In Vitro Evaluation of Disinfectants on Gutta-Percha Cones: Antimicrobial Efficacy Against Enterococcus faecalis and Candida albicans
Abstract
1. Introduction
2. Materials and Methods
2.1. GP Sample Preparation
2.2. Disinfectants
2.3. Experimental Design and Exposure Protocol
2.4. Evaluation of Antimicrobial Activity (Agar Diffusion-Based Assay)
2.5. Control Validation
2.6. Statistical Analysis
2.7. Ethical Consideration
3. Results
3.1. Antimicrobial Activity Against E. faecalis
3.2. Antimicrobial Activity Against C. albicans
3.3. Relevance of the Dip Times
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kandaswamy, D.; Venkateshbabu, N. Root canal filling materials: A review. J. Conserv. Dent. 2010, 13, 195–199. [Google Scholar] [CrossRef]
- Chandrappa, M.M.; Mundathodu, N.; Srinivasan, R.; Nasreen, F.; Kavitha, P.; Shetty, A. Disinfection of gutta-percha cones using three reagents and their residual effects. J. Conserv. Dent. 2014, 17, 571–574. [Google Scholar] [CrossRef]
- Kowalski, J.; Rygas, J.; Homa, K.; Dobrzyński, W.; Wiglusz, R.J.; Matys, J.; Dobrzyński, M. Antibacterial Activity of Endodontic Gutta-Percha—A Systematic Review. Appl. Sci. 2024, 14, 388. [Google Scholar] [CrossRef]
- Bracciale, F.; Marino, N.; Noronha, A.; Manso, M.D.; Gavinha, S.; Cardoso, I.L.; Pina, C.; Teles, A.M. Bacterial Contamination of Gutta-Percha Points From Different Brands and the Efficacy of a Chairside Disinfection Protocol. Eur. Endod. J. 2020, 5, 282–287. [Google Scholar] [CrossRef]
- Brundin, M.; Figdor, D.; Sundqvist, G.; Sjögren, U. DNA binding to hydroxyapatite: A potential mechanism for preservation of microbial DNA. J. Endod. 2013, 39, 211–216. [Google Scholar] [CrossRef]
- Singh, S.; Srivastava, B.; Gupta, K.; Gupta, N.; Singh, R.; Singh, S. Comparative Evaluation of Antifungal Efficacy of Five Root Canal Sealers against Clinical Isolates of Candida albicans: A Microbiological Study. Int. J. Clin. Pediatr. Dent. 2020, 13, 119–123. [Google Scholar] [CrossRef]
- Alghamdi, F.; Shakir, M. The Influence of Enterococcus faecalis as a Dental Root Canal Pathogen on Endodontic Treatment: A Systematic Review. Cureus 2020, 12, e7257. [Google Scholar] [CrossRef]
- Basrani, B.; Haapasalo, M. Update on endodontic irrigating solutions. Endod. Top. 2013, 27, 74–102. [Google Scholar] [CrossRef]
- Naladkar, K.; Chandak, M.; Sarangi, S.; Agrawal, P.; Jidewar, N.; Suryawanshi, T.; Hirani, P. Breakthrough in the Development of Endodontic Irrigants. Cureus 2024, 16, e66981. [Google Scholar] [CrossRef]
- Abraham, S.B.; Al Marzooq, F.; Himratul-Aznita, W.H.; Ahmed, H.M.A.; Samaranayake, L.P. Prevalence, virulence and antifungal activity of C. albicans isolated from infected root canals. BMC Oral Health 2020, 20, 347. [Google Scholar] [CrossRef]
- Zehnder, M.; Belibasakis, G.N. On the dynamics of root canal infections-what we understand and what we don’t. Virulence 2015, 6, 216–222. [Google Scholar] [CrossRef]
- Agrawal, M.; Kotalwar, G.; Gelda, A.; Kadtane, S.; Badade, A.; Hegde, V. Effectiveness of different agents for disinfection of gutta-percha cones: An in vitro study. J. Res. Med. Dent. Sci. 2020, 8, 169–172. [Google Scholar]
- Weissheimer, T.; Pinto, K.P.; da Silva, E.J.N.L.; Hashizume, L.N.; da Rosa, R.A.; Só, M.V.R. Disinfectant effectiveness of chlorhexidine gel compared to sodium hypochlorite: A systematic review with meta-analysis. Restor. Dent. Endod. 2023, 48, e37. [Google Scholar] [CrossRef] [PubMed]
- Rutala, W.A.; Weber, D.J. Disinfection and Sterilization in Health Care Facilities: An Overview and Current Issues. Infect. Dis. Clin. N. Am. 2016, 30, 609–637. [Google Scholar] [CrossRef] [PubMed]
- Arias-Moliz, M.T.; Ordinola-Zapata, R.; Baca, P.; Ruiz-Linares, M.; García García, E.; Hungaro Duarte, M.A.; Monteiro Bramante, C.; Ferrer-Luque, C.M. Antimicrobial activity of Chlorhexidine, Peracetic acid and Sodium hypochlorite/etidronate irrigant solutions against Enterococcus faecalis biofilms. Int. Endod. J. 2015, 48, 1188–1193. [Google Scholar] [CrossRef]
- Shabani, D.B.; Teneqja, A.D. In Vitro Comparisons of Minimal Inhibitory Concentrations between NaOCL, CHX, MTAD and EDTA against Candida Albicans. Int. J. Biomed. 2023, 13, 345–349. [Google Scholar] [CrossRef]
- Devaraj, S.; Venkatakrishnan, S.; Ramkumar, S.; Bharadwaj, S.K.; Balaji, D.; Govindaraju, L. Effectiveness of Microwave Disinfection on Gutta Percha Cones Against Staphylococcus aureus and Enterococcus faecalis—An In vitro Study. J. Pharm. Bioallied Sci. 2025, 17, S1823–S1826. [Google Scholar] [CrossRef]
- Nacif, M.; Marceliano-Alves, M.F.V.; Alves, F.R.F. Contamination of gutta-percha cones in clinical use by endodontic specialists and clinicians. Rev. Fac. Odontol. Univ. Antioq. 2017, 28, 327–340. [Google Scholar] [CrossRef]
- Teles, A.M.; Pina, C.; Cardoso, I.L.; Tramontana, A.; Cardoso, M.; Duarte, A.S.; Bartolomeu, M.; Noites, R. Degree of Contamination of Gutta-Percha Points by Staphylococcus aureus (MRSA/MSSA) Strains. Int. J. Mol. Sci. 2024, 25, 8566. [Google Scholar] [CrossRef]
- García, J.M.; Barba, M.B.; García, M.G.; Ruíz, V.G.; García, A.G. Comparison of disinfection of different brands of gutta-percha tip with sodium hypochlorite. Rev. ADM 2020, 77, 185–190. [Google Scholar] [CrossRef]
- Fiegler-Rudol, J.; Grzech-Leśniak, Z.; Tkaczyk, M.; Grzech-Leśniak, K.; Zawilska, A.; Wiench, R. Enhancing Root Canal Disinfection with Er:YAG Laser: A Systematic Review. Dent. J. 2025, 13, 101. [Google Scholar] [CrossRef]
- Mishra, L.; Dash, G.; Singh, N.R.; Kumar, M.; Panda, S.; Diemer, F.; Lukomska-Szymanska, M.; Lapinska, B.; Khan, A.S. Influence of disinfecting solutions on the surface topography of gutta-percha cones: A systematic review of in vitro studies. Restor. Dent. Endod. 2024, 49, e42. [Google Scholar] [CrossRef]
- Fiorillo, L.; D’Amico, C.; Meto, A.; Mehta, V.; Lo Giudice, G.; Cervino, G. Sodium Hypochlorite Accidents in Endodontic Practice: Clinical Evidence and State of the Art. J. Craniofac. Surg. 2024, 35, e636–e645. [Google Scholar] [CrossRef] [PubMed]
- Dudás, C.; Bardocz-Veres, Z.; Gyulai, A.I.; Pop, S.I.; Székely, M.; Kerekes-Máthé, B.; Kovács, M. Comparative in Vitro Study on the Antimicrobial Efficacy of Endodontic Sealers Against Common Oral Pathogens. Dent. J. 2025, 13, 17. [Google Scholar] [CrossRef] [PubMed]
- Antonelli, A.; Giovannini, L.; Baccani, I.; Giuliani, V.; Pace, R.; Rossolini, G.M. In Vitro Antimicrobial Activity of the Decontaminant HybenX® Compared to Chlorhexidine and Sodium Hypochlorite against Common Bacterial and Yeast Pathogens. Antibiotics 2019, 8, 188. [Google Scholar] [CrossRef] [PubMed]
- Rossi-Fedele, G.; Guastalli, A.R.; Doğramacı, E.J.; Steier, L.; De Figueiredo, J.A. Influence of pH changes on chlorine-containing endodontic irrigating solutions. Int. Endod. J. 2011, 44, 792–799. [Google Scholar] [CrossRef]
- Thienngern, P.; Panichuttra, A.; Ratisoontorn, C.; Aumnate, C.; Matangkasombut, O. Efficacy of chitosan paste as intracanal medication against Enterococcus faecalis and Candida albicans biofilm compared with calcium hydroxide in an in vitro root canal infection model. BMC Oral Health 2022, 22, 354. [Google Scholar] [CrossRef]
- Pauletto, G.; Guerim, P.H.F.; Barbosa, A.B.; Lopes, L.Q.S.; Bier, C.A.S.; Marquezan, P.K. Efficacy of calcium hypochlorite in disinfection of gutta-percha cones contaminated with Candida albicans. Braz. J. Microbiol. 2024, 55, 403–410. [Google Scholar] [CrossRef]
- Karata, Ş.E.; Ayaz, N.; Uluk, Ö.E.; Baltaci, M.Ö.; Adig, Ü.A. Effect of final irrigation with sodium hypochlorite at different temperatures on postoperative pain level and antibacterial activity: A randomized controlled clinical study. J. Appl. Oral Sci. 2021, 29, e20200502. [Google Scholar] [CrossRef]
Groups | Disinfectants | Concentrations | Manufacturers |
---|---|---|---|
1 | CHX | 2% | Cerkamed, Stalowa Wola, Poland |
2 | NaOCl | 1% | Cerkamed, Stalowa Wola, Poland |
3 | NaOCl | 2.5% | Merck, Darmstadt, Germany |
4 | NaOCl | 5.25% | Cerkamed, Stalowa Wola, Poland |
5 | Glutaraldehyde | 2% | Glutarex, 3M Company, Bangalore, India |
6 | Sterility control | - | Sterile saline; cones placed on uninoculated agar (Factormed, Agualva-Cacém, Portugal) |
7 | Growth control | - | Sterile saline; cones placed on inoculated agar (Factormed, Agualva-Cacém, Portugal) |
E. faecalis | |||
---|---|---|---|
Disinfectant | Dip Time (s) n (GP Cones) = 15 per Group | 24 h (mm) Mean ± SD (Min–Max) | 48 h (mm) Mean ± SD (Min–Max) |
1% NaOCl | 5 | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) |
1% NaOCl | 20 | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) |
1% NaOCl | 45 | 3.9 ± 0.7 (3.0–5.0) | 2.9 ± 0.7 (2.0–4.0) |
1% NaOCl | 60 | 5.5 ± 0.7 (4.0–6.0) | 5.5 ± 0.7 (4.0–6.0) |
1% NaOCl | 120 | 11.6 ± 0.6 (10.0–12.0) | 9.6 ± 0.6 (8.0–10.0) |
2.5% NaOCl | 5 | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) |
2.5% NaOCl | 20 | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) |
2.5% NaOCl | 45 | 8.7 ± 0.5 (8.0–9.0) | 7.7 ± 0.5 (7.0–8.0) |
2.5% NaOCl | 60 | 17.7 ± 0.6 (16.0–18.0) | 15.7 ± 0.6 (14.0–16.0) |
2.5% NaOCl | 120 | 21.9 ± 0.4 (21.0–22.0) | 19.9 ± 0.4 (19.0–20.0) |
5.25% NaOCl | 5 | 1.8 ± 0.4 (1.0–2.0) | 1.8 ± 0.4 (1.0–2.0) |
5.25% NaOCl | 20 | 3.9 ± 0.4 (3.0–4.0) | 3.9 ± 0.4 (3.0–4.0) |
5.25% NaOCl | 45 | 8.1 ± 0.6 (7.0–9.0) | 7.1 ± 0.6 (6.0–8.0) |
5.25% NaOCl | 60 | 19.6 ± 0.7 (18.0–20.0) | 19.6 ± 0.7 (18.0–20.0) |
5.25% NaOCl | 120 | 24.9 ± 0.4 (24.0–25.0) | 20.9 ± 0.4 (20.0–21.0) |
2% CHX | 5 | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) |
2% CHX | 20 | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) |
2% CHX | 45 | 8.1 ± 0.6 (7.0–9.0) | 5.0 ± 0.5 (4.0–6.0) |
2% CHX | 60 | 15.5 ± 0.8 (14.0–16.0) | 9.6 ± 0.5 (9.0–10.0) |
2% CHX | 120 | 19.2 ± 1.2 (17.0–20.0) | 12.7 ± 0.5 (12.0–13.0) |
2% Glutaraldehyde | 5 | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) |
2% Glutaraldehyde | 20 | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) |
2% Glutaraldehyde | 45 | 3.5 ± 0.5 (3.0–4.0) | 3.7 ± 0.5 (3.0–4.0) |
2% Glutaraldehyde | 60 | 5.4 ± 0.5 (5.0–6.0) | 5.4 ± 0.5 (5.0–6.0) |
2% Glutaraldehyde | 120 | 7.2 ± 0.4 (7.0–8.0) | 9.1 ± 0.3 (9.0–10.0) |
C. albicans | |||
---|---|---|---|
Disinfectant | Dip Time (s) n (GP Cones) = 15 per Group | 24 h (mm) Mean ± SD (Min–Max) | 48 h (mm) Mean ± SD (Min–Max) |
1% NaOCl | 5 | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) |
1% NaOCl | 20 | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) |
1% NaOCl | 45 | 2.3 ± 0.8 (1.0–3.0) | 1.3 ± 0.8 (0.0–2.0) |
1% NaOCl | 60 | 4.3 ± 1.0 (2.0–5.0) | 3.3 ± 1.0 (1.0–4.0) |
1% NaOCl | 120 | 6.0 ± 0.0 (6.0–6.0) | 5.7 ± 0.5 (5.0–6.0) |
2.5% NaOCl | 5 | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) |
2.5% NaOCl | 20 | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) |
2.5% NaOCl | 45 | 8.0 ± 0.0 (8.0–8.0) | 8.0 ± 0.0 (8.0–8.0) |
2.5% NaOCl | 60 | 14.7 ± 0.5 (14.0–15.0) | 12.7 ± 0.5 (12.0–13.0) |
2.5% NaOCl | 120 | 19.8 ± 0.4 (19.0–20.0) | 18.8 ± 0.4 (18.0–19.0) |
5.25% NaOCl | 5 | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) |
5.25% NaOCl | 20 | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) |
5.25% NaOCl | 45 | 6.1 ± 0.3 (6.0–7.0) | 4.1 ± 0.3 (4.0–5.0) |
5.25% NaOCl | 60 | 8.5 ± 0.8 (7.0–9.0) | 6.7 ± 0.5 (6.0–7.0) |
5.25% NaOCl | 120 | 15.0 ± 0.0 (15.0–15.0) | 13.0 ± 0.0 (13.0–13.0) |
2% CHX | 5 | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) |
2% CHX | 20 | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) |
2% CHX | 45 | 7.2 ± 0.4 (7.0–8.0) | 7.0 ± 0.0 (7.0–7.0) |
2% CHX | 60 | 10.5 ± 0.8 (9.0–11.0) | 6.7 ± 0.5 (6.0–7.0) |
2% CHX | 120 | 19.7 ± 0.5 (19.0–20.0) | 16.7 ± 0.5 (16.0–17.0) |
2% Glutaraldehyde | 5 | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) |
2% Glutaraldehyde | 20 | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) |
2% Glutaraldehyde | 45 | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) |
2% Glutaraldehyde | 60 | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) |
2% Glutaraldehyde | 120 | 0.0 (0.0–0.0) | 0.0 (0.0–0.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kelmendi, T.; Bajrami Shabani, D.; Meto, A.; Ounsi, H. In Vitro Evaluation of Disinfectants on Gutta-Percha Cones: Antimicrobial Efficacy Against Enterococcus faecalis and Candida albicans. J. Clin. Med. 2025, 14, 6846. https://doi.org/10.3390/jcm14196846
Kelmendi T, Bajrami Shabani D, Meto A, Ounsi H. In Vitro Evaluation of Disinfectants on Gutta-Percha Cones: Antimicrobial Efficacy Against Enterococcus faecalis and Candida albicans. Journal of Clinical Medicine. 2025; 14(19):6846. https://doi.org/10.3390/jcm14196846
Chicago/Turabian StyleKelmendi, Tringa, Donika Bajrami Shabani, Aida Meto, and Hani Ounsi. 2025. "In Vitro Evaluation of Disinfectants on Gutta-Percha Cones: Antimicrobial Efficacy Against Enterococcus faecalis and Candida albicans" Journal of Clinical Medicine 14, no. 19: 6846. https://doi.org/10.3390/jcm14196846
APA StyleKelmendi, T., Bajrami Shabani, D., Meto, A., & Ounsi, H. (2025). In Vitro Evaluation of Disinfectants on Gutta-Percha Cones: Antimicrobial Efficacy Against Enterococcus faecalis and Candida albicans. Journal of Clinical Medicine, 14(19), 6846. https://doi.org/10.3390/jcm14196846