Single-Stage vs. Multi-Stage Reconstruction in Multi-Ligament Knee Injuries: A Systematic Review and Meta-Analysis of Outcomes and Complications
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Study Characteristics
3.2. Single- vs. Staged Reconstruction
3.3. Functional Outcomes
3.4. Complication Rates
3.5. Rehabilitation and Return to Sport
3.6. Acute vs. Delayed Surgery
3.7. Risk of Bias Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACL | anterior cruciate ligament |
BMI | body mass index |
IKDC | International Knee Documentation Committee |
LARS | Ligament Advanced Reinforcement System |
LCL | lateral collateral ligament |
MCL | medial collateral ligament |
MD | mean difference |
MINORS | Methodological Index for Non-Randomized Studies |
MLKI | multi-ligament knee injury |
MUA | manipulation under anesthesia |
PCL | posterior cruciate ligament |
PLC | posterolateral corner |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
ROM | range of motion |
RTS | return to sport |
SE | standard error |
SMD | standardized mean difference |
References
- Moatshe, G.; Chahla, J.; LaPrade, R.F.; Engebretsen, L. Diagnosis and Treatment of Multiligament Knee Injury: State of the Art. J. ISAKOS Jt. Disord. Orthop. Sports Med. 2017, 2, 152–161. [Google Scholar] [CrossRef]
- Mosquera, M.F.; Jaramillo, A.; Gil, R.; Gonzalez, Y. Controversies in Acute Multiligamentary Knee Injuries (MLKI). J. Exp. Orthop. 2020, 7, 56. [Google Scholar] [CrossRef] [PubMed]
- Dean, R.S.; DePhillipo, N.N.; Kahat, D.H.; Graden, N.R.; Larson, C.M.; LaPrade, R.F. Low-Energy Multiligament Knee Injuries Are Associated with Higher Postoperative Activity Scores Compared with High-Energy Multiligament Knee Injuries: A Systematic Review and Meta-analysis of the Literature. Am. J. Sports Med. 2020, 49, 2248–2254. [Google Scholar] [CrossRef]
- Maniar, N.; Verhagen, E.; Bryant, A.L.; Opar, D.A. Trends in Australian Knee Injury Rates: An Epidemiological Analysis of 228,344 Knee Injuries over 20 Years. Lancet Reg. Health West. Pac. 2022, 21, 100409. [Google Scholar] [CrossRef] [PubMed]
- Chowdhry, M.; Burchette, D.; Whelan, D.; Nathens, A.; Marks, P.; Wasserstein, D. Knee Dislocation and Associated Injuries: An Analysis of the American College of Surgeons National Trauma Data Bank. Knee Surg. Sports Traumatol. Arthrosc. 2020, 28, 568–575. [Google Scholar] [CrossRef] [PubMed]
- Arom, G.A.; Yeranosian, M.G.; Petrigliano, F.A.; Terrell, R.D.; McAllister, D.R. The Changing Demographics of Knee Dislocation: A Retrospective Database Review. Clin. Orthop. Relat. Res. 2014, 472, 2609–2614. [Google Scholar] [CrossRef]
- Nielsen, T.G.; Sørensen, O.G.; Lind, M. A Comparison of Multi-Ligament Reconstruction and Isolated Anterior Cruciate Ligament Reconstruction at One Year Follow-up: Results from the Danish Knee Ligament Reconstruction Registry. J. Exp. Orthop. 2022, 9, 30. [Google Scholar] [CrossRef]
- Wilson, S.M.; Mehta, N.; Do, H.T.; Ghomrawi, H.; Lyman, S.; Marx, R.G. Epidemiology of Multiligament Knee Reconstruction. Clin. Orthop. Relat. Res. 2014, 472, 2603–2608. [Google Scholar] [CrossRef]
- Hughes, A.J.; Li, Z.I.; Garra, S.; Green, J.S.; Chalem, I.; Triana, J.; Jazrawi, L.M.; Medvecky, M.J.; Alaia, M.J. Clinical and Functional Outcomes of Documented Knee Dislocation Versus Multiligamentous Knee Injury: A Comparison of KD3 Injuries at Mean 6.5 Years Follow-Up. Am. J. Sports Med. 2024, 52, 961–967. [Google Scholar] [CrossRef]
- Ng, J.W.G.; Myint, Y.; Ali, F.M. Management of Multiligament Knee Injuries. EFORT Open Rev. 2020, 5, 145. [Google Scholar] [CrossRef]
- Mook, W.R.; Miller, M.D.; Diduch, D.R.; Hertel, J.; Boachie-Adjei, Y.; Hart, J.M. Multiple-Ligament Knee Injuries: A Systematic Review of the Timing of Operative Intervention and Postoperative Rehabilitation. J. Bone Jt. Surg. Am. 2009, 91, 2946–2957. [Google Scholar] [CrossRef]
- D’Ambrosi, R.; Meena, A.; Ursino, N.; Di Feo, F.; Fusari, N.; Kambhampati, S.B.S. Return to Sport After Multiligament Knee Injury: A Systematic Review of the Literature. Indian J. Orthop. 2024, 58, 1548–1556. [Google Scholar] [CrossRef]
- Özbek, E.A.; Dadoo, S.; Grandberg, C.; Runer, A.; Cong, T.; Hughes, J.D.; Irrgang, J.J.; Musahl, V. Early Surgery and Number of Injured Ligaments Are Associated with Postoperative Stiffness Following Multi-Ligament Knee Injury Surgery: A Systematic Review and Meta-Analysis. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 4448–4457. [Google Scholar] [CrossRef]
- PRISMA 2020 Statement. Available online: https://www.prisma-statement.org/prisma-2020 (accessed on 27 July 2025).
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A Web and Mobile App for Systematic Reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef]
- Khan, M.J.; Asif, N.; Sharma, A.; Siddiqui, Y.S.; Khan, A.Q. Single-Stage versus Two-Stage Reconstruction in Chronic Multi Ligament Knee Injury. Int. J. Burn. Trauma 2022, 12, 35–44. [Google Scholar]
- Ma, W.; Yang, Y.; Ha, X. Two-Stage Ligament Reconstruction with Remnant Preservation as Treatment of Knee Dislocation. BMC Surg. 2023, 23, 371. [Google Scholar] [CrossRef]
- Mortazavi, S.M.J.; Kaseb, M.H.; Maleki, R.G.; Razzaghof, M.; Noori, A.; Rezaee, R. The Functional Outcomes of Delayed Surgical Reconstruction in Nonsport-Induced Multiligament Knee Injuries: A Retrospective Cohort Study. J. Knee Surg. 2022, 35, 1097–1105. [Google Scholar] [CrossRef] [PubMed]
- Watrinet, J.; von Rüden, C.; Regenbogen, S.; Brand, A.; Bormann, M.; Stuby, F.M.; Fürmetz, J. Mid-Term Results Following Traumatic Knee Joint Dislocation. J. Clin. Med. 2022, 12, 266. [Google Scholar] [CrossRef]
- Sun, L.; Wu, B.; Tian, M.; Luo, Y.Z. Results of Multiple Ligament Injured Knees Operated by Three Different Strategies. Indian J. Orthop. 2016, 50, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Gan, Y.; Zhuang, J.; Jiang, W.; Zhang, Y. Complex Repair and Cruciate Ligament Reconstruction in KDs III and IV Multiligamentous Knee Injuries-Results of Mid-Term Follow-Up. J. Knee Surg. 2023, 36, 911–916. [Google Scholar] [CrossRef]
- He, J.; Geng, B.; Xu, P.; Xia, Y. Do Age and Timing Influence the Outcomes of Single-Stage Reconstruction of Multiple Ligament Knee Injuries? 5-10 Years Follow up. Orthop. Surg. 2024, 16, 1308–1316. [Google Scholar] [CrossRef]
- Billières, J.; Labruyère, C.; Steltzlen, C.; Gonzalez, A.; Boisrenoult, P.; Beaufils, P.; Pujol, N. Multiligament Knee Injuries Treated by One-Stage Reconstruction Using Allograft: Postoperative Laxity Assessment Using Stress Radiography and Clinical Outcomes. Orthop. Traumatol. Surg. Res. 2020, 106, 937–944. [Google Scholar] [CrossRef]
- Hirschmann, M.T.; Iranpour, F.; Müller, W.; Friederich, N.F. Surgical Treatment of Complex Bicruciate Knee Ligament Injuries in Elite Athletes: What Long-Term Outcome Can We Expect? Am. J. Sports Med. 2010, 38, 1103–1109. [Google Scholar] [CrossRef] [PubMed]
- Merle du Bourg, V.; Orfeuvre, B.; Gaulin, B.; Sigwalt, L.; Horteur, C.; Rubens-Duval, B. Functional and MRI Results after a 7.5 Year Follow-up of 35 Single-Stage ACL and PCL Reconstructions Using Gracilis and Semitendinosus Tendon Grafts and LARS Artificial Ligaments. Eur. J. Orthop. Surg. Traumatol. 2024, 34, 1163–1172. [Google Scholar] [CrossRef]
- Arojuraye, S.A.; Alabi, I.A.; Okoh, N.; Ayeni, F.B.; Odunola, M.K.; Salihu, M.N. Comparative Study of the Outcomes of One-Stage versus Two-Stage Reconstruction of Chronic Multiligament Knee Injury. Surgeon 2025, 23, 27–29. [Google Scholar] [CrossRef]
- Ciancio, B.A.; Azuma, M.M.; Cerqueira, J.V.M.D.; Miyashita, G.K.; Yamashita, J.L.; Ramos, L.A. Bicruciate Reconstruction with Bilateral Hamstring Autografts: Technique and Functional Results. Rev. Bras. Ortop. 2024, 59, e542–e548. [Google Scholar] [CrossRef]
- Mussell, E.A.; Crawford, A.E.; Ithurburn, M.P.; Layton, B.O.; Fleisig, G.S.; Rothermich, M.A.; Emblom, B.A.; Ryan, M.K.; Dugas, J.R.; Andrews, J.R.; et al. Outcomes of Surgical Treatment for Multiligament Knee Injuries in a Cohort Including Competitive Athletes With Long-Term Follow-Up. Orthop. J. Sports Med. 2024, 12, 23259671241266619. [Google Scholar] [CrossRef]
- Tardy, N.; Boisrenoult, P.; Teissier, P.; Steltzlen, C.; Beaufils, P.; Pujol, N. Clinical Outcomes after Multiligament Injured Knees: Medial versus Lateral Reconstructions. Knee Surg. Sports Traumatol. Arthrosc. 2017, 25, 524–531. [Google Scholar] [CrossRef]
- Hirschmann, M.T.; Zimmermann, N.; Rychen, T.; Candrian, C.; Hudetz, D.; Lorez, L.G.; Amsler, F.; Müller, W.; Friederich, N.F. Clinical and Radiological Outcomes after Management of Traumatic Knee Dislocation by Open Single Stage Complete Reconstruction/Repair. BMC Musculoskelet. Disord. 2010, 11, 102. [Google Scholar] [CrossRef] [PubMed]
- Sanders, T.L.; Johnson, N.R.; Pareek, A.; Krych, A.J.; Marx, R.G.; Stuart, M.J.; Levy, B.A. Satisfactory Knee Function after Single-Stage Posterolateral Corner Reconstruction in the Multi-Ligament Injured/Dislocated Knee Using the Anatomic Single-Graft Technique. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 1258–1265. [Google Scholar] [CrossRef]
- Sundararajan, S.R.; Sambandam, B.; Rajagopalakrishnan, R.; Rajasekaran, S. Comparison of KD3-M and KD3-L Multiligamentous Knee Injuries and Analysis of Predictive Factors That Influence the Outcomes of Single-Stage Reconstruction in KD3 Injuries. Orthop. J. Sports Med. 2018, 6, 2325967118794367. [Google Scholar] [CrossRef] [PubMed]
- Boos, A.M.; Wang, A.S.; Hevesi, M.; Krych, A.J.; Stuart, M.J.; Levy, B.A. Long-Term Outcomes After Surgical Reconstruction of Multiligamentous Knee Injuries: Results at Minimum 10-Year Follow-Up. Orthop. J. Sports Med. 2024, 12, 23259671231223188. [Google Scholar] [CrossRef] [PubMed]
- Cain, E.L.; Mussell, E.A.; Crawford, A.E.; Ithurburn, M.P.; Layton, B.O.; Fleisig, G.S.; Rothermich, M.A.; Emblom, B.A.; Ryan, M.K.; Dugas, J.R.; et al. Long-Term Outcomes of Multiligament Knee Injuries in American Football Players. Am. J. Sports Med. 2024, 52, 1918–1926. [Google Scholar] [CrossRef]
- Pizza, N.; Di Paolo, S.; Grassi, A.; Pagano, A.; Viotto, M.; Dal Fabbro, G.; Agostinone, P.; Lucidi, G.A.; Monllau, J.C.; Zaffagnini, S. Good Long-Term Patients Reported Outcomes, Return-to-Work and Return-to-Sport Rate and Survivorship after Posterior Cruciate Ligament (PCL)-Based Multiligament Knee Injuries (MLKI) with Posteromedial Corner Tears as Significant Risk Factor for Failure. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 5018–5024. [Google Scholar] [CrossRef]
- Panish, B.; Lawson, J.J.; Elkadi, S.; Schaefer, E.; Perraut, G.; Argintar, E.H. Multiligament Knee Reconstruction With Suture Tape Augmentation: Patient-Reported Outcomes at Minimum 2-Year Follow-Up. Orthopedics 2024, 47, 238–243. [Google Scholar] [CrossRef]
- Mhaskar, V.A.; Sayed, S.R.; Hosmanne, M.; Patel, H.; Siddiqui, Z.H.; Varshney, G. How Stable Do Multiligament Knee Reconstructions Become?: An Objective Stability and PROMs Study. Indian J. Orthop. 2024, 58, 1579–1584. [Google Scholar] [CrossRef]
- Mayne, A.I.W.; Ebert, J.R.; Edwards, P.K.; Davies, P.S.E.; Evans, R.; Aujla, R.S.; Malik, S.S.; Grant, M.J.; Dalgleish, S.; Gohil, S.; et al. Modern Multiligament Knee Injury Surgical Reconstruction Techniques Can Achieve Excellent Knee Function and Patient Satisfaction, with Low Complication Rates. Knee Surg. Sports Traumatol. Arthrosc. 2024, 32, 2967–2977. [Google Scholar] [CrossRef]
- Said, S.M.; Elsoe, R.; Mikkelsen, C.; Engström, B.; Larsen, P. Clinical, Functional, and Patient-Reported Outcome of Traumatic Knee Dislocations: A Retrospective Cohort Study of 75 Patients with 6.5-Year Follow-Up. Arch. Orthop. Trauma Surg. 2023, 143, 2589–2597. [Google Scholar] [CrossRef]
- Korber, S.S.; Fathi, A.; Bolia, I.K.; Panish, B.J.; Benvegnu, N.; Juhan, T.W.; Weber, A.E.; Argintar, E.H.; Hatch, G.F. Outcomes of Multiligament Knee Injury Treated with versus without Internal Brace Suture Augmentation. Eur. J. Orthop. Surg. Traumatol. 2024, 34, 303–309. [Google Scholar] [CrossRef]
- Schneebeli, V.; Philippe, V.; Laurent, A.; Applegate, L.A.; Martin, R. Prognostic Factors for Multiligament Knee Injury Treated With Multiligament Reconstruction: Functional and Radiological Outcomes at 2 to 8 Years Postoperatively. Orthop. J. Sports Med. 2024, 12, 23259671241261103. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Singhal, A.; Kapoor, A.; Masih, G.D.; Jhatiwal, S. Similar Functional Outcomes of Arthroscopic Reconstruction in Patients with Isolated Posterior Cruciate Ligament (PCL) and Combined Anterior Cruciate Ligament (ACL) and PCL Tears. J. Clin. Orthop. Trauma 2020, 16, 65. [Google Scholar] [CrossRef]
- Goyal, T.; Paul, S.; Banerjee, S.; Das, L. Outcomes of One-Stage Reconstruction for Chronic Multiligament Injuries of Knee. Knee Surg. Relat. Res. 2021, 33, 3. [Google Scholar] [CrossRef]
- Cui, S.; Yi, H.; Zhu, X.; Fan, J.; Ding, Y.; Liu, W. The Efficacy and Outcome of a Two-Staged Operation for Irreducible Knee Dislocation: A Prospective Short-Term Follow-Up. Front. Bioeng. Biotechnol. 2022, 10, 861788. [Google Scholar] [CrossRef]
- Inada, M.M.; Piedade, S.R. Clinical outcomes after two-stage bicruciate knee ligament reconstruction. Acta Ortop. Bras. 2021, 29, 7–11. [Google Scholar] [CrossRef]
- Alentorn-Geli, E.; Lazarides, A.L.; Utturkar, G.M.; Myers, H.S.; Samuelsson, K.; Choi, J.H.J.; Stuart, J.J.; Moorman, C.T. Factors Predictive of Poorer Outcomes in the Surgical Repair of Multiligament Knee Injuries. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 445–459. [Google Scholar] [CrossRef]
- Ranger, P.; Senay, A.; Gratton, G.R.; Lacelle, M.; Delisle, J. LARS Synthetic Ligaments for the Acute Management of 111 Acute Knee Dislocations: Effective Surgical Treatment for Most Ligaments. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 3673–3681. [Google Scholar] [CrossRef]
- Panigrahi, R.; Kumari Mahapatra, A.; Priyadarshi, A.; Singha Das, D.; Palo, N.; Ranjan Biswal, M. Outcome of Simultaneous Arthroscopic Anterior Cruciate Ligament and Posterior Cruciate Ligament Reconstruction With Hamstring Tendon Autograft: A Multicenter Prospective Study. Asian J. Sports Med. 2016, 7, e29287. [Google Scholar] [CrossRef]
- Gliatis, J.; Anagnostou, K.; Tsoumpos, P.; Billis, E.; Papandreou, M.; Plessas, S. Complex Knee Injuries Treated in Acute Phase: Long-Term Results Using Ligament Augmentation and Reconstruction System Artificial Ligament. World J. Orthop. 2018, 9, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Rusdi, A.; Shahrulazua, A.; Siti, H.T.; Nizlan, N.M. Short-Term Functional Outcomes of a Delayed Single-Stage Reconstruction of Chronic Posterior Cruciate Ligament and Posterolateral Corner Deficiency. Clin. Ter. 2014, 165, e28–e34. [Google Scholar] [CrossRef] [PubMed]
- Khakha, R.S.; Day, A.C.; Gibbs, J.; Allen, S.; Hill, P.; Hull, J.; Perry, A.; Chissell, H. Acute Surgical Management of Traumatic Knee Dislocations--Average Follow-up of 10 Years. Knee 2016, 23, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, R.; Kitamura, N.; Kondo, E.; Anaguchi, Y.; Tohyama, H.; Yasuda, K. Simultaneous Anterior and Posterior Cruciate Ligament Reconstruction in Chronic Knee Instabilities: Surgical Concepts and Clinical Outcome. Knee Surg. Sports Traumatol. Arthrosc. 2008, 16, 763–769. [Google Scholar] [CrossRef]
- Engebretsen, L.; Risberg, M.A.; Robertson, B.; Ludvigsen, T.C.; Johansen, S. Outcome after Knee Dislocations: A 2-9 Years Follow-up of 85 Consecutive Patients. Knee Surg. Sports Traumatol. Arthrosc. 2009, 17, 1013–1026. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.; Li, X.; Zhou, Z.; Zhu, Z. Acute Single-Stage Reconstruction of Multiligament Knee Injuries Using the Ligament Advanced Reinforcement System. Med. Princ. Pract. 2013, 22, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Liu, Y.; Zheng, R.; Sun, J.; Peng, W.; Deng, X.-H.; Huang, X. One-Stage Arthroscopic Multiple Ligament Reconstruction for Schenck IV Knee Dislocation. Orthop. Surg. 2023, 15, 502–509. [Google Scholar] [CrossRef]
- Bagherifard, A.; Jabalameli, M.; Ghaffari, S.; Rezazadeh, J.; Abedi, M.; Mirkazemi, M.; Aghamohamadi, J.; Hesabi, A.; Mohammadpour, M. Short to Mid-Term Outcomes of Single-Stage Reconstruction of Multiligament Knee Injury. Arch. Bone Jt. Surg. 2019, 7, 346–353. [Google Scholar]
- LaPrade, R.F.; Chahla, J.; DePhillipo, N.N.; Cram, T.; Kennedy, M.I.; Cinque, M.; Dornan, G.J.; O’Brien, L.T.; Engebretsen, L.; Moatshe, G. Single-Stage Multiple-Ligament Knee Reconstructions for Sports-Related Injuries: Outcomes in 194 Patients. Am. J. Sports Med. 2019, 47, 2563–2571. [Google Scholar] [CrossRef]
- Bin, S.-I.; Nam, T.-S. Surgical Outcome of 2-Stage Management of Multiple Knee Ligament Injuries after Knee Dislocation. Arthroscopy 2007, 23, 1066–1072. [Google Scholar] [CrossRef]
- Multiligament Knee Injury (MLKI): An Expert Consensus Statement on Nomenclature, Diagnosis, Treatment and Rehabilitation | British Journal of Sports Medicine. Available online: https://bjsm.bmj.com/content/58/23/1385 (accessed on 3 September 2025).
- Briggs, K.K.; Steadman, J.R.; Hay, C.J.; Hines, S.L. Lysholm Score and Tegner Activity Level in Individuals with Normal Knees. Am. J. Sports Med. 2009, 37, 898–901. [Google Scholar] [CrossRef]
- Irrgang, J.J.; Anderson, A.F.; Boland, A.L.; Harner, C.D.; Kurosaka, M.; Neyret, P.; Richmond, J.C.; Shelborne, K.D. Development and Validation of the International Knee Documentation Committee Subjective Knee Form. Am. J. Sports Med. 2001, 29, 600–613. [Google Scholar] [CrossRef]
- Hohmann, E.; Glatt, V.; Tetsworth, K. Early or Delayed Reconstruction in Multi-Ligament Knee Injuries: A Systematic Review and Meta-Analysis. Knee 2017, 24, 909–916. [Google Scholar] [CrossRef] [PubMed]
- Marder, R.S.; Poonawala, H.; Pincay, J.I.; Nguyen, F.; Cleary, P.F.; Persaud, C.S.; Naziri, Q.; Zikria, B.A. Acute Versus Delayed Surgical Intervention in Multiligament Knee Injuries: A Systematic Review. Orthop. J. Sports Med. 2021, 9, 23259671211027855. [Google Scholar] [CrossRef]
- Vermeijden, H.D.; Yang, X.A.; Rademakers, M.V.; Kerkhoffs, G.M.M.J.; van der List, J.P.; DiFelice, G.S. Early and Delayed Surgery for Isolated ACL and Multiligamentous Knee Injuries Have Equivalent Results: A Systematic Review and Meta-Analysis. Am. J. Sports Med. 2023, 51, 1106–1116. [Google Scholar] [CrossRef]
- Bi, A.S.; Mojica, E.S.; Markus, D.H.; Blaeser, A.M.; Kahan, J.; Moran, J.; Jazrawi, L.M.; Medvecky, M.J.; Alaia, M.J. Risk of Postoperative Stiffness Following Multiligamentous Knee Injury Surgery Is Not Affected by Obesity: A Multicenter Study. Arthroscopy 2022, 38, 3175–3181. [Google Scholar] [CrossRef]
- Hanley, J.; Westermann, R.; Cook, S.; Glass, N.; Amendola, N.; Wolf, B.R.; Bollier, M. Factors Associated with Knee Stiffness Following Surgical Management of Multiligament Knee Injuries. J. Knee Surg. 2016, 30, 549–554. [Google Scholar] [CrossRef]
- Sun, J.; Wei, X.; Li, L.; Cao, X.; Li, K.; Guo, L.; Lu, J.; Duan, Z.; Xiang, C.; Wei, L. Autografts vs Synthetics for Cruciate Ligament Reconstruction: A Systematic Review and Meta-Analysis. Orthop. Surg. 2020, 12, 378–387. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-J.; Kim, S.-H.; Jung, M.; Kim, J.-M.; Lee, S.-W. Does Sequence of Graft Tensioning Affect Outcomes in Combined Anterior and Posterior Cruciate Ligament Reconstructions? Clin. Orthop. Relat. Res.® 2015, 473, 235. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Merchán, E.C.; De la Corte-Rodríguez, H.; Encinas-Ullán, C.A.; Gómez-Cardero, P. Complications of Surgical Reconstruction of Multiligament Injuries of the Knee Joint: Diagnosis, Prevention and Treatment. EFORT Open Rev. 2021, 6, 973–981. [Google Scholar] [CrossRef] [PubMed]
- Moatshe, G.; LaPrade, R.F.; Engebretsen, L. How to Avoid Tunnel Convergence in a Multiligament Injured Knee. Ann. Jt. 2018, 3, 93. [Google Scholar] [CrossRef]
- Moatshe, G.; Lisenda, L.; Getgood, A.; LaPrade, R.F. Multiligament Knee Reconstruction: Avoiding Tunnel Convergence and Optimal Graft Fixation Order. In Surgical Techniques of the Shoulder, Elbow, and Knee in Sports Medicine, 3rd ed.; Cole, B.J., Chahla, J., Gilat, R., Eds.; Elsevier: Philadelphia, PA, USA, 2022; pp. 855–862. ISBN 978-0-323-76300-4. [Google Scholar]
- Moatshe, G.; Chahla, J.; Brady, A.; Dornan, G.; Muckenhirn, K.; Kruckeberg, B.; Engebretsen, L.; LaPrade, R.F. The Influence of Graft Tensioning Sequence on Tibiofemoral Orientation during Bicruciate and Posterolateral Corner Knee Ligament Reconstruction: A Biomechanical Study. Orthop. J. Sports Med. 2018, 6, 2325967118S00066. [Google Scholar] [CrossRef]
- Zheng, L.; Sabzevari, S.; Marshall, B.; Zhu, J.; Linde, M.A.; Smolinski, P.; Fu, F.H. Anterior Cruciate Ligament Graft Fixation First in Anterior and Posterior Cruciate Ligament Reconstruction Best Restores Knee Kinematics. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 1237–1244. [Google Scholar] [CrossRef]
- Sanders, T.L.; Johnson, N.R.; Levy, N.M.; Cole, P.A.; Krych, A.J.; Stuart, M.; Levy, B.A. Effect of Vascular Injury on Functional Outcome in Knees with Multi-Ligament Injury: A Matched-Cohort Analysis. J. Bone Jt. Surg. Am. 2017, 99, 1565–1571. [Google Scholar] [CrossRef]
- Poploski, K.M.; Lynch, A.D.; Burns, T.C.; Harner, C.D.; Levy, B.A.; Owens, B.D.; Richter, D.L.; Schenck, R.C.J.; Musahl, V.; Irrgang, J.J.; et al. Presentation and Surgical Management of Multiple Ligament Knee Injuries: A Multicenter Study from the Surgical Timing and Rehabilitation (STaR) Trial for MLKIs Network. J. Bone Jt. Surg. 2023, 105, 607. [Google Scholar] [CrossRef]
- Everhart, J.S.; Du, A.; Chalasani, R.; Kirven, J.C.; Magnussen, R.A.; Flanigan, D.C. Return to Work or Sport After Multiligament Knee Injury: A Systematic Review of 21 Studies and 524 Patients. Arthrosc. J. Arthrosc. Relat. Surg. 2018, 34, 1708–1716. [Google Scholar] [CrossRef]
- Borque, K.A.; Jones, M.; Balendra, G.; Willinger, L.; Pinheiro, V.H.; Anand, B.S.; Williams, A. High Return to Play Rate Following Treatment of Multiple-Ligament Knee Injuries in 136 Elite Athletes. Knee Surg. Sports Traumatol. Arthrosc. 2022, 30, 3393–3401. [Google Scholar] [CrossRef]
- Low-Velocity Knee Dislocations in Obese and Morbidly Obese Patients—Rahul Vaidya, Matthew Roth, Dhiren Nanavati, Matthew Prince, Anil Sethi, 2015. Available online: https://journals.sagepub.com/doi/full/10.1177/2325967115575719 (accessed on 31 July 2025).
- Daniel, A.V.; Williams, W.A.; Kosko, B.J.; Cohen, J.A.; Carbone, A.D.; Kupiszewski, S.J. Obese Patients Demonstrate Higher Failure Rates, Infection Rates, and Inferior Patient-Reported Outcomes Compared With Nonobese Patients Following Multiligamentous Knee Surgery. Arthrosc. Sports Med. Rehabil. 2025, 7, 101111. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.; Ferrante, S.; DiBartola, A.; Magnussen, R.; Welder, E.; Crouser, N.; Kaeding, C.; Flanigan, D.; Duerr, R.A. Increased Body Mass Index Is Associated with Worse Mid- To Long-Term Patient Outcomes after Surgical Repair of Multiligamentous Knee Injuries. J. Knee Surg. 2023, 37, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Ridley, T.J.; Cook, S.; Bollier, M.; McCarthy, M.; Gao, Y.; Wolf, B.; Amendola, A. Effect of Body Mass Index on Patients With Multiligamentous Knee Injuries. Arthrosc. J. Arthrosc. Relat. Surg. 2014, 30, 1447–1452. [Google Scholar] [CrossRef] [PubMed]
- Klasan, A.; Maerz, A.; Putnis, S.E.; Ernat, J.J.; Ollier, E.; Neri, T. Outcomes after Multiligament Knee Injury Worsen over Time: A Systematic Review and Meta-analysis. Knee Surg. Sports Traumatol. Arthrosc. 2025, 33, 1281–1298. [Google Scholar] [CrossRef]
Study Characteristic | n |
---|---|
Study design | |
Retrospective case series | 37 |
Prospective studies | 5 |
Comparative studies | 3 |
Mixed retrospective and prospective | 1 |
Geographic distribution | |
USA | 10 |
China | 8 |
India | 7 |
Europe | 10 |
Other | 6 |
Publication year | |
2020–2024 | 23 |
2010–2020 | 14 |
2000–2010 | 6 |
Study ID | Study Design | Total Patients (N) | Single-Stage (n) | Staged (n) | Follow-Up (Months) | MINORS Score | Ligaments Reconstructed/Repaired | Sequence of Tensioning |
---|---|---|---|---|---|---|---|---|
Khan et al., 2022 [16] | Retrospective comparative study | 27 | 14 | 13 | 24.0 | 16/24 | Ligaments Reconstructed | PCL, ACL collaterals |
Ma W et al., 2023 [17] | Retrospective comparative study | 70 | 48 | 22 | 60.3 | 17/24 | PCL, LCL/PLC, MCL, ACL, in that order. In staged cohort. ACL was performed in subsequent stage. | NR |
Mortazavi et al., 2022 [18] | Retrospective comparative study | 18 | 11 | 7 | 24.0 | 16/24 | Stage 1 Collateral ligament repair, stage II Cruciate reconstruction | PCL, ACL, LCL/PLC and MCL/PMC |
Watrinet et al., 2022 [19] | Retrospective comparative study | 38 | 20 | 15.0 | 66.0 | 14/24 | PCL, ACL, LCL/PLC, and MCL/PMC | NR |
Sun et al., 2016 [20] | Retrospective comparative study | 32 | 21 | 11.0 | 34.7 | 18/24 | NR | ACL PCL, PLC, PMC |
Gan et al., 2023 [21] | Retrospective case series | 47 | 45 | 0 | 53.2 | 12/16 | ACL, PCL, PMC, PLC | PCL, ACL, Collaterals |
He et al., 2024 [22] | Retrospective comparative study | 102 | 102 | 0 | 87.6 | 14/24 | PCL, ACL, Collaterals | ACL/PCL/LCL/MCL, PCL |
Billières et al., 2020 [23] | Retrospective case series | 20 | 20 | 0 | 29.4 | 11/16 | ACL, PCL, MCL, LCL, PLC | NR |
Hirschmann et al., 2010 [24] | Retrospective case series | 24 | 24 | 0 | 72.0 | 14/16 | ACL, PCL, MCL, LCL | PCL, ACL, Collaterals |
Merle du Bourg et al., 2024 [25] | Retrospective case series | 35 | 35 | 0 | 90.0 | 10/16 | PCL, ACL, MCL, LCL | PCL, ACL, Collaterals |
Arojuraye et al., 2025 [26] | Retrospective comparative study | 51 | 26 | 25 | 12.0 | 18/24 | PCL, ACL | PCL, ACL, MCL LCL |
Ciancio et al., 2024 [27] | Prospective case series | 18 | 18 | 0 | 24.0 | 11/16 | PCL, ACL, MCL, LCL | PCL, ACL, Collaterals |
Mussell et al., 2024 [28] | Retrospective case series | 119 | 119 | 0 | 97.2 | 14/16 | PCL, ACL then Collaterals | NR |
Tardy et al., 2017 [29] | Retrospective cohort study | 39 | 39 | 0 | 57.0 | 17/24 | LCL, PCL, PCL ACL | ACL, PCL, PMC, |
Hirschmann et al., 2010 [30] | Retrospective case series | 74 | 74 | 0 | 144.0 | 14/16 | ACL, PCL, PMC | PCL, ACL, Collaterals |
Sanders et al., 2018 [31] | Retrospective case series | 61.0 | 61 | 0 | 45.6 | 15/16 | PCL, ACL, Collaterals | NR |
Sundararajan et al., 2018 [32] | Prospective cohort study | 45.0 | 45 | 0 | 36.0 | 17/24 | ACL PCL Collaterals PLC | NR |
Boos et al., 2024 [33] | Retrospective case series | 55.0 | 55 | 0 | 182.0 | 13/16 | ACL PCL Collaterals PLC | NR |
Cain et al., 2024 [34] | Retrospective case series | 53.0 | 53 | 0 | 92.4 | 14/16 | ACL PCL Collaterals | NR |
Pizza et al., 2023 [35] | Retrospective case series | 42.0 | 42 | 0 | 115.2 | 12/16 | ACL PCL Collaterals PLC | NR |
Panish et al., 2024 [36] | Prospective case series | 27 | 27 | 0 | 24.0 | 12/16 | ACL PCL Collaterals PLC | ACL PCL Collaterals |
Mhaskar et al., 2024 [37] | retrospective study | 44 | 44 | 0 | 36.0 | 13/16 | ACL PCL Collaterals | PCL, PLC, MCL ACL |
Mayne et al., 2024 [38] | Prospective case series | 40 | 40 | 0 | 24.0 | 14/16 | ACL PCL Collaterals PLC | PCL, ACL, PLC, Collaterals |
Said et al., 2023 [39] | Retrospective case series | 75 | 75 | 0 | 78.0 | 13/16 | PCL, ACL, PLC, Collaterals | PCL, ACL, Medial collateral, lateral |
Korber et al., 2024 [40] | Retrospective case series | 126 | 126 | 0 | 37.9 | 20/24 | PCL, ACL, PLC, Collaterals | NR |
Schneebeli et al. [41] | Retrospective + Prospective case series | 52 | 52 | 0 | 45.6 | 12/16 | PCL, ACL, PLC, Collaterals, PMC | PCL, Collaterals, ACL |
Gupta et al., 2020 [42] | Retrospective case series | 50 | 50 | 0 | 80.5 | 12/16 | PCL, collaterals, ACL | PLC, Collaterals, ACL |
Goyal et al., 2021 [43] | Retrospective case series | 27 | 27 | 0 | 24.0 | 10/14 | ACL/PCL | PCL, ACL, PLC, MCL |
Cui et al., 2022 [44] | Prospective case series | 17 | 0 | 17 | 11.18 | 14/16 | PCL, ACL, PLC, MCL | PCL, ACL |
Inada et al., 2021 [45] | Retrospective case series | 25 | 0 | 25 | 24.8 | 11/16 | MCL stage 1. PCL and ACL stage II | NR |
Alentorn-Geli et al., 2019 [46] | Retrospective case series | 39 | 39 | 0 | 27.0 | 12/16 | PCL stage 1 | NR |
Ranger et al., 2018 [47] | Retrospective case series | 111 | 111 | 0 | 74.4 | 10/24 | PCL, collaterals, ACL | NR |
Panigrahi et al., 2016 [48] | Retrospective case series | 20 | 18 | 0 | 26.0 | 14/16 | PCL, ACL, Collaterals, PMC, PLC | NR |
Gliatis et al., 2018 [49] | Retrospective case series | 31 | 31 | 0 | 60.0 | 8/16 | PCL, ACL, LCL/PLC. MCL not repaired | PCL, ACL, LCL/PLC |
Rusdi et al., 2014 [50] | Retrospective case series | 21 | 21 | 0 | 21.7 | 9/16 | PCL, PLC | NR |
Khakha et al., 2016 [51] | Retrospective case series | 36 | 36 | 0 | 121.0 | 10/16 | PCL, ACL, MCL, LCL | NR |
Hayash et al., 2008 [52] | Retrospective case series | 19 | 19 | 0 | 42.0 | 6/16 | PCL, ACL, MCL, LCL/PLV | PCL, ACL, MCL, PLC |
Engebretsen et al., 2009 [53] | Retrospective case series | 85 | 51 | 34 | 60.0 | 12/16 | PCL, ACL, MCL, PCL/LCL | LC, PLC, PCL, ACL, MCL |
Tao et al., 2013 [54] | Retrospective case series | 9 | 9 | 0 | 30.0 | 10/16 | LC, PLC, PCL, ACL MCL | PCL, ACL, PLC, MCL |
Li et al. [55] | Retrospective case series | 12 | 12 | 0 | 24.0 | 8/16 | LC, PLC, PCL, ACL MCL | PCL, MCL, ACL, and LCL |
Bagherifard et al., 2019 [56] | Retrospective case series | 41 | 4 | 0 | 36.9 | 10/16 | PCL, MCL, ACL, and LCL | PCL, PLC, ACL, and MCL |
LaPrade et al., 2019 [57] | Retrospective case series | 194 | 19 | 0 | 42.0 | 12/16 | PCL, PLC, ACL, and MCL | NR |
Bin et al., 2007 [58] | Retrospective case series | 15 | 5 | 10 | 88.9 | 8/16 | LCL, MCL stage 1, ACL and PCL stage 2 | NR |
Metric | Single-Stage (n = 1636) | Staged/Multi-Stage (n = 135) | Effect Size (95% CI) | p-Value |
---|---|---|---|---|
Lysholm Score | 82.47 ± 11.32 | 87.21 ± 7.65 | Mean difference: −4.74 [−6.33, −3.15] | <0.001 |
IKDC Score | 76.31 ± 15.25 | 77.88 ± 9.45 | Mean difference: −1.57 [−4.23, 1.10] | 0.19 |
Complication | Single-Stage Rate | Multi-Stage Rate | Odds Ratio (95% CI) | p-Value |
---|---|---|---|---|
Arthrofibrosis | 7.29% | 1.95% | 3.96 (1.25–12.57) | 0.007 |
Graft Failure | 3.08% | 0.65% | 4.85 (0.67–35.31) | 0.125 |
Infection | 0.84% | 1.95% | 0.42 (0.12–1.49) | 0.167 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaibaji, M.; Najim, O.; Alali, H.; Wood, L.; Van Niekerk, L.; Bonner, T.; Volpin, A. Single-Stage vs. Multi-Stage Reconstruction in Multi-Ligament Knee Injuries: A Systematic Review and Meta-Analysis of Outcomes and Complications. J. Clin. Med. 2025, 14, 6897. https://doi.org/10.3390/jcm14196897
Jaibaji M, Najim O, Alali H, Wood L, Van Niekerk L, Bonner T, Volpin A. Single-Stage vs. Multi-Stage Reconstruction in Multi-Ligament Knee Injuries: A Systematic Review and Meta-Analysis of Outcomes and Complications. Journal of Clinical Medicine. 2025; 14(19):6897. https://doi.org/10.3390/jcm14196897
Chicago/Turabian StyleJaibaji, Monketh, Omar Najim, Hamza Alali, Lisa Wood, Louw Van Niekerk, Tim Bonner, and Andrea Volpin. 2025. "Single-Stage vs. Multi-Stage Reconstruction in Multi-Ligament Knee Injuries: A Systematic Review and Meta-Analysis of Outcomes and Complications" Journal of Clinical Medicine 14, no. 19: 6897. https://doi.org/10.3390/jcm14196897
APA StyleJaibaji, M., Najim, O., Alali, H., Wood, L., Van Niekerk, L., Bonner, T., & Volpin, A. (2025). Single-Stage vs. Multi-Stage Reconstruction in Multi-Ligament Knee Injuries: A Systematic Review and Meta-Analysis of Outcomes and Complications. Journal of Clinical Medicine, 14(19), 6897. https://doi.org/10.3390/jcm14196897