Beyond Da Vinci: Comparative Review of Next-Generation Robotic Platforms in Urologic Surgery
Abstract
1. Introduction
2. Methods
Search Strategy
3. Overview of Next-Generation Robotic Platforms
3.1. Hugo™ RAS (Medtronic)
3.1.1. Design and Technical Features
3.1.2. Clinical Applications and Outcomes
3.2. Versius™ (CMR Surgical)
3.2.1. Design and Technical Features
3.2.2. Clinical Applications and Outcomes
3.3. Avatera™ (Avateramedical GmbH)
3.4. REVO-I (Meere Company Inc.)
3.5. Hinotori™ (Medicaroid)
3.6. Senhance™ (Asensus Surgical)
3.7. KangDuo
3.8. MicroHand S
3.9. Dexter™ (Distalmotion)
3.10. Toumai® (MedBot)
4. Economic Considerations and Cost Models
5. Future Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mikhail, D.; Sarcona, J.; Mekhail, M.; Richstone, L. Urologic Robotic Surgery. Surg. Clin. N. Am. 2020, 100, 361–378. [Google Scholar] [CrossRef]
- Brassetti, A.; Ragusa, A.; Tedesco, F.; Prata, F.; Cacciatore, L.; Iannuzzi, A.; Bove, A.M.; Anceschi, U.; Proietti, F.; D’Annunzio, S.; et al. Robotic Surgery in Urology: History from PROBOT(®) to HUGO(TM). Sensors 2023, 23, 7104. [Google Scholar] [CrossRef] [PubMed]
- Paul, H.A.; Bargar, W.L.; Mittlestadt, B.; Musits, B.; Taylor, R.H.; Kazanzides, P.; Zuhars, J.; Williamson, B.; Hanson, W. Development of a surgical robot for cementless total hip arthroplasty. Clin. Orthop. Relat. Res. 1992, 285, 57–66. [Google Scholar] [CrossRef]
- Ilic, D.; Evans, S.M.; Allan, C.A.; Jung, J.H.; Murphy, D.; Frydenberg, M. Laparoscopic and robotic-assisted versus open radical prostatectomy for the treatment of localised prostate cancer. Cochrane Database Syst. Rev. 2017, 9, Cd009625. [Google Scholar] [CrossRef] [PubMed]
- Iadeluca, L.; Mardekian, J.; Chander, P.; Hopps, M.; Makinson, G.T. The burden of selected cancers in the US: Health behaviors and health care resource utilization. Cancer Manag. Res. 2017, 9, 721–730. [Google Scholar] [CrossRef] [PubMed]
- Bochner, B.H.; Kamat, A.M.; Bivalacqua, T.J. Open vs Robotic Cystectomy: Case Closed? J. Urol. 2024, 211, 473–475. [Google Scholar] [CrossRef]
- Cao, L.; Yang, Z.; Qi, L.; Chen, M. Robot-assisted and laparoscopic vs open radical prostatectomy in clinically localized prostate cancer: Perioperative, functional, and oncological outcomes: A Systematic review and meta-analysis. Medicine 2019, 98, e15770. [Google Scholar] [CrossRef]
- Eckhoff, J.A.; Müller, D.T.; Brunner, S.N.; Fuchs, H.F.; Meireles, O.R. Do the costs of robotic surgery present an insurmountable obstacle? A narrative review. Int. J. Abdom. Wall Hernia Surg. 2023, 6, 71–76. [Google Scholar] [CrossRef]
- Picozzi, P.; Nocco, U.; Labate, C.; Gambini, I.; Puleo, G.; Silvi, F.; Pezzillo, A.; Mantione, R.; Cimolin, V. Advances in Robotic Surgery: A Review of New Surgical Platforms. Electronics 2024, 13, 4675. [Google Scholar] [CrossRef]
- Bravi, C.A.; Paciotti, M.; Sarchi, L.; Mottaran, A.; Nocera, L.; Farinha, R.; De Backer, P.; Vinckier, M.H.; De Naeyer, G.; D’Hondt, F.; et al. Robot-assisted Radical Prostatectomy with the Novel Hugo Robotic System: Initial Experience and Optimal Surgical Set-up at a Tertiary Referral Robotic Center. Eur. Urol. 2022, 82, 233–237. [Google Scholar] [CrossRef]
- Bravi, C.A.; Balestrazzi, E.; De Loof, M.; Rebuffo, S.; Piramide, F.; Mottaran, A.; Paciotti, M.; Sorce, G.; Nocera, L.; Sarchi, L.; et al. Robot-assisted Radical Prostatectomy Performed with Different Robotic Platforms: First Comparative Evidence Between Da Vinci and HUGO Robot-assisted Surgery Robots. Eur. Urol. Focus 2024, 10, 107–114. [Google Scholar] [CrossRef]
- Andrade, G.M.; Lau, C.; Olivares, R.; Duarte, I.K.; Teles, S.B.; Gavassa, F.P.; Pereira, H.M.J.; Kayano, P.P.; Barbosa, A.R.G.; Bianco, B.; et al. Implementation of Robot-assisted Urologic Surgeries Using Hugo RAS System in a High-volume Robotic “Da Vinci Xi” Center: Outcomes and Initial Experience. Urology 2024, 192, 44–51. [Google Scholar] [CrossRef]
- Takahara, K.; Motonaga, T.; Nakamura, W.; Saruta, M.; Nukaya, T.; Takenaka, M.; Zennami, K.; Ichino, M.; Sasaki, H.; Shiroki, R. Robot-assisted radical prostatectomy with the Hugo™ robot-assisted surgery system: A single-center initial experience in Japan. Asian J. Endosc. Surg. 2024, 17, e13342. [Google Scholar] [CrossRef]
- Totaro, A.; Scarciglia, E.; Marino, F.; Campetella, M.; Gandi, C.; Ragonese, M.; Bientinesi, R.; Palermo, G.; Bizzarri, F.P.; Cretì, A.; et al. Robot-Assisted Radical Prostatectomy Performed with the Novel Surgical Robotic Platform Hugo™ RAS: Monocentric First Series of 132 Cases Reporting Surgical, and Early Functional and Oncological Outcomes at a Tertiary Referral Robotic Center. Cancers 2024, 16, 1602. [Google Scholar] [CrossRef]
- Antonelli, A.; Veccia, A.; Malandra, S.; Rizzetto, R.; De Marco, V.; Baielli, A.; Franceschini, A.; Fumanelli, F.; Montanaro, F.; Palumbo, I.; et al. Intraoperative Performance of DaVinci Versus Hugo RAS During Radical Prostatectomy: Focus on Timing, Malfunctioning, Complications, and User Satisfaction in 100 Consecutive Cases (the COMPAR-P Trial). Eur. Urol. Open Sci. 2024, 63, 104–112. [Google Scholar] [CrossRef]
- Bobrowski, A.; Wu, W.; Angeles, C.; Czajkowski, S.; Lee, J.Y. Robotic-assisted partial nephrectomy using the Hugo(TM) robotic-assisted surgery platform Initial experience and insights. Can. Urol. Assoc. J. 2025, 19, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Chierigo, F.; Caviglia, A.; Cellini, V.; Maltzman, O.; Olivero, A.; Barbieri, M.; Secco, S.; Tappero, S.; Bocciardi, A.M.; Galfano, A.; et al. Transperitoneal and retroperitoneal robot-assisted partial nephrectomy with the Hugo™ RAS system: Video instructions and initial experience from a tertiary care referral centre. Urol. Video J. 2024, 21, 100255. [Google Scholar] [CrossRef]
- Gaya, J.M.; Uleri, A.; Gallioli, A.; Basile, G.; Territo, A.; Farré, A.; Suquilanda, E.; Verri, P.; Palou, J.; Breda, A. Retroperitoneal Robotic Partial Nephrectomy with the Hugo RAS System. Eur. Urol. 2024, 86, 71–73. [Google Scholar] [CrossRef] [PubMed]
- Prata, F.; Ragusa, A.; Tedesco, F.; Pira, M.; Iannuzzi, A.; Fantozzi, M.; Civitella, A.; Scarpa, R.M.; Papalia, R. Trifecta Outcomes of Robot-Assisted Partial Nephrectomy Using the New Hugo™ RAS System Versus Laparoscopic Partial Nephrectomy. J. Clin. Med. 2024, 13, 2138. [Google Scholar] [CrossRef]
- Morizane, S.; Hussein, A.A.; Yamane, H.; Shimizu, R.; Nishikawa, R.; Kimura, Y.; Yamaguchi, N.; Hikita, K.; Honda, M.; Guru, K.A.; et al. Initial Experience and Surgical Setup of Robot-Assisted Nephroureterectomy Using the Hugo Robot-Assisted Surgery System. J. Endourol. 2024, 38, 1004–1012. [Google Scholar] [CrossRef] [PubMed]
- Rocco, B.; Sighinolfi, M.C.; Sarchi, L.; Assumma, S.; Turri, F.; Sangalli, M.; Gaia, G.; Grasso, A.; Dell’Orto, P.; Calcagnile, T.; et al. First case of robot-assisted radical cystectomy and intracorporeal neobladder reconstruction with the Hugo RAS system: Step-by-step surgical setup and technique. J. Robot. Surg. 2023, 17, 2247–2251. [Google Scholar] [CrossRef]
- Gaya, J.M.; Uleri, A.; Sanz, I.; Basile, G.; Verri, P.; Hernandez, P.; Territo, A.; Faba, O.R.; Gallioli, A.; Breda, A.; et al. Robot-assisted radical cystectomy and ileal conduit with Hugo(TM) RAS system: Feasibility, setting and perioperative outcomes. Int. Braz. J. Urol. 2023, 49, 787–788. [Google Scholar] [CrossRef]
- Rebuffo, S.; Ticonosco, M.; Ruvolo, C.C.; Pissavini, A.; Balestrazzi, E.; Paciotti, M.; Frego, N.; Sorce, G.; Belmonte, M.; Lores, M.P.; et al. Robot-Assisted Pyeloplasty with HUGO™ Robotic System: Initial Experience and Optimal Surgical Set-Up at a Tertiary Referral Robotic Center. J. Endourol. 2024, 38, 323–330. [Google Scholar] [CrossRef]
- Gandi, C.; Marino, F.; Totaro, A.; Scarciglia, E.; Presutti, S.; Bellavia, F.; Bientinesi, R.; Gavi, F.; Rossi, F.; Moosavi, S.K.; et al. Hugo™ Versus daVinci™ Robot-Assisted Radical Prostatectomy: 1-Year Propensity Score-Matched Comparison of Functional and Oncological Outcomes. J. Clin. Med. 2024, 13, 6910. [Google Scholar] [CrossRef] [PubMed]
- Gavi, F.; Sighinolfi, M.C.; Fettucciari, D.; Carerj, C.; Marino, F.; Panio, E.; Russo, P.; Foschi, N.; Bientinesi, R.; Gandi, C.; et al. Impact of prior robotic surgical expertise on the results of Hugo RAS radical prostatectomy: A propensity score-matched comparison between Da Vinci-expert and non-Da Vinci-expert surgeons. World J. Urol. 2025, 43, 236. [Google Scholar] [CrossRef]
- Ou, H.C.; Marian, L.; Li, C.C.; Juan, Y.S.; Tung, M.C.; Shih, H.J.; Chang, C.P.; Chen, J.T.; Yang, C.H.; Ou, Y.C. Robot-Assisted Radical Prostatectomy by the Hugo Robotic-Assisted Surgery (RAS) System and the da Vinci System: A Comparison between the Two Platforms. Cancers 2024, 16, 1207. [Google Scholar] [CrossRef]
- Olsen, R.G.; Karas, V.; Bjerrum, F.; Konge, L.; Stroomberg, H.V.; Dagnæs-Hansen, J.A.; Røder, A. Skills transfer from the DaVinci® system to the Hugo™ RAS system. Int. Urol. Nephrol. 2024, 56, 389–397. [Google Scholar] [CrossRef]
- Hares, L.; Roberts, P.; Marshall, K.; Slack, M. Using end-user feedback to optimize the design of the Versius Surgical System, a new robot-assisted device for use in minimal access surgery. BMJ Surg. Interv. Health Technol. 2019, 1, e000019. [Google Scholar] [CrossRef] [PubMed]
- Haig, F.; Medeiros, A.C.B.; Chitty, K.; Slack, M. Usability assessment of Versius, a new robot-assisted surgical device for use in minimal access surgery. BMJ Surg. Interv. Health Technol. 2020, 2, e000028. [Google Scholar] [CrossRef] [PubMed]
- Thomas, B.C.; Slack, M.; Hussain, M.; Barber, N.; Pradhan, A.; Dinneen, E.; Stewart, G.D. Preclinical Evaluation of the Versius Surgical System, a New Robot-assisted Surgical Device for Use in Minimal Access Renal and Prostate Surgery. Eur. Urol. Focus 2021, 7, 444–452. [Google Scholar] [CrossRef]
- Rocco, B.; Turri, F.; Sangalli, M.; Assumma, S.; Piacentini, I.; Grasso, A.; Dell’Orto, P.; Calcagnile, T.; Sarchi, L.; Bozzini, G.; et al. Robot-assisted Radical Prostatectomy with the Versius Robotic Surgical System: First Description of a Clinical Case. Eur. Urol. Open Sci. 2023, 48, 82–83. [Google Scholar] [CrossRef]
- De Maria, M.; Meneghetti, I.; Mosillo, L.; Collins, J.W.; Catalano, C. Versius robotic surgical system: Case series of 18 robot-assisted radical prostatectomies. BJU Int. 2024, 133, 197–205. [Google Scholar] [CrossRef]
- Polom, W.; Matuszewski, M. Initial experience of the Versius robotic system in robot-assisted radical prostatectomy: A study of 58 cases. Cent. Eur. J. Urol. 2024, 77, 30–36. [Google Scholar] [CrossRef]
- Hussein, A.A.; Mohsin, R.; Qureshi, H.; Leghari, R.; Jing, Z.; Ramahi, Y.O.; Rizvi, I.; Guru, K.A.; Rizvi, A. Transition from da Vinci to Versius robotic surgical system: Initial experience and outcomes of over 100 consecutive procedures. J. Robot. Surg. 2023, 17, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Liatsikos, E.; Tsaturyan, A.; Kyriazis, I.; Kallidonis, P.; Manolopoulos, D.; Magoutas, A. Market potentials of robotic systems in medical science: Analysis of the Avatera robotic system. World J. Urol. 2022, 40, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Ballesta Martinez, B.; Kallidonis, P.; Tsaturyan, A.; Peteinaris, A.; Faitatziadis, S.; Gkeka, K.; Tatanis, V.; Vagionis, A.; Pagonis, K.; Obaidat, M.; et al. Transfer of acquired practical skills from dry lab into live surgery using the avatera robotic system: An experimental study. Actas Urol. Esp. (Engl. Ed.) 2023, 47, 611–617. [Google Scholar] [CrossRef] [PubMed]
- Anaplioti, E.; Gkeka, K.; Katsakiori, P.; Peteinaris, A.; Tatanis, V.; Faitatziadis, S.; Pagonis, K.; Natsos, A.; Obaidat, M.; Vagionis, A.; et al. How long do we need to reach sufficient expertise with the avatera® robotic system? Int. Urol. Nephrol. 2024, 56, 1577–1583. [Google Scholar] [CrossRef]
- Haney, C.M.; Holze, S.; Liatsikos, E.; Dietel, A.; Kallidonis, P.; Tatanis, V.; Katsakiori, P.; Spinos, T.; Imkamp, F.; Stolzenburg, J.U. IDEAL-D Phase 0 Evaluation of the Avatera System in Robot-Assisted Prostate, Bladder and Renal Surgery. J. Laparoendosc. Adv. Surg. Tech. A 2024, 34, 239–245. [Google Scholar] [CrossRef]
- Kallidonis, P.; Tatanis, V.; Peteinaris, A.; Katsakiori, P.; Gkeka, K.; Faitatziadis, S.; Vagionis, A.; Vrettos, T.; Stolzenburg, J.U.; Liatsikos, E. Robot-assisted pyeloplasty for ureteropelvic junction obstruction: Initial experience with the novel avatera system. World J. Urol. 2023, 41, 3155–3160. [Google Scholar] [CrossRef]
- Gkeka, K.; Kallidonis, P.; Peteinaris, A.; Katsakiori, P.; Tatanis, V.; Faitatziadis, S.; Spinos, T.; Vagionis, A.; Vrettos, T.; Stolzenburg, J.U.; et al. Robot-assisted radical prostatectomy using the avatera system™: A prospective pilot study. Minerva Urol. Nephrol. 2024, 76, 52–59. [Google Scholar] [CrossRef]
- Kim, D.K.; Park, D.W.; Rha, K.H. Robot-assisted Partial Nephrectomy with the REVO-I Robot Platform in Porcine Models. Eur. Urol. 2016, 69, 541–542. [Google Scholar] [CrossRef]
- Chang, K.D.; Abdel Raheem, A.; Choi, Y.D.; Chung, B.H.; Rha, K.H. Retzius-sparing robot-assisted radical prostatectomy using the Revo-i robotic surgical system: Surgical technique and results of the first human trial. BJU Int. 2018, 122, 441–448. [Google Scholar] [CrossRef]
- Alip, S.; Koukourikis, P.; Han, W.K.; Rha, K.H.; Na, J.C. Comparing Revo-i and da Vinci in Retzius-Sparing Robot-Assisted Radical Prostatectomy: A Preliminary Propensity Score Analysis of Outcomes. J. Endourol. 2022, 36, 104–110. [Google Scholar] [CrossRef]
- Hinata, N.; Yamaguchi, R.; Kusuhara, Y.; Kanayama, H.; Kohjimoto, Y.; Hara, I.; Fujisawa, M. Hinotori Surgical Robot System, a novel robot-assisted surgical platform: Preclinical and clinical evaluation. Int. J. Urol. 2022, 29, 1213–1220. [Google Scholar] [CrossRef]
- Nakayama, A.; Izumi, K.; Ikezoe, E.; Inoue, M.; Tsujioka, H.; Nirazuka, A.; Hasegawa, K.; Osaka, A.; Yasuda, Y.; Fukuda, Y.; et al. Robot-assisted radical prostatectomy using the novel hinotori(TM) surgical robot system: Initial experience and operation learning curve at a single institution. Transl. Cancer Res. 2024, 13, 57–64. [Google Scholar] [CrossRef]
- Yamada, Y.; Kakutani, S.; Fujii, Y.; Kimura, N.; Hakozaki, Y.; Kamei, J.; Taguchi, S.; Niimi, A.; Yamada, D.; Kume, H. Retzius-Sparing Robot-Assisted Radical Prostatectomy Using the Hinotori Surgical Robot System Platform: Report of the First Series of Experiences. Curr. Oncol. 2024, 31, 5537–5543. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, S.; Hatayama, T.; Shikuma, H.; Yukihiro, K.; Iwane, K.; Tasaka, R.; Kohada, Y.; Fukushima, T.; Takemoto, K.; Naito, M.; et al. Robotic urologic applications of the hinotori™ Surgical Robot System. Asian J. Urol. 2025, 12, 162–168. [Google Scholar] [CrossRef]
- Kanehira, M.; Moriwaka, M.; Ito, A.; Shiomi, E.; Ishii, S.; Ikarashi, D.; Maekawa, S.; Kato, R.; Sugimura, J.; Obara, W. Comparison of Step-Specific Operative Times Between the da Vinci Surgical System and the Hinotori Surgical Robot System in Robot-Assisted Radical Prostatectomy. Asian J. Endosc. Surg. 2025, 18, e70091. [Google Scholar] [CrossRef] [PubMed]
- Morizane, S.; Hussein, A.A.; Jing, Z.; Yamamoto, A.; Yamane, H.; Shimizu, R.; Nishikawa, R.; Kimura, Y.; Yamaguchi, N.; Hikita, K.; et al. Comparison of perioperative outcomes of robot-assisted radical prostatectomy among the da Vinci, hinotori, and Hugo robot-assisted surgery systems. J. Robot. Surg. 2025, 19, 54. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, T.; Kitano, H.; Hieda, K.; Hinata, N. First case report of robot-assisted radical cystectomy and intracorporeal urinary diversion using the hinotori Surgical Robot System. Transl. Cancer Res. 2024, 13, 471–479. [Google Scholar] [CrossRef]
- Motoyama, D.; Matsushita, Y.; Watanabe, H.; Tamura, K.; Otsuka, A.; Fujisawa, M.; Miyake, H. Robot-assisted radical nephroureterectomy for upper urinary tract tumor: Initial experience with the use of novel surgical robot system, hinotori. Transl. Cancer Res. 2023, 12, 3522–3529. [Google Scholar] [CrossRef] [PubMed]
- Fukumoto, T.; Sawada, T.; Nishida, K.; Onishi, T.; Watanabe, R.; Nishimura, K.; Miura, N.; Miyauchi, Y.; Kikugawa, T.; Saika, T. Evaluation of the New Robotic Platform “HINOTORI™” in Urologic Robot-Assisted Surgery: From a Comparison with da Vinci(®) Surgical System in Sacrocolpopexy. J. Clin. Med. 2025, 14, 2954. [Google Scholar] [CrossRef]
- Kubota, S.; Okusue, R.; Nagasawa, M.; Wada, A.; Kobayashi, K.; Yamanaka, K.; Tsuru, T.; Yoshida, T.; Johnin, K.; Kageyama, S. Comparison of Surgical Outcomes Between the hinotori™ and da Vinci® Robotic Systems in Robot-Assisted Sacrocolpopexy: A Retrospective Study. Cureus 2025, 17, e89857. [Google Scholar] [CrossRef] [PubMed]
- Hudolin, T.; Kuliš, T.; Penezić, L.; Zekulić, T.; Knežević, N.; Čikić, B.; Jurić, I.; Anđelić, J.; Saić, H.; Kaštelan, Ž. Senhance robotic radical prostatectomy: A single-centre, 3-year experience. Int. J. Med. Robot. 2023, 19, e2549. [Google Scholar] [CrossRef] [PubMed]
- Venckus, R.; Jasenas, M.; Telksnys, T.; Venckus, M.; Janusonis, V.; Dulskas, A.; Samalavicius, N.E. Robotic-assisted radical prostatectomy with the Senhance(®) robotic platform: Single center experience. World J. Urol. 2021, 39, 4305–4310. [Google Scholar] [CrossRef]
- Kastelan, Z.; Hudolin, T.; Kulis, T.; Knezevic, N.; Penezic, L.; Maric, M.; Zekulic, T. Upper urinary tract surgery and radical prostatectomy with Senhance(®) robotic system: Single center experience-First 100 cases. Int. J. Med. Robot. 2021, 17, e2269. [Google Scholar] [CrossRef]
- Kulis, T.; Hudolin, T.; Penezic, L.; Zekulic, T.; Saic, H.; Knezevic, N.; Kastelan, Z. Comparison of extraperitoneal laparoscopic and extraperitoneal Senhance radical prostatectomy. Int. J. Med. Robot. 2022, 18, e2344. [Google Scholar] [CrossRef]
- Lin, Y.C.; Yuan, L.H.; Tseng, C.S.; Hsieh, T.Y.; Huang, Y.W.; Huang, C.Y.; Huang, S.W. Comparison of senhance and da vinci robotic radical prostatectomy: Short-term outcomes, learning curve, and cost analysis. Prostate Cancer Prostatic Dis. 2024, 27, 116–121. [Google Scholar] [CrossRef]
- Staib, L.; Willeke, F.; Stephan, D.; Menke, V.; Hansen, O.; Samalavicius, N.E.; Nausediene, V.; Abendstein, B.; Kulis, T.; Jackisch, C.; et al. Safety with the senhance™ robotic system in 3,239 patients across various surgical disciplines. Langenbecks Arch. Surg. 2025, 410, 218. [Google Scholar] [CrossRef]
- Xiong, S.; Fan, S.; Chen, S.; Wang, X.; Han, G.; Li, Z.; Zuo, W.; Li, Z.; Yang, K.; Zhang, Z.; et al. Robotic urologic surgery using the KangDuo-Surgical Robot-01 system: A single-center prospective analysis. Chin. Med. J. 2023, 136, 2960–2966. [Google Scholar] [CrossRef]
- Li, X.; Xu, W.; Fan, S.; Xiong, S.; Dong, J.; Wang, J.; Dai, X.; Yang, K.; Xie, Y.; Liu, G.; et al. Robot-assisted Partial Nephrectomy with the Newly Developed KangDuo Surgical Robot Versus the da Vinci Si Surgical System: A Double-center Prospective Randomized Controlled Noninferiority Trial. Eur. Urol. Focus 2023, 9, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Huang, Y.; Wang, X.; Zhang, M.; Fan, S.; Liu, F.; Xiong, S.; Yang, K.; Guan, H.; Li, X.; et al. Comparison of robot-assisted partial nephrectomy with KangDuo surgical system vs. the da Vinci Si system: Quality of life and medium-term oncological outcomes. Chin. Med. J. 2024, 137, 2767–2769. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, Z.; Xu, W.; Wang, X.; Zhu, S.; Dong, J.; Tian, X.; Zuo, W.; Tang, Q.; Li, Z.; et al. Robot-assisted radical nephroureterectomy using the KangDuo Surgical Robot-01 System versus the da Vinci System: A multicenter prospective randomized controlled trial. Int. Braz. J. Urol. 2024, 50, 727–736. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Wang, J.; Zhou, A.; Wu, H.; Xu, W.; Xu, Y. Short-term outcomes comparison of KangDuo 2.0 and Da Vinci Xi in radical cystectomy. Sci. Rep. 2025, 15, 11739. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, F.; Li, X. Performance and safety of Kangduo surgical robot versus da Vinci robotic system for urologic surgeries. Langenbeck’s Arch. Surg. 2025, 410, 100. [Google Scholar] [CrossRef]
- Yi, B.; Wang, G.; Li, J.; Jiang, J.; Son, Z.; Su, H.; Zhu, S.; Wang, S. Domestically produced Chinese minimally invasive surgical robot system “Micro Hand S” is applied to clinical surgery preliminarily in China. Surg. Endosc. 2017, 31, 487–493. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, G.; Li, Z.; Ling, H.; Yi, B.; Zhu, S. Comparison of the operative outcomes and learning curves between laparoscopic and “Micro Hand S” robot-assisted total mesorectal excision for rectal cancer: A retrospective study. BMC Gastroenterol. 2021, 21, 251. [Google Scholar] [CrossRef]
- Zeng, Y.; Wang, G.; Li, Z.; Lin, H.; Zhu, S.; Yi, B. The Micro Hand S vs. da Vinci Surgical Robot-Assisted Surgery on Total Mesorectal Excision: Short-Term Outcomes Using Propensity Score Matching Analysis. Front. Surg. 2021, 8, 656270. [Google Scholar] [CrossRef]
- Li, R.; Zhu, S.; Zhu, L. First Experience with the Use of “Micro Hand S” Surgical Robot in Sleeve Gastrectomy. J. Laparoendosc. Adv. Surg. Tech. A 2020, 30, 810–814. [Google Scholar] [CrossRef]
- Li, J.; Yang, X.; Chu, G.; Feng, W.; Ding, X.; Yin, X.; Zhang, L.; Lv, W.; Ma, L.; Sun, L.; et al. Application of Improved Robot-assisted Laparoscopic Telesurgery with 5G Technology in Urology. Eur. Urol. 2023, 83, 41–44. [Google Scholar] [CrossRef]
- Salkowski, M.; Checcucci, E.; Chow, A.K.; Rogers, C.C.; Adbollah, F.; Liatsikos, E.; Dasgupta, P.; Guimaraes, G.C.; Rassweiler, J.; Mottrie, A.; et al. New multiport robotic surgical systems: A comprehensive literature review of clinical outcomes in urology. Ther. Adv. Urol. 2023, 15, 17562872231177781. [Google Scholar] [CrossRef] [PubMed]
- Thillou, D.; Robin, H.; Ricolleau, C.; Benali, N.A.; Forgues, A.; Emeriau, D.; Mignot, H.; Hugues, G. Robot-assisted Radical Prostatectomy with the Dexter Robotic System: Initial Experience and Insights into On-demand Robotics. Eur. Urol. 2024, 85, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Robin, H.; Hugues, G.; Fontanier, T.; Ali Benali, N.; Forgues, A.; Emeriau, D.; Mignot, H.; Thillou, D. Perioperative and Short-Term Functional Outcomes of Robot-Assisted Radical Prostatectomy with the Dexter Robotic System. J. Endourol. 2025, 39, 905–910. [Google Scholar] [CrossRef] [PubMed]
- Conrad, P.V.; Mehdorn, A.S.; Alkatout, I.; Becker, T.; Beckmann, J.H.; Pochhammer, J. The Combination of Laparoscopic and Robotic Surgery: First Experience with the Dexter Robotic System™ in Visceral Surgery. Life 2024, 14, 874. [Google Scholar] [CrossRef]
- Tan, C.; Wang, B.; Cui, W.; Xu, W.; Gu, Y.; Li, X.; Zhang, Z. Robotic urologic surgery using the Toumai MT-1000 Endoscopic Surgical System: A single-center prospective analysis. Transl. Androl. Urol. 2024, 13, 2748–2756. [Google Scholar] [CrossRef]
- Pokhrel, G.; Zheng, H.; Tao, J.; Cui, J.; Fan, Y.; Li, Z.; Dong, B.; Yu, S.; Zhang, X. Assessing the Feasibility and Safety of the Toumai(®) Robotic System in Urologic Surgery: Initial Experience. J. Endourol. 2024, 38, 552–558. [Google Scholar] [CrossRef]
- Pokhrel, G.; Zheng, H.; Tao, J.; Fan, Y.; Liu, Y.; Dong, B.; Yu, S.; Zhang, X. Evaluation of the Toumai robotic system in partial nephrectomy and key system features. Sci. Rep. 2025, 15, 13046. [Google Scholar] [CrossRef]
- Sighinolfi, M.; Panio, E.; Assumma, S.; Rocco, B. IP11-32 First Italian Pre-Clinical Experience with Toumai Robotic System for Telesurgery and Complex Surgical Cases. J. Urol. 2025, 213, e572. [Google Scholar] [CrossRef]
- Beatrici, E.; Angelis, M.; Tamburini, S.; Brancelli, C.; Vecchio, E.; Pepillo, F.; Cavarra, V.; Guidotti, A.; Rodriguez Penaranada, N.; Groote, R.; et al. Pioneering European telesurgery: First robot-assisted radical prostatectomy with the Toumai system. BJU Int. 2025. [Google Scholar] [CrossRef]
- Anceschi, U.; Morelli, M.; Flammia, R.S.; Brassetti, A.; Dell’Oglio, P.; Galfano, A.; Tappero, S.; Vecchio, E.; Martiriggiano, M.; Luciani, L.G.; et al. Predictors of trainees’ proficiency during the learning curve of robot-assisted radical prostatectomy at high-volume institutions: Results from a multicentric series. Cent. Eur. J. Urol. 2023, 76, 38–43. [Google Scholar] [CrossRef]
- Katsimperis, S.; Tzelves, L.; Feretzakis, G.; Bellos, T.; Tsikopoulos, I.; Kostakopoulos, N.; Skolarikos, A. Innovations in Robot-Assisted Surgery for Genitourinary Cancers: Emerging Technologies and Clinical Applications. Appl. Sci. 2025, 15, 6118. [Google Scholar] [CrossRef]
- Bellos, T.; Manolitsis, I.; Katsimperis, S.; Juliebø-Jones, P.; Feretzakis, G.; Mitsogiannis, I.; Varkarakis, I.; Somani, B.K.; Tzelves, L. Artificial Intelligence in Urologic Robotic Oncologic Surgery: A Narrative Review. Cancers 2024, 16, 1775. [Google Scholar] [CrossRef] [PubMed]
Platform | Manufacturer | Regulatory Approval (CE Mark/FDA) | Country of Origin | Key Features and Design Philosophy |
---|---|---|---|---|
Hugo™ RAS | Medtronic | CE 2021; FDA - | USA | Modular, wheeled independent arms; open console; emphasizes flexibility and/or adaptability. |
Versius™ | CMR Surgical | CE 2019; FDA 2024 | UK | Compact, modular arms on wheeled units; open console; ergonomic design for laparoscopic transition. |
Avatera™ | Avateramedical GmbH | CE 2019; FDA - | Germany | Exclusively single-use instruments; closed console; aims to simplify workflow and sterilization. |
REVO-I | Meere Company Inc. | No CE; FDA - | South Korea | Design mimics da Vinci to reduce learning curve; closed console; reusable instruments. |
Hinotori™ | Medicaroid | No CE; FDA - | Japan | First Japanese multiport system; engineered for wide range of motion in confined spaces. |
Senhance™ | Asensus Surgical | CE 2016; FDA 2017 | USA | True haptic feedback; eye-tracking camera control; uses standard laparoscopic instruments. |
KangDuo | Various | No CE; FDA - | China | Open console; dual-screen display (3D surgery + auxiliary imaging); master–slave system. |
MicroHand S | Central South/Tianjin Uni | No CE; FDA - | China | Compact, low-cost; designed for rapid setup; pioneered 5G telesurgery in urology. |
Dexter™ | Distalmotion | CE 2020; FDA - | Switzerland | Hybrid laparoscopic–robotic platform; arms fold for rapid switch to laparoscopy; open platform. |
Toumai® | MedBot | CE 2024; FDA - | China | Naked-eye 3D view; advanced force feedback; 5G telesurgery capabilities; dual-console. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katsimperis, S.; Tzelves, L.; Feretzakis, G.; Bellos, T.; Triantafyllou, P.; Arseniou, P.; Skolarikos, A. Beyond Da Vinci: Comparative Review of Next-Generation Robotic Platforms in Urologic Surgery. J. Clin. Med. 2025, 14, 6775. https://doi.org/10.3390/jcm14196775
Katsimperis S, Tzelves L, Feretzakis G, Bellos T, Triantafyllou P, Arseniou P, Skolarikos A. Beyond Da Vinci: Comparative Review of Next-Generation Robotic Platforms in Urologic Surgery. Journal of Clinical Medicine. 2025; 14(19):6775. https://doi.org/10.3390/jcm14196775
Chicago/Turabian StyleKatsimperis, Stamatios, Lazaros Tzelves, Georgios Feretzakis, Themistoklis Bellos, Panagiotis Triantafyllou, Polyvios Arseniou, and Andreas Skolarikos. 2025. "Beyond Da Vinci: Comparative Review of Next-Generation Robotic Platforms in Urologic Surgery" Journal of Clinical Medicine 14, no. 19: 6775. https://doi.org/10.3390/jcm14196775
APA StyleKatsimperis, S., Tzelves, L., Feretzakis, G., Bellos, T., Triantafyllou, P., Arseniou, P., & Skolarikos, A. (2025). Beyond Da Vinci: Comparative Review of Next-Generation Robotic Platforms in Urologic Surgery. Journal of Clinical Medicine, 14(19), 6775. https://doi.org/10.3390/jcm14196775