Increased Rate of Anemia and Discontinuation in Older Patients with Myelofibrosis Treated with Ruxolitinib
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Study Design
2.2. Patients Assessment and Definitions of Terminology
2.3. Outcome Measures
2.4. Statistical Analysis
3. Results
3.1. Population and General Characteristics
3.2. Stratification by Age: Under 65 vs. Over 65
3.2.1. Baseline Characteristics
3.2.2. Spleen and Symptoms Response, RUX Dose Reduction, and RR6
3.2.3. RUX-Related Toxicity
3.2.4. RUX Discontinuation and Overall Survival
3.3. Subgroup Analysis of the Old Cohort: 65–74 vs. ≥75 Years (Very Elderly)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MF | Myelofibrosis |
PMF | Primary myelofibrosis |
SMF | Secondary myelofibrosis |
ET | Essential thrombocythemia |
PV | Polycythemia vera |
MPN | Myeloproliferative neoplasm |
BM | Bone marrow |
JAK2 | Janus kinase 2 |
CALR | Calreticulin |
MPL | Myeloproliferative leukemia virus oncogene/thrombopoietin receptor |
OS | Overall survival |
AML | Acute myeloid leukemia |
IPSS | International Prognostic Scoring System |
DIPSS | Dynamic International Prognostic Scoring System |
aaDIPSS | Age-Adjusted Dynamic International Prognostic Scoring System |
JAKi | Janus kinase inhibitors |
RUX | Ruxolitinib |
LCM | Left costal margin |
PLTs | Platelet |
Hb | Hemoglobin |
RBC | Red blood cell |
NCI-CTCAE | National Cancer Institute Common Terminology Criteria for Adverse Events |
IWG-MRT | International Working Group on Myelofibrosis Research and Treatment |
ELN | European LeukemiaNet |
RR6 | Response to Ruxolitinib After 6 Months |
WHO | World Health Organization |
IQR | Interquartile range |
OR | Odds ratio |
HR | Hazard ratio |
CI | Confidence interval |
AEs | Adverse events |
References
- Tefferi, A. Primary myelofibrosis: 2023 update on diagnosis, risk-stratification, and management. Am. J. Hematol. 2023, 98, 801–821. [Google Scholar] [CrossRef]
- Rampal, R.; Al-Shahrour, F.; Abdel-Wahab, O.; Patel, J.P.; Brunel, J.-P.; Mermel, C.H.; Bass, A.J.; Pretz, J.; Ahn, J.; Hricik, T.; et al. Integrated genomic analysis illustrates the central role of JAK-STAT pathway activation in myeloproliferative neoplasm pathogenesis. Blood 2014, 123, e123–e133. [Google Scholar] [CrossRef]
- Titmarsh, G.J.; Duncombe, A.S.; McMullin, M.F.; O’ROrke, M.; Mesa, R.; De Vocht, F.; Horan, S.; Fritschi, L.; Clarke, M.; Anderson, L.A. How common are myeloproliferative neoplasms? A systematic review and meta-analysis. Am. J. Hematol. 2014, 89, 581–587. [Google Scholar] [CrossRef]
- Price, G.L.; Davis, K.L.; Karve, S.; Pohl, G.; Walgren, R.A. Survival patterns in United States (US) medicare enrollees with non-CML myeloproliferative neoplasms (MPN). PLoS ONE 2014, 9, e90299. [Google Scholar] [CrossRef]
- Tefferi, A.; Vainchenker, W. Myeloproliferative neoplasms: Molecular pathophysiology, essential clinical understanding, and treatment strategies. J. Clin. Oncol. 2011, 29, 573–582. [Google Scholar] [CrossRef] [PubMed]
- Cervantes, F.; Dupriez, B.; Pereira, A.; Passamonti, F.; Reilly, J.T.; Morra, E.; Vannucchi, A.M.; Mesa, R.A.; Demory, J.-L.; Barosi, G.; et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood 2009, 113, 2895–2901. [Google Scholar] [CrossRef]
- Passamonti, F.; Cervantes, F.; Vannucchi, A.M.; Morra, E.; Rumi, E.; Pereira, A.; Guglielmelli, P.; Pungolino, E.; Caramella, M.; Maffioli, M.; et al. A dynamic prognostic model to predict survival in primary myelofibrosis: A study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood 2010, 115, 1703–1708. [Google Scholar] [CrossRef] [PubMed]
- Coltro, G.; Vannucchi, A.M. The safety of JAK kinase inhibitors for the treatment of myelofibrosis. Expert Opin. Drug Saf. 2021, 20, 139–154. [Google Scholar] [CrossRef] [PubMed]
- Verstovsek, S.; Mesa, R.A.; Gotlib, J.; Levy, R.S.; Gupta, V.; DiPersio, J.F.; Catalano, J.V.; Deininger, M.; Miller, C.; Silver, R.T.; et al. A Double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N. Engl. J. Med. 2012, 366, 799–807. [Google Scholar] [CrossRef]
- Harrison, C.; Kiladjian, J.-J.; Al-Ali, H.K.; Gisslinger, H.; Waltzman, R.; Stalbovskaya, V.; McQuitty, M.; Hunter, D.S.; Levy, R.; Knoops, L.; et al. JAK Inhibition with ruxolitinib versus best available therapy for myelofibrosis. N. Engl. J. Med. 2012, 366, 787–798. [Google Scholar] [CrossRef]
- Verstovsek, S.; Mesa, R.A.; Gotlib, J.; Gupta, V.; DiPersio, J.F.; Catalano, J.V.; Deininger, M.W.N.; Miller, C.B.; Silver, R.T.; Talpaz, M.; et al. Long-term treatment with ruxolitinib for patients with myelofibrosis: 5-year update from the randomized, double-blind, placebo-controlled, phase 3 COMFORT-I trial. J. Hematol. Oncol. 2017, 10, 55. [Google Scholar] [CrossRef]
- Harrison, C.N.; Vannucchi, A.M.; Kiladjian, J.-J.; Al-Ali, H.K.; Gisslinger, H.; Knoops, L.; Cervantes, F.; Jones, M.M.; Sun, K.; McQuitty, M.; et al. Long-term findings from COMFORT-II, a phase 3 study of ruxolitinib vs best available therapy for myelofibrosis. Leukemia 2016, 30, 1701–1707. [Google Scholar] [CrossRef] [PubMed]
- Barosi, G.; Gale, R.P. Does ruxolitinib really prolong survival in individuals with myelofibrosis? The never-ending story. Blood Adv. 2022, 6, 2331–2333. [Google Scholar] [CrossRef]
- Verstovsek, S.; Parasuraman, S.; Yu, J.; Shah, A.; Kumar, S.; Xi, A.; Harrison, C. Real-world survival of US patients with intermediate- to high-risk myelofibrosis: Impact of ruxolitinib approval. Ann. Hematol. 2022, 101, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Guglielmelli, P.; Ghirardi, A.; Carobbio, A.; Masciulli, A.; Maccari, C.; Mora, B.; Rumi, E.; Triguero, A.; Finazzi, M.C.; Pettersson, H.; et al. Impact of ruxolitinib on survival of patients with myelofibrosis in the real world: Update of the ERNEST Study. Blood Adv. 2022, 6, 373–375. [Google Scholar] [CrossRef]
- Al-Ali, H.K.; Griesshammer, M.; le Coutre, P.; Waller, C.F.; Liberati, A.M.; Schafhausen, P.; Tavares, R.; Giraldo, P.; Foltz, L.; Raanani, P.; et al. Safety and efficacy of ruxolitinib in an open-label, multicenter, single-arm phase 3b expanded-access study in patients with myelofibrosis: A snapshot of 1144 patients in the JUMP trial. Haematologica 2016, 101, 1065–1073. [Google Scholar] [CrossRef] [PubMed]
- Khoury, J.D.; Solary, E.; Abla, O.; Akkari, Y.; Alaggio, R.; Apperley, J.F.; Bejar, R.; Berti, E.; Busque, L.; Chan, J.K.C.; et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 2022, 36, 1703–1719. [Google Scholar] [CrossRef]
- Yu, J.; Bland, E.; Schuler, T.; Cordaro, T.; Braunstein, E. Real-World Use of Ruxolitinib in Patients with Myelofibrosis and Anemia or Thrombocytopenia at Diagnosis. Acta Haematol. 2024, 148, 408–418. [Google Scholar] [CrossRef]
- Gupta, V.; Harrison, C.; Hexner, E.O.; Al-Ali, H.K.; Foltz, L.; Montgomery, M.; Sun, W.; Gopalakrishna, P.; Kantarjian, H.; Verstovsek, S. The impact of anemia on overall survival in patients with myelofibrosis treated with ruxolitinib in the COMFORT studies. Haematologica 2016, 101, e482–e484. [Google Scholar] [CrossRef]
- Gupta, V.; Guglielmelli, P.; Hamer-Maansson, J.E.; Braunstein, E.M.; Al-Ali, H.K. Effect of New or Worsening Anemia on Clinical Outcomes in 2233 Patients with Myelofibrosis Treated with Ruxolitinib in the Expanded-Access Jump Study. Blood 2023, 142, 5174. [Google Scholar] [CrossRef]
- Laganà, A.; Scalzulli, E.; Carmosino, I.; Bisegna, M.L.; Martelli, M.; Breccia, M. Red Blood Cell Distribution Width May Predict Drug-Induced Anemia and Prognosis in Patients Affected by Primary/Secondary Myelofibrosis Treated with Ruxolitinib. Oncol. Ther. 2025, 13, 165–183. [Google Scholar] [CrossRef]
- Tremblay, D.; Schwabkey, Z.I.; Riazat-Kesh, Y.J.R.A.; Van Hyfte, G.; Al Ali, N.H.; Waksal, J.; Srisuwananukorn, A.; Komrokji, R.S.; Mascarenhas, J.; Kuykendall, A.T. Prevalence and Prediction of Ruxolitinib Treatment Emergent Thrombocytopenia in Myelofibrosis. Blood 2023, 142, 1830. [Google Scholar] [CrossRef]
- Laganà, A.; Scalzulli, E.; Carmosino, I.; Bisegna, M.L.; Sorella, S.; Ielo, C.; Zhdanovskaya, N.; Martelli, M.; Breccia, M. Baseline, Drug-Related and Persistent Anemia and/or Thrombocytopenia Predict Responses and Prognosis in Myelofibrosis Patients Treated with Ruxolitinib. Hematol. Oncol. 2025, 43, e70086. [Google Scholar] [CrossRef]
- Tefferi, A.; Cervantes, F.; Mesa, R.; Passamonti, F.; Verstovsek, S.; Vannucchi, A.M.; Gotlib, J.; Dupriez, B.; Pardanani, A.; Harrison, C.; et al. Revised response criteria for myelofibrosis: International Working Group-Myeloproliferative Neoplasms Research and Treatment (IWG-MRT) and European LeukemiaNet (ELN) consensus report. Blood 2013, 122, 1395–1398. [Google Scholar] [CrossRef]
- Maffioli, M.; Mora, B.; Ball, S.; Iurlo, A.; Elli, E.M.; Finazzi, M.C.; Polverelli, N.; Rumi, E.; Caramella, M.; Carraro, M.C.; et al. A prognostic model to predict survival after 6 months of ruxolitinib in patients with myelofibrosis. Blood Adv. 2022, 6, 1855–1864. [Google Scholar] [CrossRef] [PubMed]
- Al-Ali, H.K.; Gerds, A.T.; Grunwald, M.R.; Yu, J. A Review of Real-World Experience with Ruxolitinib for Myelofibrosis. Clin. Lymphoma Myeloma Leuk. 2025, 25, e262–e281. [Google Scholar] [CrossRef]
- Breccia, M.; Palandri, F.; Martelli, M.; Mendicino, F.; Malato, A.; Palumbo, G.A.; Sibilla, S.; Di Renzo, N.; Abruzzese, E.; Siragusa, S.; et al. Dosing and clinical outcomes of ruxolitinib in patients with myelofibrosis in a real-world setting: Interim results of the Italian observational study (ROMEI). Cancer 2025, 131, e35801. [Google Scholar] [CrossRef] [PubMed]
- Palandri, F.; Catani, L.; Bonifacio, M.; Benevolo, G.; Heidel, F.; Palumbo, G.A.; Crugnola, M.; Abruzzese, E.; Bartoletti, D.; Polverelli, N.; et al. Ruxolitinib in elderly patients with myelofibrosis: Impact of age and genotype. A multicentre study on 291 elderly patients. Br. J. Haematol. 2018, 183, 35–46. [Google Scholar] [CrossRef]
- Al-Ali, H.K.; Griesshammer, M.; Foltz, L.; Palumbo, G.A.; Martino, B.; Palandri, F.; Liberati, A.M.; le Coutre, P.; García-Hernández, C.; Zaritskey, A.; et al. Primary analysis of JUMP, a phase 3b, expanded-access study evaluating the safety and efficacy of ruxolitinib in patients with myelofibrosis, including those with low platelet counts. Br. J. Haematol. 2020, 189, 888–903. [Google Scholar] [CrossRef] [PubMed]
- Cervantes, F.; Ross, D.M.; Radinoff, A.; Palandri, F.; Myasnikov, A.; Vannucchi, A.M.; Zachee, P.; Gisslinger, H.; Komatsu, N.; Foltz, L.; et al. Efficacy and safety of a novel dosing strategy for ruxolitinib in the treatment of patients with myelofibrosis and anemia: The REALISE phase 2 study. Leukemia 2021, 35, 3455–3465. [Google Scholar] [CrossRef]
- Montero, M.I. PB2056: Myelofibrosis in patients older than 70 years: Is treatment with ruxolitinib worth it? HemaSphere 2022, 6, 1927–1928. [Google Scholar] [CrossRef]
- Gerds, A.T.; Yu, J.; Shah, A.; Xi, A.; Kumar, S.; Scherber, R.; Parasuraman, S. Ruxolitinib for myelofibrosis in elderly non-transplant patients: Healthcare resource utilization and costs. J. Med. Econ. 2023, 26, 843–849. [Google Scholar] [CrossRef] [PubMed]
Baseline Characteristics | Total (N = 216) | Age at Start of RUX < 65 Years (n = 105) | Age at Start of RUX ≥ 65 Years (n = 111) | p Value |
---|---|---|---|---|
Median Age (IQR) (years) | 66.1 (56.1–73.7) | 55.8 (51.0–61.1) | 73.6 (70.5–77.2) | <0.001 |
Male (%) | 111 (51.4) | 52 (49.5) | 59 (53.2) | 0.68 |
Female (%) | 105 (48.6) | 53 (50.5) | 52 (46.8) | |
PMF (%) | 98 (45.4) | 41 (39.0) | 57 (51.4) | 0.19 |
PV-SMF (%) | 56 (25.9) | 30 (28.6) | 26 (23.4) | |
ET-SMF (%) | 62 (28.7) | 34 (32.4) | 28 (25.2) | |
Early MF (%) | 35 (16.2) | 23 (21.9) | 12 (10.8) | 0.041 |
Overt MF (%) | 181 (83.8) | 82 (78.1) | 99 (89.2) | |
Fibrosis Grade 1 | 35 (16.2) | 23 (21.9) | 12 (10.8) | 0.032 |
Fibrosis Grade 2 | 65 (30.1) | 34 (32.4) | 31 (27.9) | |
Fibrosis Grade 3 | 116 (53.7) | 48 (45.7) | 68 (61.3) | |
Untreated (%) | 101 (46.8) | 57 (54.3) | 44 (39.6) | 0.041 |
Pre-Treated (%) | 115 (53.2) | 48 (45.7) | 67 (60.4) | |
Mutated JAK2 (V617F) (%) | 163 (75.5) | 78 (74.3) | 85 (76.6) | 0.75 |
Wild-Type JAK2 (%) | 53 (24.5) | 27 (25.7) | 26 (23.4) | |
Median Hb (g/dl) (IQR) | 11.1 (9.5–13.0) | 12.0 (9.9–14.0) | 10.3 (8.9–12.0) | <0.001 |
Median WBC (×109/L) (IQR) | 10.5 (6.3–16.7) | 10.0 (6.7–17.4) | 10.5 (5.7–15.8) | 0.24 |
Median PMN (×109/L) (IQR) | 7.5 (4.0–12.8) | 7.8 (4.7–13.7) | 6.9 (3.7–11.4) | 0.27 |
Median PLTs (×109/L) (IQR) | 279.5 (158.0–489.0) | 333.0 (175.5–535.0) | 250.0 (154.0–438.0) | 0.026 |
Median Blast-Cells in PB (%) (IQR) | 0.0 (0.0–1.8) | 0.0 (0.0–1.0) | 1.0 (0.0–2.0) | 0.027 |
Median Spleen Length from LCM (cm) (IQR) | 7.0 (6.0–10.0) | 8.0 (6.0–10.0) | 7.0 (6.0–10.0) | 0.15 |
LDH < 2 ULN | 72 (33.3) | 44 (41.9) | 28 (25.2) | 0.014 |
LDH ≥ 2 ULN | 144 (66.7) | 61 (58.1) | 83 (74.8) | |
IPSS Intermediate-I (%) | 72 (33.3) | 60 (57.1) | 12 (10.8) | <0.001 |
IPSS Intermediate-II (%) | 63 (29.2) | 28 (26.7) | 35 (31.5) | |
IPSS High Risk (%) | 81 (37.5) | 17 (16.2) | 64 (57.7) | |
DIPSS Intermediate-I (%) | 111 (51.4) | 75 (71.4) | 36 (32.4) | <0.001 |
DIPSS Intermediate-II (%) | 75 (34.7) | 26 (24.8) | 49 (44.1) | |
DIPSS High Risk (%) | 30 (13.9) | 4 (3.8) | 26 (23.4) | |
aaDIPSS Low Risk (%) | 12 (5.6) | 0 (0.0) | 12 (10.8) | <0.001 |
aaDIPSS Intermediate-I Risk (%) | 96 (44.4) | 61 (58.2) | 35 (31.5) | |
aaDIPSS Intermediate-II Risk (%) | 58 (26.9) | 27 (25.7) | 31 (27.9) | |
aaDIPSS High Risk (%) | 50 (23.1) | 17 (16.2) | 33 (29.8) | |
Median Time (months) from MF Diagnosis to Start of RUX (IQR) | 5.6 (1.5–43.5) | 3.3 (1.2–38.6) | 7.6 (2.0–48.8) | 0.074 |
RUX Initial Dosage: | 0.003 | |||
5 mg BID (%) | 24 (11.1) | 8 (7.6) | 16 (14.5) | |
10 mg BID (%) | 34 (15.7) | 12 (11.4) | 22 (19.8) | |
15 mg BID (%) | 39 (18.1) | 12 (11.4) | 27 (24.3) | |
20 mg BID (%) | 119 (55.1) | 73 (69.6) | 46 (41.4) |
Drug-Related Anemia | Drug-Related Thrombocytopenia | |||||
---|---|---|---|---|---|---|
Age at Start of RUX < 65 Years (n = 105) | Age at Start of RUX ≥ 65 Years (n = 111) | p Value | Age at Start of RUX < 65 Years (n = 105) | Age at Start of RUX ≥ 65 Years (n = 111) | p Value | |
At 3 months (%) | 27 (25.7) | 51 (45.9) | 0.003 | 10 (9.5) | 15 (13.5) | 0.40 |
New RBC transfusion dependency at 3 months (%) | 8/93 (8.6) | 26/84 (31.0) | <0.001 | - | - | - |
At 6 months (%) | 26 (24.7) | 45 (40.5) | 0.020 | 13 (12.4) | 17 (15.3) | 0.69 |
New RBC transfusion dependency at 6 months (%) | 13/93 (14.0) | 24/84 (28.6) | 0.026 | - | - | - |
Baseline Characteristics | Age at Start of RUX ≥ 65 Years (n = 111) | Age at Start of RUX 65–74 Years (n = 64) | Age at Start of RUX ≥ 75 Years (n = 47) | p Value |
---|---|---|---|---|
Median Age (IQR) (years) | 73.6 (70.5–77.2) | 70.9 (68.6–72.8) | 77.7 (75.9–79.9) | <0.001 |
Male (%) | 59 (53.2) | 32 (50.0) | 27 (57.4) | 0.45 |
Female (%) | 52 (46.8) | 32 (50.0) | 20 (42.6) | |
PMF (%) | 57 (51.4) | 31 (48.4) | 26 (55.3) | 0.45 |
PV-SMF (%) | 26 (23.4) | 14 (21.9) | 12 (25.5) | |
ET-SMF (%) | 28 (25.2) | 19 (29.7) | 9 (19.2) | |
Early-MF (%) | 12 (10.8) | 9 (14.1) | 3 (6.4) | 0.23 |
Overt-MF (%) | 99 (89.2) | 55 (85.9) | 44 (93.6) | |
Fibrosis Grade 1 | 12 (10.8) | 9 (14.1) | 3 (6.4) | 038 |
Fibrosis Grade 2 | 31 (27.9) | 16 (25.0) | 15 (31.9) | |
Fibrosis Grade 3 | 68 (61.3) | 39 (60.9) | 29 (61.7) | |
Untreated (%) | 44 (39.6) | 27 (42.2) | 17 (36.2) | 0.56 |
Pre-Treated (%) | 67 (60.4) | 37 (57.8) | 30 (63.8) | |
Mutated JAK2 (V617F) (%) | 85 (76.6) | 49 (76.6) | 36 (76.6) | >0.95 |
Wild-Type JAK2 (%) | 26 (23.4) | 15 (23.4) | 11 (23.4) | |
Median Hb (g/dL) (IQR) | 10.3 (8.9–12.0) | 10.5 (9.3–12.4) | 9.9 (8.8–11.2) | 0.097 |
Median WBC (×109/L) (IQR) | 10.5 (5.7–15.8) | 10.5 (6.1–17.1) | 10.5 (5.1–13.9) | 0.29 |
Median PMN (×109/L) (IQR) | 6.9 (3.7–11.4) | 6.8 (3.9–13.6) | 7.3 (3.3–10.4) | 0.34 |
Median PLTs (×109/L) (IQR) | 250.0 (154.0–438.0) | 250.5 (138.3–416.5) | 250.0 (156.0–450.0) | 0.60 |
Median Blast-Cells in PB (%) (IQR) | 1.0 (0.0–2.0) | 0.0 (0.0–2.0) | 1.0 (0.0–2.0) | 0.29 |
Median Spleen Length from LCM (cm) (IQR) | 7.0 (6.0–10.0) | 6.5 (5.0–10.0) | 7.0 (6.0–10.0) | 0.87 |
LDH < 2 ULN | 28 (25.2) | 16 (25.0) | 12 (25.5) | >0.95 |
LDH ≥ 2 ULN | 83 (74.8) | 48 (75.0) | 35 (74.5) | |
IPSS Intermediate-I (%) | 12 (10.8) | 8 (12.4) | 4 (8.5) | 0.80 |
IPSS Intermediate-II (%) | 35 (31.5) | 20 (31.3) | 15 (31.9) | |
IPSS High Risk (%) | 64 (57.7) | 36 (56.3) | 28 (59.6) | |
DIPSS Intermediate-I (%) | 36 (32.4) | 22 (34.4) | 14 (29.8) | 0.66 |
DIPSS Intermediate-II (%) | 49 (44.1) | 29 (45.3) | 20 (42.5) | |
DIPSS High Risk (%) | 26 (23.4) | 13 (20.3) | 13 (27.7) | |
aaDIPSS Low Risk (%) | 12 (10.8) | 8 (12.5) | 4 (8.5) | 0.91 |
aaDIPSS Intermediate-I Risk (%) | 35 (31.5) | 20 (31.3) | 15 (31.9) | |
aaDIPSS Intermediate-II Risk (%) | 31 (27.9) | 18 (28.1) | 13 (27.7) | |
aaDIPSS High Risk (%) | 33 (29.8) | 18 (28.1) | 15 (31.9) | |
Median Time (months) from MF Diagnosis to Start of RUX (IQR) | 7.6 (2.0–48.8) | 5.0 (1.7–30.6) | 14.4 (2.7–68.4) | 0.071 |
RUX Initial Dosage: | 0.87 | |||
5 mg BID (%) | 16 (14.5) | 8 (12.5) | 8 (17.0) | |
10 mg BID (%) | 22 (19.8) | 12 (18.8) | 10 (21.3) | |
15 mg BID (%) | 27 (24.3) | 16 (25.0) | 11 (23.4) | |
20 mg BID (%) | 46 (41.4) | 28 (43.7) | 18 (38.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laganà, A.; Scalzulli, E.; Carmosino, I.; Bisegna, M.L.; Ielo, C.; Andriola, C.; Martelli, M.; Breccia, M. Increased Rate of Anemia and Discontinuation in Older Patients with Myelofibrosis Treated with Ruxolitinib. J. Clin. Med. 2025, 14, 6811. https://doi.org/10.3390/jcm14196811
Laganà A, Scalzulli E, Carmosino I, Bisegna ML, Ielo C, Andriola C, Martelli M, Breccia M. Increased Rate of Anemia and Discontinuation in Older Patients with Myelofibrosis Treated with Ruxolitinib. Journal of Clinical Medicine. 2025; 14(19):6811. https://doi.org/10.3390/jcm14196811
Chicago/Turabian StyleLaganà, Alessandro, Emilia Scalzulli, Ida Carmosino, Maria Laura Bisegna, Claudia Ielo, Costanza Andriola, Maurizio Martelli, and Massimo Breccia. 2025. "Increased Rate of Anemia and Discontinuation in Older Patients with Myelofibrosis Treated with Ruxolitinib" Journal of Clinical Medicine 14, no. 19: 6811. https://doi.org/10.3390/jcm14196811
APA StyleLaganà, A., Scalzulli, E., Carmosino, I., Bisegna, M. L., Ielo, C., Andriola, C., Martelli, M., & Breccia, M. (2025). Increased Rate of Anemia and Discontinuation in Older Patients with Myelofibrosis Treated with Ruxolitinib. Journal of Clinical Medicine, 14(19), 6811. https://doi.org/10.3390/jcm14196811