Robotic Versus Laparoscopic Versus Open Surgery for Rectal Cancer
Abstract
1. Introduction
2. Materials and Methods
3. Statistical Analysis
4. Results
4.1. Baseline Characteristics
4.2. Operative Details
4.3. Postoperative Outcomes and Complications
4.4. Pathological Outcomes
4.5. Survival Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
APR | Abdominoperineal resection |
TEM | Transanal endoscopic microsurgery |
PME | Partial mesorectal excision |
TME | Total mesorectal excision |
CEA | Carcinoembryonic antigen |
CA19-9 | Carbohydrate antigen 19-9 |
OS | Overall survival |
DFS | Disease-free survival |
ICG | Indocyanine green |
UICC | Union for international cancer control |
References
- Zhang, Y.; Wang, J. Advances in the diagnosis and treatment of rectal cancer. J. Gastrointest. Oncol. 2022, 13, 689–698. [Google Scholar]
- Batool, Z.; Khan, M.; Haider, Z. Open rectal surgery: Outcomes and challenges. Int. J. Surg. 2018, 56, 12–17. [Google Scholar]
- Toiyama, Y.; Kusunoki, M. Minimally invasive surgery for rectal cancer: Current status and future perspectives. Ann. Gastroenterol. Surg. 2020, 4, 485–492. [Google Scholar]
- Jiang, W.; Xu, J.; Cui, M.; Qiu, H.; Wang, Z.; Kang, L.; Deng, H.; Chen, W.; Zhang, Q.; Du, X.; et al. Laparoscopy-assisted versus open surgery for low rectal cancer (LASRE): 3-year survival outcomes of a multicentre, randomised, controlled, non-inferiority trial. Lancet Gastroenterol. Hepatol. 2025, 10, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Bonjer, H.J.; Deijen, C.L.; Abis, G.A.; Cuesta, M.A.; Van Der Pas, M.H.G.M.; de Lange-de Klerk, E.S.M.; Lacy, A.M.; Bemelman, W.A.; Andersson, J.; Angenete, E.; et al. A randomized trial of laparoscopic versus open surgery for rectal cancer. N. Engl. J. Med. 2015, 372, 1324–1332. [Google Scholar] [CrossRef] [PubMed]
- Prete, F.P.; Pezzolla, A.; Prete, F.; Testini, M.; Marzaioli, R.; Patriti, A.; Jimenez-Rodriguez, R.M.; Gurrado, A.; Strippoli, G.F. Robotic versus laparoscopic minimally invasive surgery for rectal cancer: A systematic review and meta-analysis of randomized controlled trials. Ann. Surg. 2018, 267, 1034–1046. [Google Scholar] [CrossRef]
- Jayne, D.; Pigazzi, A.; Marshall, H.; Croft, J.; Corrigan, N.; Copeland, J.; Quirke, P.; West, N.; Rautio, T.; Thomassen, N.; et al. Effect of robotic-assisted vs conventional laparoscopic surgery on risk of conversion to open laparotomy among patients undergoing resection for rectal cancer: The ROLARR randomized clinical trial. JAMA 2017, 318, 1569–1580. [Google Scholar] [CrossRef]
- Gavriilidis, P.; Wheeler, J.; Spinelli, A.; de’Angelis, N.; Simopoulos, C.; Di Saverio, S. Robotic vs. Laparoscopic Total Mesorectal Excision for Rectal Cancers: Has a Paradigm Change Occurred? A Systematic Review by Updated Meta-Analysis. Colorectal Dis. 2020, 22, 1506–1517. [Google Scholar] [CrossRef]
- Guillou, P.J.; Quirke, P.; Thorpe, H.; Walker, J.; Jayne, D.G.; Smith, A.M.; Heath, R.M.; Brown, J.M.; MRC CLASICC Trial Group. Short-term endpoints of conventional vs laparoscopic-assisted surgery in patients with colorectal cancer (MRC CLASICC trial): Multicentre, randomised controlled trial. Lancet 2005, 365, 1718–1726. [Google Scholar] [CrossRef] [PubMed]
- van der Pas, M.H.; Haglind, E.; A Cuesta, M.; Fürst, A.; Lacy, A.M.; Hop, W.C.; Bonjer, H.J. Laparoscopic versus open surgery for rectal cancer (COLOR II): Short-term outcomes of a randomised, phase 3 trial. Lancet Oncol. 2013, 14, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Fleshman, J.; Branda, M.; Sargent, D.J.; Boller, A.M.; George, V.; Abbas, M.; Peters, W.R.; Maun, D.; Chang, G.; Herline, A.; et al. Effect of laparoscopic-assisted resection vs open resection of stage II or III rectal cancer on pathologic outcomes: The ACOSOG Z6051 randomized clinical trial. JAMA 2015, 314, 1346–1355. [Google Scholar] [CrossRef]
- Stevenson, A.R.L.; Solomon, M.J.; Lumley, J.W.; Hewett, P.; Clouston, A.D.; Gebski, V.J.; Davies, L.; Wilson, K.M.; Hague, W.; Simes, J. Effect of laparoscopic-assisted resection vs open resection on pathological outcomes in rectal cancer: The ALaCaRT randomized clinical trial. JAMA 2015, 314, 1356–1363. [Google Scholar] [CrossRef] [PubMed]
- Khajeh, E.; Aminizadeh, E.; Dooghaie Moghadam, A.; Nikbakhsh, R.; Goncalves, G.; Carvalho, C.; Parvaiz, A.; Kulu, Y.; Mehrabi, A. Outcomes of Robot-Assisted Surgery in Rectal Cancer Compared with Open and Laparoscopic Surgery. Cancers 2023, 15, 839. [Google Scholar] [CrossRef]
- Feng, Q.; Yuan, W.; Li, T.; Tang, B.; Jia, B.; Zhou, Y.; Zhang, W.; Zhao, R.; Zhang, C.; Cheng, L.; et al. Robotic vs. Laparoscopic Surgery for Middle and Low Rectal Cancer: The REAL Randomized Clinical Trial. JAMA 2025, 334, 136–148. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Zhu, H.; Tang, Y.; Huang, Y.; Chi, P.; Wang, X. Robotic versus Laparoscopic Surgery for Rectal Cancer: An Updated Systematic Review and Meta-Analysis of Randomized Controlled Trials. BMC Surg. 2025, 25, 86. [Google Scholar] [CrossRef]
- Slim, K.; Tilmans, G.; Occéan, B.V.; Dziri, C.; Pereira, B.; Canis, M. Meta-Analysis of Randomized Clinical Trials Comparing Robotic versus Laparoscopic Surgery for Mid-Low Rectal Cancers. J. Visc. Surg. 2024, 161, 76–89. [Google Scholar] [CrossRef]
- Katsuno, H.; Hanai, T.; Masumori, K.; Koide, Y.; Ashida, K.; Matsuoka, H.; Tajima, Y.; Endo, T.; Mizuno, M.; Cheong, Y.; et al. Robotic Surgery for Rectal Cancer: Operative Technique and Review of the Literature. J. Anus Rectum Colon 2020, 4, 14. [Google Scholar] [CrossRef] [PubMed]
- Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, Deutsche Krebshilfe, AWMF). S3-Leitlinie Kolorektales Karzinom, Version 2.1. 2023. Available online: https://www.leitlinienprogramm-onkologie.de (accessed on 4 April 2025).
- Collin, Å.; Dahlbäck, C.; Folkesson, J.; Buchwald, P. Total mesorectal excision quality in rectal cancer surgery affects local recurrence rate but not distant recurrence and survival: Population-based cohort study. BJS Open 2024, 8, zrae071. [Google Scholar] [CrossRef]
- Takamizawa, Y.; Tsukamoto, S.; Kato, T.; Nagata, H.; Moritani, K.; Kanemitsu, Y. Short- and Long-Term Outcomes of Robotic and Laparoscopic Surgery in Rectal Cancer: A Propensity Score-Matched Analysis. Surg. Endosc. 2025, 39, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Erik von Elm, M.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef] [PubMed]
- Alawfi, M.; Alshammari, A.; Binsaleh, S. Decision-making in robotic versus laparoscopic rectal cancer surgery: Patient factors and pelvic anatomy. J. Robot. Surg. 2020, 14, 741–747. [Google Scholar]
- Kowalewski, K.F.; Seifert, L.; Ali, S.; Schmidt, M.W.; Seide, S.; Haney, C.; Tapking, C.; Shamiyeh, A.; Kulu, Y.; Hackert, T.; et al. Functional Outcomes after Laparoscopic versus Robotic-Assisted Rectal Resection: A Systematic Review and Meta-Analysis. Surg. Endosc. 2021, 35, 81–95. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mu, Y.; Zhao, L.; He, H.; Zhao, H.; Li, J. The efficacy of ileostomy after laparoscopic rectal cancer surgery: A meta-analysis. World J. Surg. Oncol. 2021, 19, 318. [Google Scholar] [CrossRef]
- Pieniowski, E.; Nordenvall, C.; Johar, A.; Palmer, G.; Ekelund, S.T.; Lagergren, P.; Abraham-Nordling, M. Defunctioning stoma in rectal cancer surgery—A risk factor for Low Anterior Resection Syndrome? Eur. J. Surg. Oncol. 2022, 48, 2518–2524. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Huang, S.; Zhu, H.; Huang, Y. Impact of diversion ileostomy on postoperative complications and recovery in the treatment of locally advanced upper-half rectal cancer. Sci. Rep. 2024, 14, 26812. [Google Scholar] [CrossRef]
- Ueda, K.; Iwamoto, M.; Yane, Y.; Makutani, Y.; Yoshioka, Y.; Daito, K.; Haeno, M.; Umeda, I.; Tokoro, T.; Gagner, M.; et al. Robot-Assisted vs. Laparoscopic Rectal Cancer Resection: A Narrative Review of Oncological Outcomes, Functional Results, and Future Perspectives. Mini-Invasive Surg. 2025, 9, 21. [Google Scholar] [CrossRef]
- Peacock, O.; Limvorapitak, T.; Hu, C.Y.; Bednarski, B.K.; Tillman, M.M.; Kaur, H.; Taggart, M.W.; Dasari, A.; Holliday, E.B.; You, Y.N.; et al. Robotic Rectal Cancer Surgery: Comparative Study of the Impact of Obesity on Early Outcomes. Br. J. Surg. 2020, 107, 1552–1557. [Google Scholar] [PubMed] [PubMed Central]
- Chen, E.; Chen, L.; Zhang, W. Robotic-Assisted Colorectal Surgery in Colorectal Cancer Management: A Narrative Review of Clinical Efficacy and Multidisciplinary Integration. Front. Oncol. 2025, 15, 1502014. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guerrero-Ortíz, M.A.; Pellino, G.; Pascual Damieta, M.; Gimeno, M.; Alonso, S.; Podda, M.; Toledano, M.; Núñez-Alfonsel, J.; Selvaggi, L.; Acosta-Merida, M.A.; et al. Cost-Effectiveness of Robotic Compared with Laparoscopic Rectal Resection: Results from the Spanish Prospective National Trial ROBOCOSTES. Surgery 2025, 180, 109134. [Google Scholar] [CrossRef] [PubMed]
Laparoscopic (n = 68) | Open (n = 82) | Robotic (n = 62) | Overall (n = 212) | |
---|---|---|---|---|
Age (in years) | ||||
Mean (SD) | 65.1 (12.0) | 69.3 (9.70) | 68.1 (12.2) | 67.6 (11.3) |
Sex | ||||
Females | 27 (39.7%) | 31 (37.8%) | 17 (27.4%) | 75 (35.4%) |
Males | 41 (60.3%) | 51 (62.2%) | 45 (72.6%) | 137 (64.6%) |
BMI (kg/m2) | ||||
Mean (SD) | 26.1 (4.93) | 25.6 (3.48) | 26.2 (4.14) | 25.9 (4.17) |
ASA score | ||||
1 | 6 (8.8%) | 1 (1.2%) | 16 (25.8%) | 23 (10.8%) |
2 | 33 (48.5%) | 41 (50.0%) | 20 (32.3%) | 94 (44.3%) |
3 | 22 (32.4%) | 33 (40.2%) | 20 (32.3%) | 75 (35.4%) |
4 | 7 (10.3%) | 7 (8.5%) | 6 (9.7%) | 20 (9.4%) |
Comorbidities | ||||
Arterial hypertension | 36 (52.9%) | 50 (61.0%) | 42 (67.7%) | 128 (60.4%) |
Type II Diabetes mellitus | 7 (10.3%) | 19 (23.2%) | 6 (9.7%) | 32 (15.1%) |
Coronary artery disease (CAD) | 15 (22.1%) | 16 (19.5%) | 10 (16.1%) | 41 (19.3%) |
Atrial fibrillation (AF) | 6 (8.8%) | 12 (14.6%) | 10 (16.1%) | 28 (13.2%) |
Smoking | 19 (27.9%) | 16 (19.5%) | 14 (22.6%) | 49 (23.1%) |
Preoperative Hemoglobin (g/dL) | ||||
Mean (SD) | 13.3 (2.04) | 13.2 (1.98) | 13.1 (1.92) | 13.2 (1.97) |
Preoperative CEA (ng/mL) | ||||
Mean (SD) | 5.97 (11.7) | 4.47 (8.22) | 5.12 (7.12) | 5.14 (9.20) |
Preoperative CA 19-9 | ||||
Mean (SD) | 13.5 (15.6) | 14.4 (31.2) | 12.4 (12.9) | 13.5 (22.3) |
Previous abdominal surgery | 15 (22.1%) | 18 (22.0%) | 16 (25.8%) | 49 (23.1%) |
Neoadjuvant treatment | 29 (42.6%) | 44 (53.7%) | 30 (48.4%) | 103 (48.6%) |
Laparoscopic (n = 68) | Open (n = 82) | Robotic (n = 62) | Overall (n = 212) | |
---|---|---|---|---|
High of Tumor from anal verge (cm) | ||||
Mean (SD) | 9.96 (3.74) | 9.24 (3.18) | 8.53 (3.30) | 9.26 (3.43) |
Tumor location | ||||
Lower rectum | 13 (19.1%) | 19 (23.2%) | 20 (32.3%) | 52 (24.5%) |
Middle rectum | 27 (39.7%) | 44 (53.7%) | 26 (41.9%) | 97 (45.8%) |
Upper rectum | 28 (41.2%) | 19 (23.2%) | 16 (25.8%) | 63 (29.7%) |
Anastomosis technique | ||||
End-to-End | 24 (35.3%) | 21 (25.6%) | 16 (25.8%) | 61 (28.8%) |
Side-to-End | 31 (45.6%) | 48 (58.5%) | 42 (67.7%) | 121 (57.1%) |
ColonJPouch Stapler | 7 (10.3%) | 11 (13.4%) | 2 (3.2%) | 20 (9.4%) |
ColonJPouch Hansewn | 3 (4.4%) | 1 (1.2%) | 0 (0%) | 4 (1.9%) |
Colo-anal End-to-End Handsewn | 3 (4.4%) | 1 (1.2%) | 2 (3.2%) | 6 (2.8%) |
Operative time (min) | ||||
Median [Q1, Q3] | 221 [181, 264] | 222 [191, 247] | 304 [260, 361] | 242 [195, 295] |
Conversion rate to open surgery | 10 (14.7%) | - | 2 (3.2%) | 12 (5.7%) |
Protective stoma | 55 (80.9%) | 70 (85.4%) | 57 (91.9%) | 182 (85.8%) |
Laparoscopic (n = 68) | Open (n = 82) | Robotic (n = 62) | Overall (n = 212) | |
---|---|---|---|---|
Bowel atony | 9 (13.2%) | 15 (18.3%) | 5 (8.1%) | 29 (13.7%) |
Wound infection | 1 (1.5%) | 8 (9.8%) | 4 (6.5%) | 13 (6.1%) |
Pneumonia | 1 (1.5%) | 10 (12.2%) | 1 (1.6%) | 12 (5.7%) |
Urinary tract infection | 2 (2.9%) | 0 (0%) | 0 (0%) | 2 (0.9%) |
Bladder emptying disorder | 0 (0%) | 4 (4.9%) | 0 (0%) | 4 (1.9%) |
Renal insufficiency | 0 (0%) | 2 (2.4%) | 2 (3.2%) | 4 (1.9%) |
Anastomotic leak | 11 (16.2%) | 15 (18.3%) | 7 (11.3%) | 33 (15.6%) |
Reoperation | 6 (8.8%) | 12 (14.6%) | 9 (14.5%) | 27 (12.7%) |
Clavien–Dindo ≥ II | 17 (25.0%) | 36 (43.9%) | 13 (21.0%) | 66 (31.1%) |
Clavien–Dindo ≥ IIIb | 6 (8.8%) | 13 (15.9%) | 10 (16.1%) | 29 (13.7%) |
Postoperative blood transfusion | 2 (2.9%) | 18 (22.0%) | 2 (3.2%) | 22 (10.4%) |
30-day mortality | 0 (0%) | 1 (1.2%) | 1 (1.6%) | 2 (0.9%) |
Postoperative intensive care unit (ICU) stay (days) | ||||
Median [Q1, Q3] | 1.00 [1.00, 2.00] | 2.00 [1.00, 3.00] | 1.00 [1.00, 2.75] | 1.00 [1.00, 3.00] |
Postoperative length of hospital stays (days) | ||||
Median [Q1, Q3] | 14.0 [9.00, 18.0] | 14.0 [12.0, 19.8] | 10.0 [8.00, 16.8] | 13.5 [10.0, 18.3] |
Local recurrence | 3 (4.4%) | 5 (6.1%) | 4 (6.5%) | 12 (5.7%) |
Distant metastasis | 9 (13.2%) | 11 (13.4%) | 8 (12.9%) | 28 (13.2%) |
Laparoscopic (n = 68) | Open (n = 82) | Robotic (n = 62) | Overall (n = 212) | |
---|---|---|---|---|
Pathological T stage | ||||
T0, pCR | 5 (7.4%) | 3 (3.7%) | 4 (6.5%) | 12 (5.7%) |
T1 | 12 (17.6%) | 10 (12.2%) | 9 (14.5%) | 31 (14.6%) |
T2 | 20 (29.4%) | 25 (30.5%) | 22 (35.5%) | 67 (31.6%) |
T3 | 26 (38.2%) | 41 (50.0%) | 24 (38.7%) | 91 (42.9%) |
T4 | 5 (7.4%) | 3 (3.7%) | 3 (4.8%) | 11 (5.2%) |
Pathological N stage | ||||
N0 | 47 (69.1%) | 62 (75.6%) | 50 (80.6%) | 159 (75.0%) |
N1 | 20 (29.4%) | 14 (17.1%) | 10 (16.1%) | 44 (20.8%) |
N2 | 1 (1.5%) | 6 (7.3%) | 2 (3.2%) | 9 (4.2%) |
Number of lymph nodes harvested | ||||
Mean (SD) | 27.9 (13.3) | 23.0 (11.1) | 25.5 (13.3) | 25.3 (12.6) |
Tumor Grading | ||||
G1 | 6 (8.8%) | 4 (4.9%) | 5 (8.1%) | 15 (7.1%) |
G2 | 57 (83.8%) | 70 (85.4%) | 52 (83.9%) | 179 (84.4%) |
G3 | 5 (7.4%) | 8 (9.8%) | 5 (8.1%) | 18 (8.5%) |
Resection margin | ||||
R0 | 67 (98.5%) | 81 (98.8%) | 62 (100%) | 210 (99.1%) |
R1 | 1 (1.5%) | 1 (1.2%) | 0 (0%) | 2 (0.9%) |
Quality of TME (Mercury) | ||||
Grade 1 | 59 (86.8%) | 78 (95.1%) | 57 (91.9%) | 194 (91.5%) |
Grade 2 | 4 (5.9%) | 3 (3.7%) | 4 (6.5%) | 11 (5.2%) |
Grade 3 | 5 (7.4%) | 1 (1.2%) | 1 (1.6%) | 7 (3.3%) |
UICC Stage | ||||
Stage 0 | 5 (7.4%) | 2 (2.4%) | 4 (6.5%) | 11 (5.2%) |
Stage I | 28 (41.2%) | 26 (31.7%) | 25 (40.3%) | 79 (37.3%) |
Stage II | 8 (11.8%) | 25 (30.5%) | 19 (30.6%) | 52 (24.5%) |
Stage III | 27 (39.7%) | 29 (35.4%) | 14 (22.6%) | 70 (33.0%) |
Characteristic | HR 1 | 95% CI 1 | p-Value |
---|---|---|---|
Age | 1.02 | [0.99, 1.04] | 0.280 |
Sex | |||
Females vs. Males | 1.02 | [0.57, 1.83] | 0.941 |
Surgical approach | |||
Robotic vs. Open | 1.77 | [0.89, 3.49] | 0.102 |
Laparoscopic vs. Open | 1.58 | [0.78, 3.22] | 0.204 |
UICC Stage | |||
Stage II vs. Stage I | 1.19 | [0.55, 2.57] | 0.661 |
Stage III vs. Stage I | 1.26 | [0.62, 2.58] | 0.527 |
Local recurrence | |||
Yes vs. No | 1.63 | [0.71, 3.72] | 0.250 |
Distant metastasis | |||
Yes vs. No | 6.55 | [3.26, 13.2] | <0.001 |
Characteristic | HR 1 | 95% CI 1 | p-Value |
---|---|---|---|
Age | 1.01 | [0.99, 1.04] | 0.333 |
Sex | |||
Females vs. Males | 0.87 | [0.50, 1.51] | 0.616 |
Surgical approach | |||
Robotic vs. Open | 1.87 | [0.96, 3.63] | 0.065 |
Laparoscopic vs. Open | 1.53 | [0.77, 3.01] | 0.222 |
UICC Stage | |||
Stage II vs. Stage I | 1.27 | [0.61, 2.66] | 0.521 |
Stage III vs. Stage I | 1.35 | [0.68, 2.68] | 0.397 |
Local recurrence | |||
Yes vs. No | 1.81 | [0.84, 3.89] | 0.129 |
Distant metastasis | |||
Yes vs. No | 10.5 | [5.22, 21.0] | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madarasz, Z.; Leitz, M.; Vladimirov, M.; Baginski, K.; Hoyer, A.; Hoeppner, J.; Nimczewski, F.; Nowakowski, K. Robotic Versus Laparoscopic Versus Open Surgery for Rectal Cancer. J. Clin. Med. 2025, 14, 6743. https://doi.org/10.3390/jcm14196743
Madarasz Z, Leitz M, Vladimirov M, Baginski K, Hoyer A, Hoeppner J, Nimczewski F, Nowakowski K. Robotic Versus Laparoscopic Versus Open Surgery for Rectal Cancer. Journal of Clinical Medicine. 2025; 14(19):6743. https://doi.org/10.3390/jcm14196743
Chicago/Turabian StyleMadarasz, Zsolt, Michael Leitz, Miljana Vladimirov, Kira Baginski, Annika Hoyer, Jens Hoeppner, Fabian Nimczewski, and Krzysztof Nowakowski. 2025. "Robotic Versus Laparoscopic Versus Open Surgery for Rectal Cancer" Journal of Clinical Medicine 14, no. 19: 6743. https://doi.org/10.3390/jcm14196743
APA StyleMadarasz, Z., Leitz, M., Vladimirov, M., Baginski, K., Hoyer, A., Hoeppner, J., Nimczewski, F., & Nowakowski, K. (2025). Robotic Versus Laparoscopic Versus Open Surgery for Rectal Cancer. Journal of Clinical Medicine, 14(19), 6743. https://doi.org/10.3390/jcm14196743