodynamic Response to Air-Conducted Sound Stimulus Is Mediated via Vestibulosympathetic Reflex
Abstract
1. Introduction
2. Methods
2.1. Participants
2.2. Vestibulosympathetic Reflex Testing
2.3. Otolithic Stimulation via High-Intensity Air-Conducted Sound
2.4. Outcomes
2.5. Statistics
3. Results
3.1. Healthy Participants
3.2. Vestibular Neuritis Participants
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Balaban, C.D.; Yates, B.J. Vestibuloautonomic Interactions: A Teleologic Perspective. In Springer Handbook of Auditory Research; Highstein, S., Fay, R., Popper, A., Eds.; Springer: New York, NY, USA, 2004; pp. 286–342. [Google Scholar]
- Balaban, C.D.; Porter, J.D. Neuroanatomic substrates for vestibulo-autonomic interactions. J. Vestib. Res. 1998, 8, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Carter, J.R.; Ray, C.A. Sympathetic responses to vestibular activation in humans. Am. J. Physiol. Integr. Comp. Physiol. 2008, 294, R681–R688. [Google Scholar] [CrossRef]
- Cohen, B.; Martinelli, G.P.; Raphan, T.; Schaffner, A.; Xiang, Y.; Holstein, G.R.; Yakushin, S.B. The vasovagal response of the rat: Its relation to the vestibulosympathetic reflex and to Mayer waves. FASEB J. 2013, 27, 2564–2572. [Google Scholar] [CrossRef]
- Furman, J.M.; Jacob, R.G.; Redfern, M.S. Clinical evidence that the vestibular system participates in autonomic control. J. Vestib. Res. 1998, 8, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Gotoh, T.M.; Nobuhiro, F.; Tomoko, M.; Shuang, G.; Hironobu, M. Roles of baroreflex and vestibulosympathetic reflex in controlling arterial blood pressure during gravitational stress in conscious rats. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2004, 286, R25–R30. [Google Scholar] [CrossRef] [PubMed]
- Kasumacic, N.; Glover, J.C.; Perreault, M. Vestibular-mediated synaptic inputs and pathways to sympathetic preganglionic neurons in the neonatal mouse. J. Physiol. 2012, 590, 5809–5826. [Google Scholar] [CrossRef] [PubMed]
- Radtke, A.; Popov, K.; Bronstein, A.M.; Gresty, M.A. Vestibulo-autonomic control in man: Short- and long-latency vestibular effects on cardiovascular function. J. Vestib. Res. 2003, 13, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Sauder, C.L.; Ray, C.A. Postural effects of vestibular-mediated sympathetic activation. J. Appl. Physiol. 2012, 112, 1087. [Google Scholar] [CrossRef]
- Biaggioni, I.; Costa, F.; Kaufmann, H. Vestibular influences on autonomic cardiovascular control in humans. J. Vestib. Res. 1998, 8, 35–41. [Google Scholar] [CrossRef]
- Yates, B.J.; Aoki, M.; Burchill, P.; Bronstein, A.M.; Gresty, M.A. Cardiovascular responses elicited by linear acceleration in humans. Exp. Brain Res. 1999, 125, 476–484. [Google Scholar] [CrossRef]
- Hammam, E.; Kwok, K.; Macefield, V.G. Modulation of muscle sympathetic nerve activity by low-frequency physiological activation of the vestibular utricle in awake humans. Exp. Brain Res. 2013, 230, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, H.; Biaggioni, I.; Voustianiouk, A.; Diedrich, A.; Costa, F.; Clarke, R.; Gizzi, M.; Raphan, T.; Cohen, B. Vestibular control of sympathetic activity. An otolith-sympathetic reflex in humans. Exp. Brain Res. 2002, 143, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Papathanasiou, E.S. The evidence is finally here: Ocular vestibular evoked myogenic potentials are mainly dependent on utricular pathway function. Clin. Neurophysiol. 2015, 126, 1843–1844. [Google Scholar] [CrossRef]
- Ray, C.A.; Hume, K.M.; Steele, S.L. Sympathetic nerve activity during natural stimulation of horizontal semicircular canals in humans. Am. J. Physiol. 1998, 275, R1274–R1278. [Google Scholar] [CrossRef]
- Rosengren, S.M.; Kingma, H. New perspectives on vestibular evoked myogenic potentials. Curr. Opin. Neurol. 2013, 26, 74–80. [Google Scholar] [CrossRef]
- Sauder, C.L.; Leonard, T.O.; Ray, C.A. Greater sensitivity of the vestibulosympathetic reflex in the upright posture in humans. J. Appl. Physiol. 2008, 105, 65–69. [Google Scholar] [CrossRef]
- Bent, L.R.; Bolton, P.S.; Macefield, V.G. Modulation of muscle sympathetic bursts by sinusoidal galvanic vestibular stimulation in human subjects. Exp. Brain Res. 2006, 174, 701–711. [Google Scholar] [CrossRef]
- Bolton, P.S.; Wardman, D.L.; Macefield, V.G. Absence of short-term vestibular modulation of muscle sympathetic outflow, assessed by brief galvanic vestibular stimulation in awake human subjects. Exp. Brain Res. 2004, 154, 39–43. [Google Scholar] [CrossRef]
- Cui, J.; Iwase, S.; Mano, T.; Katayama, N.; Mori, S. Muscle sympathetic outflow during horizontal linear acceleration in humans. Am. J. Physiol. Integr. Comp. Physiol. 2001, 281, R625–R634. [Google Scholar] [CrossRef]
- Cui, J.; Iwase, S.; Mano, T.; Kitazawa, H. Responses of sympathetic outflow to skin during caloric stimulation in humans. Am. J. Physiol. 1999, 276, R738–R744. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Iwase, S.; Mano, T.; Katayama, N.; Mori, S. Muscle sympathetic nerve response to vestibular stimulation by sinusoidal linear acceleration in humans. Neurosci. Lett. 1999, 267, 181–184. [Google Scholar] [CrossRef]
- Costa, F.; Lavin, P.; Robertson, D.; Biaggioni, I. Effect of neurovestibular stimulation on autonomic regulation. Clin. Auton. Res. 1995, 5, 289–293. [Google Scholar] [CrossRef]
- Dyckman, D.J.; Monahan, K.D.; Ray, C.A. Effect of baroreflex loading on the responsiveness of the vestibulosympathetic reflex in humans. J. Appl. Physiol. 2007, 103, 1001–1006. [Google Scholar] [CrossRef]
- Grewal, T.; Dawood, T.; Hammam, E.; Kwok, K.; Macefield, V.G. Low-frequency physiological activation of the vestibular utricle causes biphasic modulation of skin sympathetic nerve activity in humans. Exp. Brain Res. 2012, 220, 101–108. [Google Scholar] [CrossRef]
- Hammam, E.; Bolton, P.S.; Kwok, K.; Macefield, V.G. Vestibular modulation of muscle sympathetic nerve activity during sinusoidal linear acceleration in supine humans. Front. Neurosci. 2014, 8, 316. [Google Scholar] [CrossRef]
- Hammam, E.; James, C.; Dawood, T.; Macefield, V.G. Low-frequency sinusoidal galvanic stimulation of the left and right vestibular nerves reveals two peaks of modulation in muscle sympathetic nerve activity. Exp. Brain Res. 2011, 213, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Hammam, E.; Dawood, T.; Macefield, V.G. Low-frequency galvanic vestibular stimulation evokes two peaks of modulation in skin sympathetic nerve activity. Exp. Brain Res. 2012, 219, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Jaregui-Renaud, K.; Reynolds, R.; Bronstein, A.M.; Gresty, M.A. Cardio-respiratory responses evoked by transient linear acceleration. Aviat. Space Environ. Med. 2006, 77, 114–120. [Google Scholar]
- Cui, J.; Mukai, C.; Iwase, S.; Sawasaki, N.; Kitazawa, H.; Mano, T.; Sugiyama, Y.; Wada, Y. Response to vestibular stimulation of sympathetic outflow to muscle in humans. J. Auton. Nerv. Syst. 1997, 66, 154–162. [Google Scholar] [CrossRef]
- Short, T.L.; Ray, C.A. Sympathetic and vascular responses to head-down neck flexion in humans. Am. J. Physiol. 1997, 272, H1780–H1784. [Google Scholar] [CrossRef] [PubMed]
- Voustianiouk, A.; Kaufmann, H.; Diedrich, A.; Raphan, T.; Biaggioni, I.; Macdougall, H.; Ogorodnikov, D.; Cohen, B. Electrical activation of the human vestibulo-sympathetic reflex. Exp. Brain Res. 2006, 171, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Wilson, T.E.; Ray, C.A. Effect of thermal stress on the vestibulosympathetic reflexes in humans. J. Appl. Physiol. 2004, 97, 1367–1370. [Google Scholar] [CrossRef]
- Wilson, T.E.; Kuipers, N.T.; McHugh, E.A.; Ray, C.A. Vestibular activation does not influence skin sympathetic nerve responses during whole body heating. J. Appl. Physiol. 2004, 97, 540–544. [Google Scholar] [CrossRef] [PubMed]
- Cal, R.; Babmad Jr, F. Vestibular evoked myogenic potentials: An overview. Braz. J. Otorhinolaryngol. 2009, 75, 456–462. [Google Scholar]
- Abe, C.; Kawada, T.; Sugimachi, M.; Morita, H. Interaction between vestibulo-cardiovascular reflex and arterial baroreflex during postural change in rats. J. Appl. Physiol. 2011, 111, 1614–1621. [Google Scholar] [CrossRef]
- Jian, B.J.; Cotter, L.A.; Emanuel, B.A.; Cass, S.P.; Yates, B.J. Effects of bilateral vestibular lesions on orthostatic tolerance in awake cats. J. Appl. Physiol. 1999, 86, 1552–1560. [Google Scholar] [CrossRef]
- Boatman, D.F.; Miglioretti, D.L.; Eberwein, C.; Alidoost, M.; Reich, S.G. How accurate are bedside hearing tests? Neurology 2007, 68, 1311–1314. [Google Scholar] [CrossRef]
- Novak, P. Quantitative autonomic testing. J. Vis. Exp. 2011, 2011, 53. [Google Scholar]
- Papathanasiou, E.S.; Murofushi, T.; Akin, F.W.; Colebatch, J.G. International guidelines for the clinical application of cervical vestibular evoked myogenic potentials: An expert consensus report. Clin. Neurophysiol. 2014, 125, 658–666. [Google Scholar] [CrossRef]
- Hart, E.C.J.; Charkoudian, N. Sympathetic Neural Regulation of Blood Pressure: Influences of Sex and Aging. Physiology 2014, 29, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Ichinose, M.; Nishiyasu, T. Arterial baroreflex control of muscle sympathetic nerve activity under orthostatic stress in humans. Front. Physiol. 2012, 3, 314. [Google Scholar] [CrossRef]
- Ray, C.A. Interaction of the vestibular system and baroreflexes on sympathetic nerve activity in humans. Am. J. Physiol. Circ. Physiol. 2000, 279, H2399–H2404. [Google Scholar] [CrossRef]
- Holstein, G.R.; Friedrich, V.L., Jr.; Martinelli, G.P. Projection neurons of the vestibulo-sympathetic reflex pathway. J. Comp. Neurol. 2014, 52, 2053–2074. [Google Scholar] [CrossRef]
- Welgampola, M.S.; Colebatch, J.G. Characteristics and clinical applications of vestibular-evoked myogenic potentials. Neurology 2005, 64, 1682–1688. [Google Scholar] [CrossRef] [PubMed]
- Rauch, S.D.; Zhou, G.; Kujawa, S.G.; Guinan, J.J.; Herrmann, B.S. Vestibular evoked myogenic potentials show altered tuning in patients with Ménière’s disease. Otol. Neurotol. 2004, 25, 333–338. [Google Scholar] [CrossRef]
- Adamec, I.; Krbot Skorić, M.; Ozretić, D.; Habek, M. Predictors of development of chronic vestibular insufficiency after vestibular neuritis. J. Neurol. Sci. 2014, 347, 224–228. [Google Scholar] [CrossRef]
- Adamec, I.; Juren Meaški, S.; Krbot Skorić, M.; Jažić, K.; Crnošija, L.; Milivojević, I.; Habek, M. Persistent postural-perceptual dizziness: Clinical and neurophysiological study. J. Clin. Neurosci. 2020, 72, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Bogle, J.M.; Benarroch, E.; Sandroni, P. Vestibular-autonomic interactions: Beyond orthostatic dizziness. Curr. Opin. Neurol. 2022, 35, 126–134. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Kang, J.J.; Oh, S.Y. Thresholds for vestibular and cutaneous perception and oculomotor response induced by galvanic vestibular stimulation. Front. Neurol. 2022, 13, 955088. [Google Scholar] [CrossRef] [PubMed]
- Freeman, R.L. Noninvasive evaluation of heart rate: Time and frequency domains. In 3rd Clinical Autonomic Disorders 2008; Low, P.A., Benarroch, E.E., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2008; p. 185. [Google Scholar]
- da Silva, S.A.; Guida, H.L.; Dos Santos Antonio, A.M.; de Abreu, L.C.; Monteiro, C.B.; Ferreira, C.; Ribeiro, V.F.; Barnabe, V.; Silva, S.B.; Fonseca, F.L.; et al. Acute Auditory Stimulation with Different Styles of Music Influences Cardiac Autonomic Regulation in Men. Int. Cardiovasc. Res. J. 2014, 8, 105–110. [Google Scholar]
- Sim, C.S.; Sung, J.H.; Cheon, S.H.; Lee, J.M.; Lee, J.W.; Lee, J. The Effects of Different Noise Types on Heart Rate Variability in Men. Yonsei Med. J. 2015, 56, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Hammam, E.; Macefield, V.G. Vestibular Modulation of Sympathetic Nerve Activity to Muscle and Skin in Humans. Front. Neurol. 2017, 8, 334. [Google Scholar] [CrossRef] [PubMed]
- Morita, H.; Kaji, H.; Ueta, Y.; Abe, C. Understanding vestibular-related physiological functions could provide clues on adapting to a new gravitational environment. J. Physiol. Sci. 2020, 70, 17. [Google Scholar] [CrossRef]
- Aoki, M.; Sakaida, Y.; Tanaka, K.; Mizuta, K.; Ito, Y. Evidence for vestibular dysfunction in orthostatic hypotension. Exp. Brain Res. 2012, 217, 251–259. [Google Scholar] [CrossRef]



| Lateral SC | Anterior SC | Posterior SC | Saccule | Utricle | |
|---|---|---|---|---|---|
| Yaw head rotation (YHR) | + [11] | ||||
| Caloric stimulation [15] | Predominantly | Slightly | |||
| Head-down rotation (HDR) | After completion of the rotation influence of semicircular canals is eliminated [15] | + | + | ||
| Sinusoidal linear acceleration (SLA) | Predominant activation when supine; slight activation when seated [3] | Predominant activation when seated; slight activation when supine [3] | |||
| OVAR [26] | Influence of SCs is eliminated after 10–12 s | + | + | ||
| Galvanic stimulation [15] | + | + | + | + | + | 
| VEMP | New evidence raises the possibility of SC activation [26] | + [13] | + [13] | ||
| Study | Stimulation Method | MSNA | SSNA | HR | BP | 
|---|---|---|---|---|---|
| Ray, 1998 [15] | YHR | ⇔ | ⇔ | ⇔ | ⇔ | 
| Wilson, 2004 [33] | YHR | NS | ⇔ | NS | NS | 
| Cui, 1999 [21] | Caloric stimulation | NS | ⇑ during the first 40 s; ⇓ with the onset of nystagmus | NS | NS | 
| Cui, 1997 [30] | Caloric stimulation | ⇑ | NS | NS | NS | 
| Costa, 1995 [23] | Caloric stimulation | ⇔ | NS | ⇔ | ⇔ | 
| Short, 1997 [31] | HDR | ⇑ | NS | ⇑ | ⇑ | 
| Wilson, 2004 [33] | HDR | ⇑ | NS | ⇔ | ⇔ | 
| Wilson, 2004 [34] | HDR | NS | ⇔ | NS | NS | 
| Dyckman, 2007 [24] | HDR | ⇑ | NS | ⇔ | ⇔ | 
| Sauder, 2008 [17] | HDR | ⇑ | NS | ⇔ | ⇔ | 
| Cui, 1999 [22] | SLA | ⇓ | NS | ⇔ | ⇔ | 
| Yates, 1999 [11] | SLA | NS | NS | ⇑ | ⇑ | 
| Jaregui-Renaud, 2006 [29] | SLA | NS | NS | ⇑ | NS | 
| Cui, 2001 [20] | SLA | ⇓ | NS | ⇑ with acceleration peak value of ±20 G; ⇔ with lower accelerations | ⇔ | 
| Grewal, 2012 [25] | SLA | NS | ⇑ | ⇔ | ⇔ | 
| Hammam, 2013 [12] | SLA | ⇑ | NS | NS | NS | 
| Hammam, 2014 [26] | SLA | ⇑ * | NS | NS | NS | 
| Bolton, 2004 [19] | Galvanic stimulation | ⇔ | ⇑ | NS | NS | 
| Voustianiouk, 2006 [32] | Galvanic stimulation | ⇑ | NS | ⇔ | ⇔ | 
| Bent, 2006 [18] | Galvanic stimulation | ⇑ | NS | NS | NS | 
| Hammam, 2011 [27] | Galvanic stimulation | ⇑ | NS | NS | NS | 
| Hammam, 2012 [28] | Galvanic stimulation | NS | ⇑ | NS | NS | 
| Kaufmann, 2002 [13] | OVAR | ⇑ when nose-up, ⇓ when nose-down | NS | ⇔ | NS | 
| Position | Otolithic Stimulation | Mean HR (bpm) | Std. Deviation | Median HR (bpm) | Sig. (2-Tailed) | 
|---|---|---|---|---|---|
| Supine | − | 70.99 | 12.20 | 70.82 | NS | 
| + | 70.07 | 12.16 | 68.55 | ||
| Tilt | − | 90.96 | 14.93 | 94.73 | 0.001 | 
| + | 88.63 | 14.68 | 90.55 | ||
| Active standing | − | 90.79 | 15.78 | 88.73 | NS | 
| + | 90.02 | 17.17 | 90.19 | 
| Position | Otolithic Stimulation | Mean sBP (mmHg) | Std. Deviation | Median sBP (mmHg) | Sig. (2-Tailed) | 
|---|---|---|---|---|---|
| Supine | − | 121.76 | 11.70 | 121.32 | NS | 
| + | 122.93 | 12.67 | 124.93 | ||
| Tilt | − | 111.17 | 14.15 | 108.09 | NS | 
| + | 113.16 | 14.16 | 111.84 | ||
| Active standing | − | 118.92 | 18.41 | 112.68 | NS | 
| + | 119.63 | 17.03 | 116.33 | 
| Position | Otolithic Stimulation | Mean dBP (mmHg) | Std. Deviation | Median dBP (mmHg) | Sig. (2-Tailed) | 
|---|---|---|---|---|---|
| Supine | − | 71.64 | 7.67 | 71.08 | NS | 
| + | 70.43 | 8.47 | 69.60 | ||
| Tilt | − | 70.70 | 9.17 | 69.09 | NS | 
| + | 71.55 | 9.24 | 69.08 | ||
| Active standing | − | 74.59 | 12.94 | 73.53 | NS | 
| + | 74.31 | 12.75 | 73.67 | 
| Position | Otolithic Stimulation | Mean HR (bpm) | Std. Deviation | Median HR (bpm) | Sig. (2-Tailed) | 
|---|---|---|---|---|---|
| Supine | − | 78.16 | 9.9 | 79.18 | NS | 
| + | 74.85 | 7.85 | 76.06 | ||
| Tilt | − | 91.57 | 15.91 | 84.52 | NS | 
| + | 93.19 | 15.33 | 88.68 | ||
| Active standing | − | 99.13 | 16.62 | 93.24 | NS | 
| + | 97.81 | 15.87 | 94.88 | 
| Position | Otolithic Stimulation | Mean sBP (mmHg) | Std. Deviation | Median sBP (mmHg) | Sig. (2-Tailed) | 
|---|---|---|---|---|---|
| Supine | − | 116.18 | 8.29 | 115.30 | NS | 
| + | 118.66 | 8.32 | 119.66 | ||
| Tilt | − | 106.41 | 12.30 | 104.48 | NS | 
| + | 109.50 | 10.17 | 104.94 | ||
| Active standing | − | 120.65 | 15.46 | 119.62 | NS | 
| + | 120.40 | 14.41 | 120.80 | 
| Position | Otolithic Stimulation | Mean dBP (mmHg) | Std. Deviation | Median dBP (mmHg) | Sig. (2-Tailed) | 
|---|---|---|---|---|---|
| Supine | − | 73.92 | 4.94 | 74.56 | NS | 
| + | 73.98 | 4.38 | 75.86 | ||
| Tilt | − | 73.13 | 11.00 | 72.43 | NS | 
| + | 74.10 | 8.24 | 72.12 | ||
| Active standing | − | 76.64 | 13.14 | 76.19 | NS | 
| + | 76.57 | 13.05 | 77.50 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krbot Skorić, M.; Crnošija, L.; Adamec, I.; Habek, M. Hemodynamic Response to Air-Conducted Sound Stimulus Is Mediated via Vestibulosympathetic Reflex. J. Clin. Med. 2025, 14, 6903. https://doi.org/10.3390/jcm14196903
Krbot Skorić M, Crnošija L, Adamec I, Habek M. Hemodynamic Response to Air-Conducted Sound Stimulus Is Mediated via Vestibulosympathetic Reflex. Journal of Clinical Medicine. 2025; 14(19):6903. https://doi.org/10.3390/jcm14196903
Chicago/Turabian StyleKrbot Skorić, Magdalena, Luka Crnošija, Ivan Adamec, and Mario Habek. 2025. "Hemodynamic Response to Air-Conducted Sound Stimulus Is Mediated via Vestibulosympathetic Reflex" Journal of Clinical Medicine 14, no. 19: 6903. https://doi.org/10.3390/jcm14196903
APA StyleKrbot Skorić, M., Crnošija, L., Adamec, I., & Habek, M. (2025). Hemodynamic Response to Air-Conducted Sound Stimulus Is Mediated via Vestibulosympathetic Reflex. Journal of Clinical Medicine, 14(19), 6903. https://doi.org/10.3390/jcm14196903
 
        

 
       