The Timeline of the Association Between Diabetes and Cardiovascular Diseases: A Narrative Review
Abstract
1. Introduction
2. The Beginning: Diabetes and Cardiovascular Diseases
3. Metabolic Syndrome (MeS): An Evolving Definition
4. The Past: The Lower, the Better
5. The Great Paradigm Shift
6. The Present: Safety First
6.1. SGLT2i
6.2. GLP1-RAs
6.3. DPP4i
6.4. Insulin
7. The Future Is Bright
8. CV Risk Stratification Models: A Timeline
9. Perspective on Clinical Practice
10. Limitations
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
ACS | Acute coronary syndrome |
ADA | American Diabetes Association |
ASCVD | Atherosclerotic cardiovascular disease |
CHD | Coronary heart disease |
CI | Confidence interval |
CKD | Chronic kidney disease |
CVD | Cardiovascular disease |
CVOT | Cardiovascular outcome trial |
DPP4i | Dipeptidyl peptidase-4 inhibitor |
ESC | European Society of Cardiology |
FHS | Framingham Heart Study |
FRS | Framingham Risk Score |
GLP-1 RAs | Glucagon-like peptide-1 receptor agonists |
HF | Heart failure |
HFmrEF | Heart failure with moderately reduced ejection fraction |
HFpEF | Heart failure with preserved ejection fraction |
HFrEF | Heart failure with reduced ejection fraction |
HHF | Heart failure hospitalization |
MACE | Major adverse cardiovascular event |
MeS | Metabolic syndrome |
MI | Myocardial infarction |
RCT | Randomized controlled trial |
RR | Risk ratio |
SGLT2i | Sodium-glucose transport protein 2 inhibitors |
T2D | Type 2 diabetes |
TOD | Target organ damage |
References
- Borén, J.; Öörni, K.; Catapano, A.L. The link between diabetes and cardiovascular disease. Atherosclerosis 2024, 394, 117607. Available online: http://www.atherosclerosis-journal.com/article/S0021915024001679/fulltext (accessed on 16 September 2024). [CrossRef]
- Ong, K.L.; Stafford, L.K.; McLaughlin, S.A.; Boyko, E.J.; Vollset, S.E.; Smith, A.E.; Dalton, B.E.; Duprey, J.; Cruz, J.A.; Hagins, H.; et al. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2023, 402, 203–234. Available online: http://www.thelancet.com/article/S0140673623013016/fulltext (accessed on 16 September 2024). [CrossRef]
- World Health Organization. Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycemia: Report of a WHO/IDF Consultation; World Health Organization: Geneva, Switzerland, 2006; pp. 1–50. [Google Scholar]
- IDF Diabetes Atlas 2025|Global Diabetes Data & Insights. Available online: https://diabetesatlas.org/resources/idf-diabetes-atlas-2025/ (accessed on 30 May 2025).
- Schmidt, A.M. Diabetes Mellitus and Cardiovascular Disease. Arter. Thromb. Vasc. Biol. 2019, 39, 558–568. [Google Scholar] [CrossRef]
- Martín-Timón, I.; Sevillano-Collantes, C.; Segura-Galindo, A.; del Cañizo-Gómez, F.J. Type 2 diabetes and cardiovascular disease: Have all risk factors the same strength? World J. Diabetes 2014, 5, 444. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC4127581/ (accessed on 16 September 2024). [CrossRef]
- Henderson, G. Court of Last Appeal-The Early History of the High-fat Diet for Diabetes The First Low-carbohydrate Diet for Diabetes. J. Diabetes Metab. 2016, 7, 8. [Google Scholar] [CrossRef]
- Karamanou, M.; Protogerou, A.; Tsoucalas, G.; Androutsos, G.; Poulakou-Rebelakou, E. Milestones in the history of diabetes mellitus: The main contributors. World J. Diabetes 2016, 7, 1. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC4707300/ (accessed on 22 September 2024). [CrossRef]
- Polyzos, S.A.; Mantzoros, C.S. Diabetes mellitus: 100 years since the discovery of insulin. Metabolism 2021, 118, 154737. [Google Scholar] [CrossRef]
- Giorgino, F.; Leonardini, A.; Laviola, L. Cardiovascular disease and glycemic control in type 2 diabetes: Now that the dust is settling from large clinical trials. Ann. N. Y. Acad. Sci. 2013, 1281, 36. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC3715107/ (accessed on 23 September 2024). [CrossRef] [PubMed]
- Joslin, E.P. Arteriosclerosis in Diabetes. Ann. Intern. Med. 1930, 4, 54–66. Available online: http://annals.org/article.aspx?doi=10.7326/0003-4819-4-1-54 (accessed on 13 September 2024). [CrossRef]
- Mahmood, S.S.; Levy, D.; Vasan, R.S.; Wang, T.J. The Framingham Heart Study and the Epidemiology of Cardiovascular Diseases: A Historical Perspective. Lancet 2014, 383, 999. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC4159698/ (accessed on 16 September 2024). [CrossRef]
- Kengne, A.P.; Turnbull, F.; MacMahon, S. The Framingham Study, diabetes mellitus and cardiovascular disease: Turning back the clock. Prog. Cardiovasc. Dis. 2010, 53, 45–51. Available online: https://pubmed.ncbi.nlm.nih.gov/20620425/ (accessed on 13 September 2024). [CrossRef]
- Turner, R.C. The U.K. Prospective Diabetes Study. A review. Diabetes Care 1998, 21 (Suppl. S3), C35–C38. Available online: https://pubmed.ncbi.nlm.nih.gov/9850487/ (accessed on 16 September 2024). [CrossRef]
- Chalmers, J.; Cooper, M.E. UKPDS and the Legacy Effect. N. Engl. J. Med. 2008, 359, 1618–1620. [Google Scholar] [CrossRef] [PubMed]
- Lorber, D. Importance of cardiovascular disease risk management in patients with type 2 diabetes mellitus. Diabetes Metab. Syndr. Obes. 2014, 7, 169–183. Available online: https://pubmed.ncbi.nlm.nih.gov/24920930/ (accessed on 16 September 2024). [CrossRef]
- Home, P.D. Impact of the UKPDS—An overview. Diabetes Med. 2008, 25 (Suppl. S2), 2–8. Available online: https://pubmed.ncbi.nlm.nih.gov/18717971/ (accessed on 16 September 2024). [CrossRef] [PubMed]
- Haslam, D. Obesity: A medical history. Obes. Rev. 2007, 8 (Suppl. S1), 31–36. [Google Scholar] [CrossRef]
- Caballero, B. The Global Epidemic of Obesity: An Overview. Epidemiol. Rev. 2007, 29, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Seshadri, K.G. Obesity: A Venusian story of Paleolithic proportions. Indian J. Endocrinol. Metab. 2012, 16, 134. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC3263182/ (accessed on 23 September 2024). [CrossRef]
- Vari, S.G. Obesity: Rubensian beauty turned into major health problem. Croat. Med. J. 2017, 58, 89. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC5410737/ (accessed on 25 September 2024). [CrossRef]
- Hurst, J.W.; Fye, B.; Giovanni, M.A.; Morgagni, B.; Ventura, H. Profiles in Cardiology. Clin. Cardiol. 2000, 23, 792–794. [Google Scholar]
- Hitzenberger, K.; Richter-Quittner, M. Ein Beitrag zum Stoffwechsel bei der vaskulären Hypertonie. Wien. Arch. Inn. Med. 1921, 2, 189–216. [Google Scholar]
- Hitzenberger, K. Über den Blutdruck bei Diabetes mellitus. Wien. Arch. Inn. Med. 1921, 2, 461–466. [Google Scholar]
- Kylin, E. Studien uber das Hypertoni-Hyperglyce mi-Hyperurikemi syndrom. Zentralblatt Für Inn. Med. 1923, 44, 105–112. Available online: https://cir.nii.ac.jp/crid/1570291225923755776.bib?lang=en (accessed on 25 September 2024).
- Himsworth, H.P. Diabetes mellitus: Its differentiation into insulin-sensitive and insulin-insensitive types. Lancet 1936, 227, 127–130. [Google Scholar] [CrossRef]
- Vague, J. Sexual differentiation; Factor determining forms of obesity. Presse Med. 1947, 55, 339. [Google Scholar]
- Haller, H. Epidermiology and associated risk factors of hyperlipoproteinemia. Z. Fur Die Gesamte Inn. Med. 1977, 32, 124–128. Available online: https://europepmc.org/article/med/883354 (accessed on 25 September 2024).
- Reaven, G.M. Role of Insulin Resistance in Human Disease. Diabetes 1988, 37, 1595–1607. [Google Scholar] [CrossRef]
- Kaplan, N.M. The Deadly Quartet: Upper-Body Obesity, Glucose Intolerance, Hypertriglyceridemia, and Hypertension. Arch. Intern. Med. 1989, 149, 1514–1520. Available online: https://jamanetwork.com/journals/jamainternalmedicine/fullarticle/611903 (accessed on 25 September 2024). [CrossRef] [PubMed]
- Alberti, K.G.M.M.; Zimmet, P.Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus. Provisional report of a WHO Consultation. Diabet. Med. 1998, 15, 539–553. [Google Scholar] [CrossRef]
- Balkau, B.; Charles, M.A. Comment on the provisional report from the WHO consultation. European Group for the Study of Insulin Resistance (EGIR). Diabetes Med. 1999, 16, 442–443. Available online: https://pubmed.ncbi.nlm.nih.gov/10342346/ (accessed on 25 September 2024).
- Cleeman, J.I. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497. Available online: https://pubmed.ncbi.nlm.nih.gov/11368702/ (accessed on 25 September 2024). [CrossRef]
- Alberti, K.G.M.M.; Zimmet, P.; Shaw, J. Metabolic syndrome—A new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabetes Med. 2006, 23, 469–480. Available online: https://pubmed.ncbi.nlm.nih.gov/16681555/ (accessed on 25 September 2024). [CrossRef] [PubMed]
- Huang, P.L. A comprehensive definition for metabolic syndrome. DMM Dis. Models Mech. 2009, 2, 231–237. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC2675814/ (accessed on 25 September 2024). [CrossRef] [PubMed]
- Pigeot, I.; Ahrens, W. Epidemiology of metabolic syndrome. Pflug. Arch. 2025, 477, 669–680. [Google Scholar] [CrossRef] [PubMed]
- Johnson, L.W.; Weinstock, R.S. The metabolic syndrome: Concepts and controversy. Mayo Clin. Proc. 2006, 81, 1615–1620. Available online: https://pubmed.ncbi.nlm.nih.gov/17165640/ (accessed on 5 September 2025). [CrossRef]
- Leon, B.M.; Maddox, T.M. Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research. World J. Diabetes 2015, 6, 1246. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC4600176/ (accessed on 25 September 2024). [CrossRef]
- Bianchi, C.; del Prato, S. Metabolic Memory and Individual Treatment Aims in Type 2 Diabetes—Outcome-Lessons Learned from Large Clinical Trials. Rev. Diabet. Stud. 2011, 8, 432. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC3280676/ (accessed on 25 September 2024). [CrossRef]
- Turner, R.C.; Holman, R.R.; Matthews, D.R.; Oakes, S.F.; Bassett, R.A.; Stratton, I.M.; Cull, C.A.; Manley, S.A.; Frighi, V. UK prospective diabetes study (UKPDS)–VIII. Study design, progress and performance. Diabetologia 1991, 34, 877–890. [Google Scholar] [CrossRef]
- Group TDC and CTR. The Effect of Intensive Treatment of Diabetes on the Development and Progression of Long-Term Complications in Insulin-Dependent Diabetes Mellitus. N. Engl. J. Med. 1993, 329, 977–986. [Google Scholar] [CrossRef] [PubMed]
- Action to Control Cardiovascular Risk in Diabetes (ACCORD) Trial: Design and Methods. 2007. Available online: https://www.AJConline.org (accessed on 25 September 2024).
- Gerstein, H.C.; Beavers, D.P.; Bertoni, A.G.; Bigger, J.T.; Buse, J.B.; Craven, T.E.; Cushman, W.C.; Fonseca, V.; Geller, N.L.; Giddings, S.J.; et al. Nine-Year Effects of 3.7 Years of Intensive Glycemic Control on Cardiovascular Outcomes. Diabetes Care 2016, 39, 701–708. [Google Scholar] [CrossRef]
- Liebson, P.R. Diabetes control and cardiovascular risk: ACCORD, ADVANCE, AVOID, and SANDS. Prev. Cardiol. 2008, 11, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Tran, K.; Reaven, P. Review of the veteran affairs diabetes trial: Lessons learned. Rev. Endocr. Metab. Disord. 2020, 21, 537–546. [Google Scholar] [CrossRef] [PubMed]
- Goto, A.; Arah, O.A.; Goto, M.; Terauchi, Y.; Noda, M. Severe hypoglycaemia and cardiovascular disease: Systematic review and meta-analysis with bias analysis. BMJ 2013, 347, 7919. Available online: https://www.bmj.com/content/347/bmj.f4533 (accessed on 5 September 2025). [CrossRef]
- Matthews, D.R.; Tsapas, A. Four decades of uncertainty: Landmark trials in glycaemic control and cardiovascular outcome in type 2 diabetes. Diab Vasc. Dis. Res. 2008, 5, 216–218. [Google Scholar] [CrossRef] [PubMed]
- Vijayakumar, S.; Vaduganathan, M.; Butler, J. Glucose-Lowering Therapies and Heart Failure in Type 2 Diabetes Mellitus: Mechanistic Links, Clinical Data, and Future Directions. Circulation 2018, 137, 1060. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC5842812/ (accessed on 23 September 2024). [CrossRef]
- Richter, B.; Bandeira-Echtler, E.; Bergerhoff, K.; Clar, C.; Ebrahim, S.H. Rosiglitazone for type 2 diabetes mellitus. Cochrane Database Syst. Rev. 2007, 2007, CD006063. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC7389529/ (accessed on 1 September 2024). [CrossRef]
- Nissen, S.E. The rise and fall of rosiglitazone. Eur. Heart J. 2010, 31, 773–776. [Google Scholar] [CrossRef] [PubMed]
- Viberti, G.; Kahn, S.E.; Greene, D.A.; Herman, W.H.; Zinman, B.; Holman, R.R.; Haffner, S.M.; Levy, D.; Lachin, J.M.; Berry, R.A.; et al. A diabetes outcome progression trial (ADOPT): An international multicenter study of the comparative efficacy of rosiglitazone, glyburide, and metformin in recently diagnosed type 2 diabetes. Diabetes Care 2002, 25, 1737–1743. Available online: https://pubmed.ncbi.nlm.nih.gov/12351470/ (accessed on 25 September 2024). [CrossRef]
- Gerstein, H.C.; Yusuf, S.; Bosch, J.; Pogue, J.; Sheridan, P.; Dinccag, N.; Hanefeld, M.; Hoogwerf, B.; Laakso, M.; Mohan, V.; et al. Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: A randomised controlled trial. Lancet 2006, 368, 1096–1105. Available online: http://www.thelancet.com/article/S0140673606694208/fulltext (accessed on 26 September 2024). [CrossRef]
- Nissen, S.E.; Wolski, K. Effect of Rosiglitazone on the Risk of Myocardial Infarction and Death from Cardiovascular Causes. N. Engl. J. Med. 2007, 356, 2457–2471. [Google Scholar] [CrossRef]
- Tanne, J.H. FDA places “black box” warning on antidiabetes drugs. BMJ 2007, 334, 1237. [Google Scholar] [CrossRef]
- Home, P.D.; Pocock, S.J.; Beck-Nielsen, H.; Curtis, P.S.; Gomis, R.; Hanefeld, M.; Jones, N.P.; Komajda, M.; McMurray, J.J. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): A multicentre, randomised, open-label trial. Lancet 2009, 373, 2125–2135. Available online: https://pubmed.ncbi.nlm.nih.gov/19501900/ (accessed on 25 September 2024). [CrossRef]
- Aschenbrenner, D.S. FDA Lifts Restrictions on Rosiglitazone. AJN Am. J. Nurs. 2014, 114, 24. Available online: https://journals.lww.com/ajnonline/fulltext/2014/04000/fda_lifts_restrictions_on_rosiglitazone.22.aspx (accessed on 25 September 2024). [CrossRef]
- Federal Register: Guidance for Industry on Diabetes Mellitus-Evaluating Cardiovascular Risk in New Antidiabetic Therapies to Treat Type 2 Diabetes; Availability. Available online: https://www.federalregister.gov/documents/2008/12/19/E8-30086/guidance-for-industry-on-diabetes-mellitus-evaluating-cardiovascular-risk-in-new-antidiabetic (accessed on 25 September 2024).
- Hirshberg, B.; Raz, I. Impact of the U.S. Food and Drug Administration Cardiovascular Assessment Requirements on the Development of Novel Antidiabetes Drugs. Diabetes Care 2011, 34 (Suppl. S2), S101. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC3632144/ (accessed on 22 September 2024). [CrossRef]
- John, M.; Gopalakrishnan Unnikrishnan, A.; Kalra, S.; Nair, T. Cardiovascular outcome trials for anti-diabetes medication: A holy grail of drug development? Indian Heart J. 2016, 68, 564–571. [Google Scholar] [CrossRef] [PubMed]
- Bethel, M.A.; Sourij, H. Impact of FDA guidance for developing diabetes drugs on trial design: From policy to practice. Curr. Cardiol. Rep. 2012, 14, 59–69. [Google Scholar] [CrossRef]
- Schnell, O.; Barnard-Kelly, K.; Battelino, T.; Ceriello, A.; Larsson, H.E.; Fernández-Fernández, B.; Forst, T.; Frias, J.-P.; Gavin, J.R.; Giorgino, F.; et al. CVOT Summit Report 2023: New cardiovascular, kidney, and metabolic outcomes. Cardiovasc. Diabetol. 2024, 23, 1–17. [Google Scholar] [CrossRef]
- Bertoccini, L.; Baroni, M.G. GLP-1 Receptor Agonists and SGLT2 Inhibitors for the Treatment of Type 2 Diabetes: New Insights and Opportunities for Cardiovascular Protection. Adv. Exp. Med. Biol. 2021, 1307, 193–212. Available online: https://pubmed.ncbi.nlm.nih.gov/32034729/ (accessed on 9 September 2024). [PubMed]
- Steiner, S. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. Zeitschrift für Gefäßmedizin 2016, 13, 17–18. [Google Scholar] [CrossRef]
- Neal, B.; Perkovic, V.; Mahaffey, K.W.; de Zeeuw, D.; Fulcher, G.; Erondu, N.; Shaw, W.; Law, G.; Desai, M.; Matthews, D.R.; et al. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N. Engl. J. Med. 2017, 377, 644–657. [Google Scholar] [CrossRef] [PubMed]
- Wiviott, S.D.; Raz, I.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Silverman, M.G.; Zelniker, T.A.; Kuder, J.F.; Murphy, S.A.; et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2019, 380, 347–357. [Google Scholar] [CrossRef]
- Cannon, C.P.; Pratley, R.; Dagogo-Jack, S.; Mancuso, J.; Huyck, S.; Masiukiewicz, U.; Charbonnel, B.; Frederich, R.; Gallo, S.; Cosentino, F.; et al. Cardiovascular Outcomes with Ertugliflozin in Type 2 Diabetes. N. Engl. J. Med. 2020, 383, 1425–1435. [Google Scholar] [CrossRef]
- Pfeffer, M.A.; Claggett, B.; Diaz, R.; Dickstein, K.; Gerstein, H.C.; Køber, L.V.; Lawson, F.C.; Ping, L.; Wei, X.; Lewis, E.F.; et al. Lixisenatide in Patients with Type 2 Diabetes and Acute Coronary Syndrome. N. Engl. J. Med. 2015, 373, 2247–2257. [Google Scholar] [CrossRef]
- Marso, S.P.; Daniels, G.H.; Brown-Frandsen, K.; Kristensen, P.; Mann, J.F.E.; Nauck, M.A.; Nissen, S.E.; Pocock, S.; Poulter, N.R.; Ravn, L.S.; et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. Drug Ther. Bull. 2016, 54, 101. [Google Scholar] [CrossRef]
- Marso, S.P.; Bain, S.C.; Consoli, A.; Eliaschewitz, F.G.; Jódar, E.; Leiter, L.A.; Lingvay, I.; Rosenstock, J.; Seufert, J.; Warren, M.L.; et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 1834–1844. [Google Scholar] [CrossRef] [PubMed]
- Holman, R.R.; Bethel, M.A.; Mentz, R.J.; Thompson, V.P.; Lokhnygina, Y.; Buse, J.B.; Chan, J.C.; Choi, J.; Gustavson, S.M.; Iqbal, N.; et al. Effects of Once-Weekly Exenatide on Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2017, 377, 1228–1239. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, A.F.; Green, J.B.; Janmohamed, S.; D’Agostino, R.B.; Granger, C.B.; Jones, N.P.; Leiter, L.A.; Rosenberg, A.E.; Sigmon, K.N.; Somerville, M.C.; et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): A double-blind, randomised placebo-controlled trial. Lancet 2018, 392, 1519–1529. Available online: http://www.thelancet.com/article/S014067361832261X/fulltext (accessed on 23 September 2024). [CrossRef]
- Gerstein, H.C.; Colhoun, H.M.; Dagenais, G.R.; Diaz, R.; Lakshmanan, M.; Pais, P.; Probstfield, J.; Riesmeyer, J.S.; Riddle, M.C.; Rydén, L.; et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): A double-blind, randomised placebo-controlled trial. Lancet 2019, 394, 121–130. Available online: http://www.thelancet.com/article/S0140673619311493/fulltext (accessed on 22 September 2024). [CrossRef] [PubMed]
- Husain, M.; Birkenfeld, A.L.; Donsmark, M.; Dungan, K.; Eliaschewitz, F.G.; Franco, D.R.; Jeppesen, O.K.; Lingvay, I.; Mosenzon, O.; Pedersen, S.D.; et al. Oral Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2019, 381, 841–851. [Google Scholar] [CrossRef]
- Ruff, C.T.; Baron, M.; Im, K.A.; O’Donoghue, M.L.; Fiedorek, F.T.; Sabatine, M.S. Subcutaneous infusion of exenatide and cardiovascular outcomes in type 2 diabetes: A non-inferiority randomized controlled trial. Nat. Med. 2022, 28, 89–95. [Google Scholar] [CrossRef]
- Bertsch, T.; McKeirnan, K. ITCA 650. Clin. Diabetes 2018, 36, 265. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC6053850/ (accessed on 27 September 2024). [CrossRef]
- McGuire, D.K.; Marx, N.; Mulvagh, S.L.; Deanfield, J.E.; Inzucchi, S.E.; Pop-Busui, R.; Mann, J.F.; Emerson, S.S.; Poulter, N.R.; Engelmann, M.D.; et al. Oral Semaglutide and Cardiovascular Outcomes in High-Risk Type 2 Diabetes. N. Engl. J. Med. 2025, 392, 2001–2012. Available online: http://www.ncbi.nlm.nih.gov/pubmed/40162642 (accessed on 9 May 2025). [CrossRef]
- Kannel, W.B.; Hjortland, M.; Castelli, W.P. Role of diabetes in congestive heart failure: The Framingham study. Am. J. Cardiol. 1974, 34, 29–34. [Google Scholar] [CrossRef]
- Kenny, H.C.; Abel, E.D. Heart Failure in Type 2 Diabetes Mellitus: Impact of Glucose-Lowering Agents, Heart Failure Therapies, and Novel Therapeutic Strategies. Circ. Res. 2019, 124, 121–141. [Google Scholar] [CrossRef]
- Giugliano, D.; Ceriello, A.; De Nicola, L.; Perrone-Filardi, P.; Cosentino, F.; Esposito, K. Primary versus secondary cardiorenal prevention in type 2 diabetes: Which newer anti-hyperglycaemic drug matters? Diabetes Obes. Metab. 2020, 22, 149–157. [Google Scholar] [CrossRef]
- Scirica, B.M.; Bhatt, D.L.; Braunwald, E.; Steg, P.G.; Davidson, J.; Hirshberg, B.; Ohman, P.; Frederich, R.; Wiviott, S.D.; Hoffman, E.B.; et al. Saxagliptin and Cardiovascular Outcomes in Patients with Type 2 Diabetes Mellitus. N. Engl. J. Med. 2013, 369, 1317–1326. [Google Scholar] [CrossRef]
- Subrahmanyan, N.A.; Koshy, R.M.; Jacob, K.; Pappachan, J.M. Efficacy and Cardiovascular Safety of DPP-4 Inhibitors. Curr. Drug Saf. 2020, 16, 154–164. [Google Scholar] [CrossRef]
- White, W.B.; Cannon, C.P.; Heller, S.R.; Nissen, S.E.; Bergenstal, R.M.; Bakris, G.L.; Perez, A.T.; Fleck, P.R.; Mehta, C.R.; Kupfer, S.; et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. Austrian J. Clin. Endocrinol. Metab. 2014, 7, 77. [Google Scholar] [CrossRef] [PubMed]
- Green, J.B.; Bethel, M.A.; Armstrong, P.W.; Buse, J.B.; Engel, S.S.; Garg, J.; Josse, R.; Kaufman, K.D.; Koglin, J.; Korn, S.; et al. Effect of Sitagliptin on Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2015, 373, 232–242, Correction in N. Engl. J. Med. 2015, 373, 586. https://doi.org/10.1056/NEJMx150029. [Google Scholar] [CrossRef] [PubMed]
- Rosenstock, J.; Perkovic, V.; Johansen, O.E.; Cooper, M.E.; Kahn, S.E.; Marx, N.; Alexander, J.H.; Pencina, M.; Toto, R.D.; Wanner, C.; et al. Effect of Linagliptin vs Placebo on Major Cardiovascular Events in Adults with Type 2 Diabetes and High Cardiovascular and Renal Risk: The CARMELINA Randomized Clinical Trial. JAMA 2019, 321, 69–79. Available online: https://jamanetwork.com/journals/jama/fullarticle/2714646 (accessed on 11 September 2024). [CrossRef]
- Holman, R.R.; Sourij, H.; Califf, R.M. Cardiovascular outcome trials of glucose-lowering drugs or strategies in type 2 diabetes. Lancet 2014, 383, 2008–2017. Available online: http://www.thelancet.com/article/S0140673614607947/fulltext (accessed on 11 September 2024). [CrossRef]
- Basal Insulin and Cardiovascular and Other Outcomes in Dysglycemia. N. Engl. J. Med. 2012, 367, 319–328. [CrossRef] [PubMed]
- Marso, S.P.; McGuire, D.K.; Zinman, B.; Poulter, N.R.; Emerson, S.S.; Pieber, T.R.; Pratley, R.E.; Haahr, P.-M.; Lange, M.; Brown-Frandsen, K.; et al. Efficacy and Safety of Degludec versus Glargine in Type 2 Diabetes. N. Engl. J. Med. 2017, 377, 723–732. [Google Scholar] [CrossRef] [PubMed]
- Vaduganathan, M.; Docherty, K.F.; Claggett, B.L.; Jhund, P.S.; A de Boer, R.; Hernandez, A.F.; E Inzucchi, S.; Kosiborod, M.N.; Lam, C.S.P.; Martinez, F.; et al. SGLT-2 inhibitors in patients with heart failure: A comprehensive meta-analysis of five randomised controlled trials. Lancet 2022, 400, 757–767. Available online: https://www.thelancet.com/action/showFullText?pii=S0140673622014295 (accessed on 17 June 2025). [CrossRef]
- Packer, M.; Anker, S.D.; Butler, J.; Filippatos, G.; Pocock, S.J.; Carson, P.; Januzzi, J.; Verma, S.; Tsutsui, H.; Brueckmann, M.; et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N. Engl. J. Med. 2020, 383, 1413–1424. [Google Scholar] [CrossRef]
- McMurray, J.J.V.; Solomon, S.D.; Inzucchi, S.E.; Køber, L.; Kosiborod, M.N.; Martinez, F.A.; Ponikowski, P.; Sabatine, M.S.; Anand, I.S.; Bělohlávek, J.; et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N. Engl. J. Med. 2019, 381, 1995–2008. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.D.; McMurray, J.J.; Claggett, B.; de Boer, R.A.; DeMets, D.; Hernandez, A.F.; Inzucchi, S.E.; Kosiborod, M.N.; Lam, C.S.; Martinez, F.; et al. Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. N. Engl. J. Med. 2022, 387, 1089–1098. [Google Scholar] [CrossRef]
- Anker, S.D.; Butler, J.; Filippatos, G.; Ferreira, J.P.; Bocchi, E.; Böhm, M.; Brunner–La Rocca, H.-P.; Choi, D.-J.; Chopra, V.; Chuquiure-Valenzuela, E.; et al. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N. Engl. J. Med. 2021, 385, 1451–1461. [Google Scholar] [CrossRef]
- Mavrakanas, T.A.; Tsoukas, M.A.; Brophy, J.M.; Sharma, A.; Gariani, K. SGLT-2 inhibitors improve cardiovascular and renal outcomes in patients with CKD: A systematic review and meta-analysis. Sci. Rep. 2023, 13, 15922. Available online: https://www.nature.com/articles/s41598-023-42989-z (accessed on 13 September 2025). [CrossRef]
- Lecis, D.; Prandi, F.R.; Barone, L.; Belli, M.; Sergi, D.; Longo, S.; Muscoli, S.; Romeo, F.; Federici, M.; Lerakis, S.; et al. Beyond the Cardiovascular Effects of Glucagon-like Peptide-1 Receptor Agonists: Body Slimming and Plaque Stabilization. Are New Statins Born? Biomolecules 2023, 13, 1695. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC10741698/ (accessed on 17 June 2025). [CrossRef]
- Lincoff, A.M.; Brown-Frandsen, K.; Colhoun, H.M.; Deanfield, J.; Emerson, S.S.; Esbjerg, S.; Hardt-Lindberg, S.; Hovingh, G.K.; Kahn, S.E.; Kushner, R.F.; et al. Semaglutide and Cardiovascular Outcomes in Obesity without Diabetes. N. Engl. J. Med. 2023, 389, 2221–2232. [Google Scholar] [CrossRef]
- Vrints, C.; Andreotti, F.; Koskinas, K.C.; Rossello, X.; Adamo, M.; Ainslie, J.; Banning, A.P.; Budaj, A.; Buechel, R.R.; Chiariello, G.A.; et al. 2024 ESC Guidelines for the management of chronic coronary syndromes: Developed by the task force for the management of chronic coronary syndromes of the European Society of Cardiology (ESC) Endorsed by the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2024, 45, 3415–3537. [Google Scholar] [CrossRef]
- Butler, J.; Shah, S.J.; Petrie, M.C.; Borlaug, B.A.; Abildstrøm, S.Z.; Davies, M.J.; Hovingh, G.K.; Kitzman, D.W.; Møller, D.V.; Verma, S.; et al. Semaglutide versus placebo in people with obesity-related heart failure with preserved ejection fraction: A pooled analysis of the STEP-HFpEF and STEP-HFpEF DM randomised trials. Lancet 2024, 403, 1635–1648. Available online: https://www.thelancet.com/action/showFullText?pii=S0140673624004690 (accessed on 17 June 2025). [CrossRef]
- Perkovic, V.; Tuttle, K.R.; Rossing, P.; Mahaffey, K.W.; Mann, J.F.; Bakris, G.; Baeres, F.M.; Idorn, T.; Bosch-Traberg, H.; Lausvig, N.L.; et al. Effects of Semaglutide on Chronic Kidney Disease in Patients with Type 2 Diabetes. N. Engl. J. Med. 2024, 391, 109–121. [Google Scholar] [CrossRef]
- Kengne, A.P. The ADVA NCE cardiovascular risk model and current strategies for cardiovascular disease risk evaluation in people with diabetes. Cardiovasc. J. Afr. 2013, 24, 376. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC3902381/ (accessed on 13 September 2024). [CrossRef] [PubMed]
- Ceriello, A.; Lucisano, G.; Prattichizzo, F.; La Grotta, R.; Franzén, S.; Gudbjörnsdottir, S.; Eliasson, B.; Nicolucci, A. Risk factor variability and cardiovascular risk among patients with diabetes: A nationwide observational study. Eur. J. Prev. Cardiol. 2023, 30, 719–727. Available online: https://pubmed.ncbi.nlm.nih.gov/36897149/ (accessed on 13 September 2024). [CrossRef] [PubMed]
- Bertoluci, M.C.; Rocha, V.Z. Cardiovascular risk assessment in patients with diabetes. Diabetol. Metab. Syndr. 2024, 9, 25. [Google Scholar] [CrossRef]
- Damaskos, C.; Garmpis, N.; Kollia, P.; Mitsiopoulos, G.; Barlampa, D.; Drosos, A.; Patsouras, A.; Gravvanis, N.; Antoniou, V.; Litos, A.; et al. Assessing Cardiovascular Risk in Patients with Diabetes: An Update. Curr. Cardiol. Rev. 2020, 16, 266. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC7903509/ (accessed on 13 September 2024). [CrossRef]
- Zhang, X.L.; Wan, G.; Yuan, M.X.; Yang, G.R.; Fu, H.J.; Zhu, L.X.; Xie, R.-R.; Lv, Y.-J.; Zhang, J.-D.; Li, Y.-L.; et al. Improved Framingham Risk Scores of Patients with Type 2 Diabetes Mellitus in the Beijing Community: A 10-Year Prospective Study of the Effects of Multifactorial Interventions on Cardiovascular Risk Factors (The Beijing Communities Diabetes Study 22). Diabetes Ther. 2020, 11, 885. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC7136369/ (accessed on 13 September 2024). [CrossRef] [PubMed]
- Stevens, R.J.; Kothari, V.; Adler, A.I.; Stratton, I.M.; Holman, R.R. The UKPDS risk engine: A model for the risk of coronary heart disease in type II diabetes (UKPDS 56). Clin. Sci. 2001, 101, 671–679. Available online: https://www.researchgate.net/publication/11630484_The_UKPDS_risk_engine_a_model_for_the_risk_of_coronary_heart_disease_in_Type_II_diabetes_UKPDS_56 (accessed on 13 September 2024). [CrossRef]
- Coleman, R.L.; Stevens, R.J.; Retnakaran, R.; Holman, R.R. Framingham, SCORE, and DECODE risk equations do not provide reliable cardiovascular risk estimates in type 2 diabetes. Diabetes Care 2007, 30, 1292–1294. Available online: https://pubmed.ncbi.nlm.nih.gov/17290036/ (accessed on 14 September 2024). [CrossRef]
- Kengne, A.P.; Patel, A.; Colagiuri, S.; Heller, S.; Hamet, P.; Marre, M.; Pan, C.Y.; Zoungas, S.; Grobbee, D.E.; for the ADVANCE Collaborative Group; et al. The Framingham and UK Prospective Diabetes Study (UKPDS) risk equations do not reliably estimate the probability of cardiovascular events in a large ethnically diverse sample of patients with diabetes: The Action in Diabetes and Vascular Disease: Preterax and Diamicron-MR Controlled Evaluation (ADVANCE) Study. Diabetologia 2010, 53, 821–831. Available online: https://pubmed.ncbi.nlm.nih.gov/20157695/ (accessed on 15 September 2024). [CrossRef]
- Basu, S.; Sussman, J.B.; Berkowitz, S.A.; Hayward, R.A.; Yudkin, J.S. Development and validation of Risk Equations for Complications Of type 2 Diabetes (RECODe) using individual participant data from randomised trials. Lancet Diabetes Endocrinol. 2017, 5, 788–798. Available online: https://pubmed.ncbi.nlm.nih.gov/28803840/ (accessed on 15 September 2024). [CrossRef]
- Basu, S.; Sussman, J.B.; Berkowitz, S.A.; Hayward, R.A.; Bertoni, A.G.; Correa, A.; Mwasongwe, S.; Yudkin, J.S. Validation of risk equations for complications of type 2 diabetes (RECODe) using individual participant data from diverse longitudinal cohorts in the U.S. Diabetes Care 2018, 41, 586–595. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC5829967/ (accessed on 15 September 2024). [CrossRef] [PubMed]
- Berkelmans, G.F.N.; Gudbjörnsdottir, S.; Visseren, F.L.J.; Wild, S.H.; Franzen, S.; Chalmers, J.; Davis, B.R.; Poulter, N.R.; Spijkerman, A.M.; Woodward, M.; et al. Prediction of individual life-years gained without cardiovascular events from lipid, blood pressure, glucose, and aspirin treatment based on data of more than 500 000 patients with Type 2 diabetes mellitus Prevention and epidemiology. Eur. Heart J. 2019, 40, 2899–2906. Available online: https://academic.oup.com/eurheartj/article/40/34/2899/5281244 (accessed on 15 September 2024). [CrossRef] [PubMed]
- Li, Q.Q.; Liang, J.Y.; Wang, J.M.; Shen, P.; Sun, Y.X.; Chen, Q.; Wu, J.G.; Lu, P.; Zhang, J.Y.; Lin, H.B.; et al. Applications of the NDR and DIAL models for risk prediction on cardiovascular disease in patients with type 2 diabetes in Ningbo. Zhonghua Liu Xing Bing Xue Za Zhi 2022, 43, 945–952. Available online: https://pubmed.ncbi.nlm.nih.gov/35725354/ (accessed on 15 September 2024).
- Østergaard, H.B.; Hageman, S.H.J.; Read, S.H.; Taylor, O.; Pennells, L.; Kaptoge, S.; Petitjean, C.; Xu, Z.; Shi, F.; DIAL2 working group; et al. Estimating individual lifetime risk of incident cardiovascular events in adults with Type 2 diabetes: An update and geographical calibration of the DIAbetes Lifetime perspective model (DIAL2). Eur. J. Prev. Cardiol. 2023, 30, 61–69. [Google Scholar] [CrossRef]
- Dziopa, K.; Asselbergs, F.W.; Gratton, J.; Chaturvedi, N.; Schmidt, A.F. Cardiovascular risk prediction in type 2 diabetes: A comparison of 22 risk scores in primary care settings. Diabetologia 2022, 65, 644–656. Available online: https://www.caliberresearch.org/portal/phenotypes (accessed on 15 September 2024). [CrossRef]
- Galbete, A.; Tamayo, I.; Librero, J.; Enguita-Germán, M.; Cambra, K.; Ibáñez-Beroiz, B. Cardiovascular risk in patients with type 2 diabetes: A systematic review of prediction models. Diabetes Res. Clin. Pract. 2022, 184, 109089. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.C.; Staimez, L.R.; Narayan, K.M.V.; Ohno-Machado, L.; Simpson, R.L.; Hertzberg, V.S. Evaluation of available risk scores to predict multiple cardiovascular complications for patients with type 2 diabetes mellitus using electronic health records. Comput. Methods Programs Biomed. Update 2023, 3, 100087. [Google Scholar] [CrossRef]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.-M.; Capodanno, D.; et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice: Developed by the Task Force for cardiovascular disease prevention in clinical practice with representatives of the European Society of Cardiology and 12 medical societies with the special contribution of the European Association of Preventive Cardiology (EAPC). Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee; ElSayed, N.A.; Aleppo, G.; Bannuru, R.R.; Bruemmer, D.; Collins, B.S.; Das, S.R.; Ekhlaspour, L.; Hilliard, M.E.; Johnson, E.L.; et al. 10. Cardiovascular Disease and Risk Management: Standards of Care in Diabetes—2024. Diabetes Care 2024, 47 (Suppl. S1), S179–S218. [Google Scholar] [CrossRef]
- Cosentino, F.; Grant, P.; Aboyans, V.; Bailey, C.J.; Ceriello, A.; Delgado, V. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: The Task Force for diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and the European Association for the Study of Diabetes (EASD). Eur. Heart J. 2020, 41, 255–323. [Google Scholar] [CrossRef]
- Luca, S.A.; Bungau, R.M.; Lazar, S.; Potre, O.; Timar, B. To What Extent Does Cardiovascular Risk Classification of Patients with Type 2 Diabetes Differ between European Guidelines from 2023, 2021, and 2019? A Cross-Sectional Study. Medicina 2024, 60, 334. Available online: https://www.mdpi.com/1648-9144/60/2/334/htm (accessed on 16 September 2024). [CrossRef]
- Pennells, L.; Kaptoge, S.; Østergaard, H.B.; Read, S.H.; Carinci, F.; Franch-Nadal, J.; Petitjean, C.; Taylor, O.; Hageman, S.H.J.; Xu, Z.; et al. SCORE2-Diabetes: 10-year cardiovascular risk estimation in type 2 diabetes in Europe. Eur. Heart J. 2023, 44, 2544–2556. [Google Scholar] [CrossRef]
- Marx, N.; Federici, M.; Schütt, K.; Müller-Wieland, D.; A Ajjan, R.; Antunes, M.J.; Christodorescu, R.M.; Crawford, C.; Di Angelantonio, E.; Eliasson, B.; et al. 2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes: Developed by the task force on the management of cardiovascular disease in patients with diabetes of the European Society of Cardiology (ESC). Eur. Heart J. 2023, 44, 4043–4140. [Google Scholar] [CrossRef] [PubMed]
- Ryden, L.; Ferrannini, G.; Standl, E. Risk prediction in patients with diabetes: Is SCORE 2D the perfect solution? Eur. Heart J. 2023, 44, 2557–2559. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 9. Pharmacologic approaches to glycemic treatment: Standards of care in diabetes—2025. Diabetes Care 2025, 48, S181–S206. [Google Scholar] [CrossRef]
- Misra, R.; Adelman, M.M.; Kirk, B.; Sambamoorthi, U. Relationship Among Diabetes Distress, Health Literacy, Diabetes Education, Patient-Provider Communication and Diabetes Self-Care. Am. J. Health Behav. 2022, 46, 528–540. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yang, F.; Wang, J.; Tao, Y. Effect of community-based nurse-led support intervention in the reduction of HbA1c levels. Public Health Nurs. 2022, 39, 1318–1333. [Google Scholar] [CrossRef]
- Cangelosi, G.; Mancin, S.; Pantanetti, P.; Nguyen, C.T.T.; Palomares, S.M.; Biondini, F.; Sguanci, M.; Petrelli, F. Lifestyle Medicine Case Manager Nurses for Type Two Diabetes Patients: An Overview of a Job Description Framework—A Narrative Review. Diabetology 2024, 5, 375–388. Available online: https://www.mdpi.com/2673-4540/5/4/29/htm (accessed on 5 September 2025). [CrossRef]
- Patiño-Cardona, S.; Garrido-Miguel, M.; Pascual-Morena, C.; Berlanga-Macías, C.; Lucerón-Lucas-Torres, M.; Alfaro-González, S.; Martínez-García, I. Effect of Coenzyme Q10 Supplementation on Lipid and Glycaemic Profiles: An Umbrella Review. J. Cardiovasc. Dev. Dis. 2024, 11, 377. Available online: https://pubmed.ncbi.nlm.nih.gov/39728267/ (accessed on 13 September 2025). [CrossRef] [PubMed]
- Derosa, G.; D’angelo, A.; Angelini, F.; Belli, L.; Cicero, A.F.G.; Da Ros, R.; De Pergola, G.; Gaudio, G.V.; Lupi, A.; Sartore, G.; et al. Nutraceuticals and Supplements in Management of Prediabetes and Diabetes. Nutrients 2024, 17, 14. Available online: https://pubmed.ncbi.nlm.nih.gov/39796448/ (accessed on 13 September 2025). [CrossRef] [PubMed]
Drug Class | Trial (Year) Drug Investigated | Population | Primary Endpoint | Key Results | Notable Adverse Effects |
---|---|---|---|---|---|
SGLT2 inhibitors | EMPA-REG OUTCOME (2015) empagliflozin | 7020 T2D + CVD | 3-point MACE | ↓ MACE (HR 0.86), ↓ CV death, ↓ all-cause mortality, ↓ HHF | Genital infections |
CANVAS Program (2017) canagliflozin | 10,142 T2D + high CV risk | 3-point MACE | ↓ MACE (HR 0.86); exploratory renal benefit | ↑ Amputations, fractures | |
DECLARE-TIMI 58 (2019) dapagliflozin | 17,160 T2D (40% CVD) | 3-point MACE | neutral MACE (noninferior) | Genital infections | |
VERTIS-CV (2020) ertugliflozin | 8246 T2D + ASCVD | 3-point MACE | Noninferior | Genital infections | |
GLP-1 RAs | ELIXA (2015) lixisenatide | 6068 T2D + recent ACS | 3-point MACE + hospitalization for unstable angina | Noninferior | GI events |
LEADER (2015) liraglutide | 9340 T2D + high CV risk | 3-point MACE | ↓ CV death, ↓ MACE (HR 0.87) | Gl events, gallbladder discase | |
SUSTAIN-6 (2016) Semaglutide (subcutaneous) | 3297 T2D + CVD/CKD/CV risk factors | 3-point MACE | ↓ MACE (HR 0.74): ↓ stroke | Retinopathy risk, GI events | |
EXSCEL (2017) exenatide | 14,752 T2D (73% CVD) | 3-point MACE | Noninferior | GI events | |
HARMONY OUTCOMES (2018) albiglutide | 9463 T2D + CVD | 3-point MACE | ↓ MACE (HR 0.78) | GI events | |
REWIND (2019) dulaglutide | 9901 T2D (31.5% CVD) | 3-point MACE | ↓ MACE (HR 0.88): ↓ stroke | GI events | |
PIONEER-6 (2019) Semaglutide (oral) | 3183 T2D (85% CVD/CKD) | 3-point MACE | Noninferior | GI events | |
FREEDOM-CVO (2021) ITCA650 | >4000 T2D (76% CVD) | Expanded MACE | Noninferior | Device issues | |
SOUL (2025) Semaglutide (oral) | >9000 T2D + ASCVD/CKD | 3-point MACE | ↓ MACE (HR 0.86) | GI events | |
DPP-4 inhibitors | SAVOR-TIMI 53 (2013) saxagliptin | 16,492 T2D + ASCVD/high risk | 3-point MACE | Neutral; ↑ HHF | ↑ HHF risk |
EXAMINE (2013) alogliptin | 5380 T2D + ACS | 3-point MACE | Neutral | Similar to placebo | |
TECOS (2015) sitagliptin | 14,671 T2D + CVD | 4-point MACE | Neutral | Similar to placebo | |
CARMELINA (2018) linagliptin | 6979 T2D + CVD/CKD | 3-point MACE | Neutral | Similar to placebo | |
Insulin | ORIGIN (2012) glargine | 12,537 T2D/prediabetes + risk factors | 3-point MACE; MACE + revascularization/HHF | Neutral | Hypoglycemia |
DEVOTE (2017) degludec | 7637 T2D (85% CVD/CKD) | 3-point MACE | Noninferior to glargine | Hypoglycemia |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luca, S.A.; Bungau, R.M.; Lazar, S.; Herascu, A.; Gaita, L.; Avram, V.-F.; Timar, B. The Timeline of the Association Between Diabetes and Cardiovascular Diseases: A Narrative Review. J. Clin. Med. 2025, 14, 6877. https://doi.org/10.3390/jcm14196877
Luca SA, Bungau RM, Lazar S, Herascu A, Gaita L, Avram V-F, Timar B. The Timeline of the Association Between Diabetes and Cardiovascular Diseases: A Narrative Review. Journal of Clinical Medicine. 2025; 14(19):6877. https://doi.org/10.3390/jcm14196877
Chicago/Turabian StyleLuca, Silvia Ana, Raluca Malina Bungau, Sandra Lazar, Andreea Herascu, Laura Gaita, Vlad-Florian Avram, and Bogdan Timar. 2025. "The Timeline of the Association Between Diabetes and Cardiovascular Diseases: A Narrative Review" Journal of Clinical Medicine 14, no. 19: 6877. https://doi.org/10.3390/jcm14196877
APA StyleLuca, S. A., Bungau, R. M., Lazar, S., Herascu, A., Gaita, L., Avram, V.-F., & Timar, B. (2025). The Timeline of the Association Between Diabetes and Cardiovascular Diseases: A Narrative Review. Journal of Clinical Medicine, 14(19), 6877. https://doi.org/10.3390/jcm14196877