Salivary Oxytocin Levels in Children With and Without Autism: Group Similarities and Subgroup Variability
Abstract
1. Background
2. Methods
2.1. Study Design
2.2. Participants
- Plate Preparation. The 96-well microplate was pre-coated with a monoclonal anti-OXT antibody. All reagents and samples were brought to room temperature before use.
- Standards and Samples. A series of OXT standard solutions (12.35 to 1000 pg/mL) was prepared to generate a standard curve. Saliva supernatant samples were assayed in duplicate. Each well received 50 µL of either standard solution, sample, or zero-standard (blank).
- Competitive Binding Reaction. Immediately after adding sample or standard, 50 µL of a biotin-labeled OXT Detection Reagent A was added to each well. The plate was gently mixed and incubated for 1 h at 37 °C. During this competitive binding stage, endogenous OXT in the sample competes with the biotinylated OXT for binding to the immobilized antibodies.
- Washing and Secondary Incubation. Following the incubation, wells were aspirated and washed three times with the provided wash buffer to remove unbound components. Next, 100 µL of Detection Reagent B (HRP-conjugated avidin) was added to each well. The plate was incubated for 30 min at 37 °C, allowing the HRP-avidin to bind to any biotin-OXT that had attached to the plate. Unbound HRP-avidin was then removed by washing five times.
- Substrate Development. 90 µL of TMB substrate solution was added to each well and incubated in the dark for ~15 min at 37 °C. A blue color developed in proportion to the amount of biotin-OXT (and inversely proportional to the amount of endogenous OXT in the sample). The reaction was stopped by adding 50 µL of stop solution, turning the color to yellow.
- Measurement. The optical density of each well was immediately read at 450 nm using a microplate reader. The OXT concentration in each saliva sample was then calculated by comparing its absorbance to the standard curve generated from the known standards. Concentrations were expressed in picograms per milliliter (pg/mL).
2.3. Data Analysis
3. Results
3.1. Oxytocin Levels in ASD vs. Control Groups
3.2. Sex-Based Subgroup Analysis
3.3. Correlation with Autism Severity
3.4. Cognitive Functioning (IQ)
4. Discussion
4.1. Clinical Implications
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations
ASD | Autism Spectrum Disorder |
OXT | Oxytocin |
ELISA | Enzyme-Linked Immunosorbent Assay |
ABC | Aberrant Behavior Checklist |
pg/mL | Picograms per Milliliter |
SD | Standard Deviation |
SEM | Standard Error of the Mean |
IQR | Interquartile Range |
TMB | 3,3′,5,5′-Tetramethylbenzidine |
HRP | Horseradish Peroxidase |
References
- Caria, A. Hypothalamus, neuropeptides and socioemotional behavior. Brain Sci. 2023, 13, 1303. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Zhang, H.; Wang, P.; Cui, W.; Xu, K.; Chen, D.; Hu, M.; Li, Z.; Geng, X.; Wei, S. Oxytocin and serotonin in the modulation of neural function: Neurobiological underpinnings of autism-related behavior. Front. Neurosci. 2022, 16, 919890. [Google Scholar] [CrossRef]
- Siecinski, S.K.; Giamberardino, S.N.; Spanos, M.; Hauser, A.C.; Gibson, J.R.; Chandrasekhar, T.; Trelles, M.d.P.; Rockhill, C.M.; Palumbo, M.L.; Cundiff, A.W.; et al. Genetic and epigenetic signatures associated with plasma oxytocin levels in children and adolescents with autism spectrum disorder. Autism Res. 2023, 16, 502–523. [Google Scholar] [CrossRef]
- Chen, Y.L.; Senande, L.L.; Thorsen, M.; Patten, K. Peer preferences and characteristics of same-group and cross-group social interactions among autistic and non-autistic adolescents. Autism 2021, 25, 1885–1900. [Google Scholar] [CrossRef] [PubMed]
- Kobylinska, L.; Panaitescu, A.M.; Gabreanu, G.; Anghel, C.G.; Mihailescu, I.; Rad, F.; Nedelcu, C.; Mocanu, I.; Constantin, C.; Badescu, S.V.; et al. Plasmatic levels of neuropeptides, including oxytocin, in children with autism spectrum disorder, correlate with the disorder severity. Acta Endocrinol. 2019, 15, 16. [Google Scholar] [CrossRef]
- Evenepoel, M.; Moerkerke, M.; Daniels, N.; Chubar, V.; Claes, S.; Turner, J.; Vanaudenaerde, B.; Willems, L.; Verhaeghe, J.; Prinsen, J.; et al. Endogenous oxytocin levels in children with autism: Associations with cortisol levels and oxytocin receptor gene methylation. Transl. Psychiatry 2023, 13, 235. [Google Scholar] [CrossRef]
- Parker, K.J.; Garner, J.P.; Libove, R.A.; Hyde, S.A.; Hornbeak, K.B.; Carson, D.S.; Liao, C.-P.; Phillips, J.M.; Hallmayer, J.F.; Hardan, A.Y. Plasma oxytocin concentrations and OXTR polymorphisms predict social impairments in children with and without autism spectrum disorder. Proc. Natl. Acad. Sci. USA 2014, 111, 12258–12263. [Google Scholar] [CrossRef]
- Yang, S.; Dong, X.; Guo, X.; Han, Y.; Song, H.; Gao, L.; Dai, W.; Su, Y.; Zhang, X. Serum oxytocin levels and an oxytocin receptor gene polymorphism (rs2254298) indicate social deficits in children and adolescents with autism spectrum disorders. Front. Neurosci. 2017, 11, 221. [Google Scholar] [CrossRef]
- Sannino, S.; Chini, B.; Grinevich, V. Lifespan oxytocin signaling: Maturation, flexibility, and stability in newborn, adolescent, and aged brain. Dev. Neurobiol. 2017, 77, 158–168. [Google Scholar] [CrossRef]
- Aita, C.; Mizoguchi, Y.; Yamamoto, M.; SeguchI, Y.; Yatsuga, C.; Nishimura, T.; Sugimoto, Y.; Takahashi, D.; Nishihara, R.; Ueno, T.; et al. Oxytocin levels and sex differences in autism spectrum disorder with severe intellectual disabilities. Psychiatry Res. 2019, 273, 67–74. [Google Scholar] [CrossRef]
- Napolitano, A.; Schiavi, S.; La Rosa, P.; Rossi-Espagnet, M.C.; Petrillo, S.; Bottino, F.; Tagliente, E.; Longo, D.; Lupi, E.; Casula, L.; et al. Sex differences in autism spectrum disorder: Diagnostic, neurobiological, and behavioral features. Front. Psychiatry 2022, 13, 889636. [Google Scholar] [CrossRef] [PubMed]
- Ooi, Y.P.; Weng, S.J.; Kossowsky, J.; Gerger, H.; Sung, M. Oxytocin and autism spectrum disorders: A systematic review and meta-analysis of randomized controlled trials. Pharmacopsychiatry 2017, 50, 5–13. [Google Scholar] [CrossRef]
- Schneider, E. Measuring Oxytocin in Everyday Life: Why, When, and How (often)? Ph.D. Thesis, Heidelberg University, Heidelberg, Germany, 2024. [Google Scholar] [CrossRef]
- Martins, D.; Gabay, A.S.; Mehta, M.; Paloyelis, Y. Salivary and plasmatic oxytocin are not reliable trait markers of the physiology of the oxytocin system in humans. Elife 2020, 9, e62456. [Google Scholar] [CrossRef]
- Nishizato, M.; Fujisawa, T.X.; Kosaka, H.; Tomoda, A. Developmental changes in social attention and oxytocin levels in infants and children. Sci. Rep. 2017, 7, 2540. [Google Scholar] [CrossRef]
- López-Arjona, M.; Botía, M.; Martínez-Subiela, S.; Cerón, J.J. Oxytocin measurements in saliva: An analytical perspective. BMC Vet. Res. 2023, 19, 96. [Google Scholar] [CrossRef]
- Hosseini, S.; Vázquez-Villegas, P.; Rito-Palomares, M.; Martinez-Chapa, S.O. Enzyme-Linked Immunosorbent Assay (ELISA): From A to Z; Springer: Dordrecht, The Netherlands, 2018; pp. 67–115. [Google Scholar] [CrossRef]
- Bhandary, S.; Hari, N. Salivary biomarker levels and oral health status of children with autistic spectrum disorders: A comparative study. Eur. Arch. Paediatr. Dent. 2017, 18, 91–96. [Google Scholar] [CrossRef]
- Sharma, D.; Bhandary, S.; Prabhu, V. Evaluation of salivary biomarker levels in children with autism spectrum disorder having dental caries. J. Orofac. Sci. 2023, 15, 61–68. [Google Scholar] [CrossRef]
- Le, J.; Zhang, L.; Zhao, W.; Zhu, S.; Lan, C.; Kou, J.; Zhang, Q.; Zhang, Y.; Li, Q.; Chen, Z.; et al. Infrequent intranasal oxytocin followed by positive social interaction improves symptoms in autistic children: A pilot randomized clinical trial. Psychother. Psychosom. 2022, 91, 335–347. [Google Scholar] [CrossRef]
- Özdemir, O. Reliability and validity of modified Turkish version of autism behavior checklist (ABC): Results of pilot study. Int. J. Early Child Spec. Educ. 2014, 5, 168–186. [Google Scholar] [CrossRef]
- Procyshyn, T.L.; Lombardo, M.V.; Lai, M.-C.; Auyeung, B.; Crockford, S.K.; Deakin, J.; Soubramanian, S.; Sule, A.; Baron-Cohen, S.; Bethlehem, R.A.I. Effects of oxytocin administration on salivary sex hormone levels in autistic and neurotypical women. Mol. Autism 2020, 11, 20. [Google Scholar] [CrossRef] [PubMed]
- Wilczyński, K.M.; Zasada, I.; Siwiec, A.; Janas-Kozik, M. Differences in oxytocin and vasopressin levels in individuals suffering from the autism spectrum disorders vs general population—A systematic review. Neuropsychiatr. Dis. Treat. 2019, 15, 2613–2620. [Google Scholar] [CrossRef]
- Hollander, E.; Novotny, S.; Hanratty, M.; Yaffe, R.; DeCaria, C.M.; Aronowitz, B.R.; Mosovich, S. Oxytocin infusion reduces repetitive behaviors in adults with autistic and Asperger’s disorders. Neuropsychopharmacology 2003, 28, 193–198. [Google Scholar] [CrossRef]
- Modahl, C.; Green, L.A.; Fein, D.; Morris, M.; Waterhouse, L.; Feinstein, C.; Levin, H. Plasma oxytocin levels in autistic children. Biol. Psychiatry. 1998, 43, 270–277. [Google Scholar] [CrossRef]
- Aulinas, A.; Lawson, E.A. The oxytocin system and implications for oxytocin deficiency in hypothalamic-pituitary disease. Endocr. Rev. 2025, 46, bnaf008. [Google Scholar] [CrossRef] [PubMed]
- John, S.; Jaeggi, A.V. Oxytocin levels tend to be lower in autistic children: A meta-analysis of 31 studies. Autism 2021, 25, 2152–2161. [Google Scholar] [CrossRef] [PubMed]
- Moerkerke, M.; Peeters, M.; de Vries, L.; Daniels, N.; Steyaert, J.; Alaerts, K.; Boets, B. Endogenous oxytocin levels in autism—A meta-analysis. Brain Sci. 2021, 11, 1545. [Google Scholar] [CrossRef] [PubMed]
- Natale, A.; Fusar-Poli, L.; Sturiale, S.; Concerto, C.; Aguglia, A.; Amerio, A.; Serafini, G.; Amore, M.; Aguglia, E. Oxytocin as a peripheral biomarker for Autism Spectrum Disorder: A systematic review and meta-analysis. Eur. Psychiatry 2022, 65, S84. [Google Scholar] [CrossRef]
- Valstad, M.; Alvares, G.A.; Egknud, M.; Matziorinis, A.M.; Andreassen, O.A.; Westlye, L.T.; Quintana, D.S. The correlation between central and peripheral oxytocin concentrations: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2017, 78, 117–124. [Google Scholar] [CrossRef]
- Preti, A.; Melis, M.; Siddi, S.; Vellante, M.; Doneddu, G.; Fadda, R. Oxytocin and autism: A systematic review of randomized controlled trials. J. Child Adolesc. Psychopharmacol. 2014, 24, 54–68. [Google Scholar] [CrossRef]
- Taurines, R.; Schwenck, C.; Lyttwin, B.; Schecklmann, M.; Jans, T.; Reefschläger, L.; Geissler, J.; Gerlach, M.; Romanos, M. Oxytocin plasma concentrations in children and adolescents with autism spectrum disorder: Correlation with autistic symptomatology. ADHD Atten. Defic. Hyperact. Disord. 2014, 6, 231–239. [Google Scholar] [CrossRef]
- Guastella, A.J.; Hickie, I.B. Oxytocin treatment, circuitry, and autism: A critical review of the literature placing oxytocin into the autism context. Biol. Psychiatry 2016, 79, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Parmaksiz, D.; Kim, Y. Navigating Central Oxytocin Transport: Known Realms and Uncharted Territories. Neuroscientist 2024, 31, 234–261. [Google Scholar] [CrossRef]
- Tabak, B.A.; Leng, G.; Szeto, A.; Parker, K.J.; Verbalis, J.G.; Ziegler, T.E.; Lee, M.R.; Neumann, I.D.; Mendez, A.J. Advances in human oxytocin measurement: Challenges and proposed solutions. Mol. Psychiatry 2023, 28, 127–140. [Google Scholar] [CrossRef]
- Takayanagi, Y.; Onaka, T. Roles of oxytocin in stress responses, allostasis and resilience. Int. J. Mol. Sci. 2021, 23, 150. [Google Scholar] [CrossRef]
- Grifnée, E.; Mackowiak, A.; Demeuse, J.; Schoumacher, M.; Huyghebaert, L.; Determe, W.; Dubrowski, T.; Massonnet, P.; Peeters, S.; Scantamburlo, G.; et al. Development and validation of a highly-sensitive, quantitative LC-MS/MS assay to evaluate plasma oxytocin. J. Mass Spectrom. Adv. Clin. Lab 2025, 36, 19–28. [Google Scholar] [CrossRef]
- Rana, M.; Yildirim, N.; Ward, N.E.; Vega, S.P.; Heffernan, M.J.; Argun, A.A. Highly specific detection of oxytocin in saliva. Int. J. Mol. Sci. 2023, 24, 4832. [Google Scholar] [CrossRef]
- Mera, J.C.C.; Molano, M.A.C.; López, C.C.G.; Triana, C.A.; Cotrina, J.M. Discussions and perspectives regarding oxytocin as a biomarker in human investigations. Heliyon 2021, 7, e08289. [Google Scholar] [CrossRef]
- Gan, H.W.; Leeson, C.; Aitkenhead, H.; Dattani, M. Inaccuracies in plasma oxytocin extraction and enzyme immunoassay techniques. Compr. Psychoneuroendocrinol. 2023, 15, 100188. [Google Scholar] [CrossRef] [PubMed]
- Janšáková, K.; Kyselicova, K.; Ostatnikova, D.; Repiska, G. Potential of salivary biomarkers in autism research: A systematic review. Int. J. Mol. Sci. 2021, 22, 10873. [Google Scholar] [CrossRef] [PubMed]
- Tarsha, M.S.; Narvaez, D. The evolved nest, oxytocin functioning, and prosocial development. Front. Psychol. 2023, 14, 1113944. [Google Scholar] [CrossRef]
- Onaka, T.; Takayanagi, Y. The oxytocin system and early-life experience-dependent plastic changes. J. Neuroendocrinol. 2021, 33, e13049. [Google Scholar] [CrossRef]
- Rokicki, J.; Kaufmann, T.; de Lange, A.-M.G.; van der Meer, D.; Bahrami, S.; Sartorius, A.M.; Haukvik, U.K.; Steen, N.E.; Schwarz, E.; Stein, D.J.; et al. Oxytocin receptor expression patterns in the human brain across development. Neuropsychopharmacology 2022, 47, 1550–1560. [Google Scholar] [CrossRef] [PubMed]
- Mora-Jensen, A.-R.C.; Clemmensen, L.K.H.; Grønberg, M.G.; Lebowitz, E.R.; Quintana, D.S.; Jørgensen, N.R.; Larsen, C.S.; Bak, L.K.; Christensen, G.L.; Pretzmann, L.; et al. The association between salivary oxytocin, age, and puberty in children with and without OCD. Sci. Rep. 2024, 14, 28693. [Google Scholar] [CrossRef]
- Zhao, W.; Le, J.; Liu, Q.; Zhu, S.; Lan, C.; Zhang, Q.; Zhang, Y.; Li, Q.; Kou, J.; Yang, W.; et al. A clustering approach identifies an Autism Spectrum Disorder subtype more responsive to chronic oxytocin treatment. Transl. Psychiatry 2024, 14, 312. [Google Scholar] [CrossRef]
- Oti, T.; Sakamoto, H. Neuropeptidergic control circuits in the spinal cord for male sexual behaviour: Oxytocin–gastrin-releasing peptide systems. J. Neuroendocrinol. 2023, 35, e13324. [Google Scholar] [CrossRef]
- Liu, N.; Yang, H.; Han, L.; Ma, M. Oxytocin in women’s health and disease. Front. Endocrinol. 2022, 13, 786271. [Google Scholar] [CrossRef]
- Tokui, T.; Kawakita, T.; Yanagihara, R.; Kamada, S.; Minato, S.; Takeda, A.; Imaizumi, J.; Yamamoto, Y.; Yoshida, K.; Kato, T.; et al. Effects of gonadal status and the estrogen milieu on hypothalamic oxytocin gene expression and serum oxytocin levels in female rats. Horm. Behav. 2021, 133, 105005. [Google Scholar] [CrossRef]
- Gigliucci, V.; Busnelli, M.; Santini, F.; Paolini, C.; Bertoni, A.; Schaller, F.; Muscatelli, F.; Chini, B. Oxytocin receptors in the Magel2 mouse model of autism: Specific region, age, sex and oxytocin treatment effects. Front. Neurosci. 2023, 17, 1026939. [Google Scholar] [CrossRef] [PubMed]
- Leow, K.Q.; Tonta, M.A.; Lu, J.; Coleman, H.A.; Parkington, H.C. Towards understanding sex differences in autism spectrum disorders. Brain Res. 2024, 1833, 148877. [Google Scholar] [CrossRef]
- Frehner, S.S.; Dooley, K.T.; Palumbo, M.C.; Smith, A.L.; Goodman, M.M.; Bales, K.L.; Freeman, S.M. Effect of sex and autism spectrum disorder on oxytocin receptor binding and mRNA expression in the dopaminergic pars compacta of the human substantia nigra. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2022, 377, 20210118. [Google Scholar] [CrossRef] [PubMed]
- Pichugina, Y.A.; Maksimova, I.V.; Berezovskaya, M.A.; Afanaseva, N.A.; Pichugin, A.B.; Dmitrenko, D.V.; Timechko, E.E.; Salmina, A.B.; Lopatina, O.L. Salivary oxytocin in autistic patients and in patients with intellectual disability. Front. Psychiatry 2022, 13, 969674. [Google Scholar] [CrossRef] [PubMed]
- Yamasue, H.; Domes, G. Oxytocin and autism spectrum disorders. Behav. Pharmacol. Neuropept. Oxytocin 2017, 35, 449–465. [Google Scholar] [CrossRef]
- Albantakis, L.; Brandi, M.-L.; Brückl, T.; Gebert, D.; Auer, M.; Kopczak, A.; Stalla, G.; Neumann, I.; Schilbach, L. Oxytocin and cortisol concentrations in adults with and without autism spectrum disorder in response to physical exercise. Compr. Psychoneuroendocrinol. 2021, 5, 100027. [Google Scholar] [CrossRef]
- Menon, R.; Neumann, I.D. Detection, processing and reinforcement of social cues: Regulation by the oxytocin system. Nat. Rev. Neurosci. 2023, 24, 761–777. [Google Scholar] [CrossRef]
- Husarova, V.M.; Lakatosova, S.; Pivovarciova, A.; Babinska, K.; Bakos, J.; Durdiakova, J.; Kubranska, A.; Ondrejka, I.; Ostatnikova, D. Plasma oxytocin in children with autism and its correlations with behavioral parameters in children and parents. Psychiatry Investig. 2016, 13, 174. [Google Scholar] [CrossRef]
- Oztan, O.; Jackson, L.P.; Libove, R.A.; Sumiyoshi, R.D.; Phillips, J.M.; Garner, J.P.; Hardan, A.Y.; Parker, K.J. Biomarker discovery for disease status and symptom severity in children with autism. Psychoneuroendocrinology 2018, 89, 39–45. [Google Scholar] [CrossRef] [PubMed]
Group | Data | N | Mean | SD | SEM | Min | Max |
---|---|---|---|---|---|---|---|
ASD | Raw OXT | 18 | 21.53 | 16.90 | 3.98 | 5.4 | 66.6 |
Log10 OXT | 18 | 1.21 | 0.34 | 0.08 | 0.73 | 1.82 | |
Control | Raw OXT | 17 | 14.00 | 5.55 | 1.35 | 9.2 | 28.3 |
Log10 OXT | 17 | 1.12 | 0.14 | 0.03 |
OXT Measure | Levene’s F (df), p | t (df) | p (2-Tailed) | Cohen’s d |
---|---|---|---|---|
Raw (pg/mL) | F(1,33) = 10.17, p = 0.003 | t(20.8) = −1.79 | 0.088 | 0.60 |
Log10 (unitless) | F(1,33) = 2.45, p = 0.129 | t(33) = 1.68 | 0.102 |
Sex | ASD OXT (Mean ± SD) | Control OXT (Mean ± SD) | t (df) | p (2-Tailed) |
---|---|---|---|---|
Female | 18.04 ± 6.41 (n = 3) | 12.04 ± 2.19 (n = 7) | −2.33 (df = 8) | 0.048 * |
Male | 22.23 ± 18.38 (n = 15) | 15.36 ± 6.82 (n = 10) | −1.32 (df = 19.1) | 0.203 |
Correlation | r | p (2-Tailed) |
---|---|---|
Pearson (OXT vs. ABC) | −0.04 | 0.88 |
Spearman (OXT vs. ABC) | −0.06 | 0.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yılmazer, E.; Çınaroğlu, M.; Köse, S.; Ülker, S.V.; Tarlacı, S. Salivary Oxytocin Levels in Children With and Without Autism: Group Similarities and Subgroup Variability. J. Clin. Med. 2025, 14, 6760. https://doi.org/10.3390/jcm14196760
Yılmazer E, Çınaroğlu M, Köse S, Ülker SV, Tarlacı S. Salivary Oxytocin Levels in Children With and Without Autism: Group Similarities and Subgroup Variability. Journal of Clinical Medicine. 2025; 14(19):6760. https://doi.org/10.3390/jcm14196760
Chicago/Turabian StyleYılmazer, Eda, Metin Çınaroğlu, Salih Köse, Selami Varol Ülker, and Sultan Tarlacı. 2025. "Salivary Oxytocin Levels in Children With and Without Autism: Group Similarities and Subgroup Variability" Journal of Clinical Medicine 14, no. 19: 6760. https://doi.org/10.3390/jcm14196760
APA StyleYılmazer, E., Çınaroğlu, M., Köse, S., Ülker, S. V., & Tarlacı, S. (2025). Salivary Oxytocin Levels in Children With and Without Autism: Group Similarities and Subgroup Variability. Journal of Clinical Medicine, 14(19), 6760. https://doi.org/10.3390/jcm14196760