Neutrophil-to-Lymphocyte Ratio, Bone Marrow, and Visceral Fat Metabolism as Predictors of Future Cardiovascular Disease in an Asymptomatic Healthy Population
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Clinical and Laboratory Parameters
2.3. 18F-FDG PET/CT Imaging and Metabolic Parameters
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics of Study Participants
3.2. Correlation Between NLR and Various Clinical and Metabolic Parameters
3.3. Predictive Value of NLR and Various Clinical and Metabolic Parameters for 10-Year ASCVD Risk Score
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.; Kang, Z.; Yin, D.; Gao, J. Role of neutrophils in different stages of atherosclerosis. Innate Immun. 2023, 29, 97–109. [Google Scholar] [CrossRef]
- Zhang, X.; Wei, R.; Wang, X.; Zhang, W.; Li, M.; Ni, T.; Weng, W.; Li, Q. The neutrophil-to-lymphocyte ratio is associated with all-cause and cardiovascular mortality among individuals with hypertension. Cardiovasc. Diabetol. 2024, 23, 117. [Google Scholar] [CrossRef]
- Fest, J.; Ruiter, T.R.; Groot Koerkamp, B.; Rizopoulos, D.; Ikram, M.A.; van Eijck, C.H.J.; Stricker, B.H. The neutrophil-to-lymphocyte ratio is associated with mortality in the general population: The Rotterdam Study. Eur. J. Epidemiol. 2019, 34, 463–470. [Google Scholar] [CrossRef]
- Song, S.; Chen, L.; Yu, R.; Zhu, J. Neutrophil-to-lymphocyte ratio as a predictor of all-cause and cardiovascular mortality in coronary heart disease and hypertensive patients: A retrospective cohort study. Front. Endocrinol. 2024, 15, 1442165. [Google Scholar] [CrossRef]
- Dong, C.H.; Wang, Z.M.; Chen, S.Y. Neutrophil to lymphocyte ratio predict mortality and major adverse cardiac events in acute coronary syndrome: A systematic review and meta-analysis. Clin. Biochem. 2018, 52, 131–136. [Google Scholar] [CrossRef]
- Cho, J.H.; Cho, H.J.; Lee, H.Y.; Ki, Y.J.; Jeon, E.S.; Hwang, K.K.; Chae, S.C.; Baek, S.H.; Kang, S.M.; Choi, D.J.; et al. Neutrophil-Lymphocyte Ratio in Patients with Acute Heart Failure Predicts In-Hospital and Long-Term Mortality. J. Clin. Med. 2020, 9, 557. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Zhang, S.; Zhang, Q.; Liu, L.; Wu, H.; Du, H.; Shi, H.; Wang, C.; Xia, Y.; Liu, X.; et al. Neutrophil:lymphocyte ratio is positively related to type 2 diabetes in a large-scale adult population: A Tianjin Chronic Low-Grade Systemic Inflammation and Health cohort study. Eur. J. Endocrinol. 2015, 173, 217–225. [Google Scholar] [CrossRef]
- Giovenzana, A.; Carnovale, D.; Phillips, B.; Petrelli, A.; Giannoukakis, N. Neutrophils and their role in the aetiopathogenesis of type 1 and type 2 diabetes. Diabetes Metab. Res. Rev. 2022, 38, e3483. [Google Scholar] [CrossRef] [PubMed]
- Jhuang, Y.H.; Kao, T.W.; Peng, T.C.; Chen, W.L.; Li, Y.W.; Chang, P.K.; Wu, L.W. Neutrophil to lymphocyte ratio as predictor for incident hypertension: A 9-year cohort study in Taiwan. Hypertens. Res. 2019, 42, 1209–1214. [Google Scholar] [CrossRef]
- Yu, J.Y.; Choi, W.J.; Lee, H.S.; Lee, J.W. Relationship between inflammatory markers and visceral obesity in obese and overweight Korean adults: An observational study. Medicine 2019, 98, e14740. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Rodriguez, E.; Lopez-Sobaler, A.M.; Ortega, R.M.; Delgado-Losada, M.L.; Lopez-Parra, A.M.; Aparicio, A. Association between Neutrophil-to-Lymphocyte Ratio with Abdominal Obesity and Healthy Eating Index in a Representative Older Spanish Population. Nutrients 2020, 12, 855. [Google Scholar] [CrossRef]
- Luo, L.; Dong, B.; Zhang, J.; Qiu, Y.; Liu, X.; Zhou, Z.; He, J.; Zhang, X.; Chen, L.; Xia, W. Dapagliflozin restores diabetes-associated decline in vasculogenic capacity of endothelial progenitor cells via activating AMPK-mediated inhibition of inflammation and oxidative stress. Biochem. Biophys. Res. Commun. 2023, 671, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Komiyama, M.; Ozaki, Y.; Miyazaki, Y.; Katanasaka, Y.; Sunagawa, Y.; Funamoto, M.; Shimizu, K.; Yamakage, H.; Sato-Asahara, N.; Yasoda, A.; et al. Neutrophil/lymphocyte ratio is correlated with levels of inflammatory markers and is significantly reduced by smoking cessation. J. Int. Med. Res. 2021, 49, 3000605211019223. [Google Scholar] [CrossRef]
- Forget, P.; Khalifa, C.; Defour, J.P.; Latinne, D.; Van Pel, M.C.; De Kock, M. What is the normal value of the neutrophil-to-lymphocyte ratio? BMC Res. Notes 2017, 10, 12. [Google Scholar] [CrossRef]
- Murata, Y.; Kubota, K.; Yukihiro, M.; Ito, K.; Watanabe, H.; Shibuya, H. Correlations between 18F-FDG uptake by bone marrow and hematological parameters: Measurements by PET/CT. Nucl. Med. Biol. 2006, 33, 999–1004. [Google Scholar] [CrossRef] [PubMed]
- Treglia, G. Diagnostic Performance of (18)F-FDG PET/CT in Infectious and Inflammatory Diseases according to Published Meta-Analyses. Contrast Media Mol. Imaging 2019, 2019, 3018349. [Google Scholar] [CrossRef]
- Skagen, K.; Johnsrud, K.; Evensen, K.; Scott, H.; Krohg-Sorensen, K.; Reier-Nilsen, F.; Revheim, M.E.; Fjeld, J.G.; Skjelland, M.; Russell, D. Carotid plaque inflammation assessed with (18)F-FDG PET/CT is higher in symptomatic compared with asymptomatic patients. Int. J. Stroke 2015, 10, 730–736. [Google Scholar] [CrossRef]
- Wykrzykowska, J.; Lehman, S.; Williams, G.; Parker, J.A.; Palmer, M.R.; Varkey, S.; Kolodny, G.; Laham, R. Imaging of inflamed and vulnerable plaque in coronary arteries with 18F-FDG PET/CT in patients with suppression of myocardial uptake using a low-carbohydrate, high-fat preparation. J. Nucl. Med. 2009, 50, 563–568. [Google Scholar] [CrossRef]
- Iwatsuka, R.; Matsue, Y.; Yonetsu, T.; O’Uchi, T.; Matsumura, A.; Hashimoto, Y.; Hirao, K. Arterial inflammation measured by (18)F-FDG-PET-CT to predict coronary events in older subjects. Atherosclerosis 2018, 268, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Pijl, J.P.; Kwee, T.C.; Slart, R.; Yakar, D.; Wouthuyzen-Bakker, M.; Glaudemans, A. Clinical implications of increased uptake in bone marrow and spleen on FDG-PET in patients with bacteremia. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1467–1477. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Lee, H.S.; Kim, S.; Park, E.J.; Baik, S.H.; Jeon, T.J.; Lee, K.Y.; Ryu, Y.H.; Kang, J. Prognostic significance of bone marrow and spleen (18)F-FDG uptake in patients with colorectal cancer. Sci. Rep. 2021, 11, 12137. [Google Scholar]
- Emami, H.; Singh, P.; MacNabb, M.; Vucic, E.; Lavender, Z.; Rudd, J.H.; Fayad, Z.A.; Lehrer-Graiwer, J.; Korsgren, M.; Figueroa, A.L.; et al. Splenic metabolic activity predicts risk of future cardiovascular events: Demonstration of a cardiosplenic axis in humans. JACC Cardiovasc. Imaging 2015, 8, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.H.; Osborne, M.T.; Teague, H.; Parel, P.; Svirydava, M.; Sorokin, A.V.; Teklu, M.; Manyak, G.; Zhou, W.; Pantoja, C.; et al. Heightened splenic and bone marrow uptake of (18)F-FDG PET/CT is associated with systemic inflammation and subclinical atherosclerosis by CCTA in psoriasis: An observational study. Atherosclerosis 2021, 339, 20–26. [Google Scholar] [CrossRef]
- Kim, E.J.; Kim, S.; Kang, D.O.; Seo, H.S. Metabolic activity of the spleen and bone marrow in patients with acute myocardial infarction evaluated by 18f-fluorodeoxyglucose positron emission tomograpic imaging. Circ. Cardiovasc. Imaging 2014, 7, 454–460. [Google Scholar] [CrossRef]
- Devesa, A.; Lobo-Gonzalez, M.; Martinez-Milla, J.; Oliva, B.; Garcia-Lunar, I.; Mastrangelo, A.; Espana, S.; Sanz, J.; Mendiguren, J.M.; Bueno, H.; et al. Bone marrow activation in response to metabolic syndrome and early atherosclerosis. Eur. Heart J. 2022, 43, 1809–1828. [Google Scholar] [CrossRef]
- Arnett, D.K.; Blumenthal, R.S.; Albert, M.A.; Buroker, A.B.; Goldberger, Z.D.; Hahn, E.J.; Himmelfarb, C.D.; Khera, A.; Lloyd-Jones, D.; McEvoy, J.W.; et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 140, e596–e646. [Google Scholar] [CrossRef]
- O, J.H.; Lodge, M.A.; Wahl, R.L. Practical PERCIST: A Simplified Guide to PET Response Criteria in Solid Tumors 1.0. Radiology 2016, 280, 576–584. [Google Scholar] [CrossRef] [PubMed]
- Pan, Q.; Zhang, W.; Li, X.; Chen, Z.; Yang, Y.; Wang, G. Sex Difference in the Association Between Neutrophil to Lymphocyte Ratio and Severity of Coronary Artery Disease. Angiology 2022, 73, 470–477. [Google Scholar] [CrossRef] [PubMed]
- Tulgar, Y.K.; Cakar, S.; Tulgar, S.; Dalkilic, O.; Cakiroglu, B.; Uyanik, B.S. The effect of smoking on neutrophil/lymphocyte and platelet/lymphocyte ratio and platelet indices: A retrospective study. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 3112–3118. [Google Scholar]
- Wang, R.; Chen, P.J.; Chen, W.H. Diet and exercise improve neutrophil to lymphocyte ratio in overweight adolescents. Int. J. Sports Med. 2011, 32, 982–986. [Google Scholar]
- Prajapati, J.H.; Sahoo, S.; Nikam, T.; Shah, K.H.; Maheriya, B.; Parmar, M. Association of high density lipoprotein with platelet to lymphocyte and neutrophil to lymphocyte ratios in coronary artery disease patients. J. Lipids 2014, 2014, 686791. [Google Scholar] [CrossRef] [PubMed]
- Murphy, A.J.; Woollard, K.J.; Suhartoyo, A.; Stirzaker, R.A.; Shaw, J.; Sviridov, D.; Chin-Dusting, J.P. Neutrophil activation is attenuated by high-density lipoprotein and apolipoprotein A-I in in vitro and in vivo models of inflammation. Arter. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 1333–1341. [Google Scholar] [CrossRef]
- Kim, B.J.; Cho, S.H.; Cho, K.I.; Kim, H.S.; Heo, J.H.; Cha, T.J. The Combined Impact of Neutrophil-to-Lymphocyte Ratio and Type 2 Diabetic Mellitus on Significant Coronary Artery Disease and Carotid Artery Atherosclerosis. J. Cardiovasc. Ultrasound 2016, 24, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xu, Y.; Wang, J.; Zhai, X.; Jiang, H. Predictive efficacy of neutrophil-to-lymphocyte ratio for long-term prognosis in new onset acute coronary syndrome: A retrospective cohort study. BMC Cardiovasc. Disord. 2020, 20, 500. [Google Scholar] [CrossRef]
- Dong, G.; Gan, M.; Xu, S.; Xie, Y.; Zhou, M.; Wu, L. The neutrophil-lymphocyte ratio as a risk factor for all-cause and cardiovascular mortality among individuals with diabetes: Evidence from the NHANES 2003–2016. Cardiovasc. Diabetol. 2023, 22, 267. [Google Scholar] [CrossRef] [PubMed]
- Bagyura, Z.; Kiss, L.; Lux, A.; Csobay-Novak, C.; Jermendy, A.L.; Polgar, L.; Tabak, A.G.; Soos, P.; Szelid, Z.; Merkely, B.; et al. Neutrophil-to-Lymphocyte Ratio Is an Independent Risk Factor for Coronary Artery Disease in Central Obesity. Int. J. Mol. Sci. 2023, 24, 7397. [Google Scholar] [CrossRef]
- Azab, B.; Camacho-Rivera, M.; Taioli, E. Average values and racial differences of neutrophil lymphocyte ratio among a nationally representative sample of United States subjects. PLoS ONE 2014, 9, e112361. [Google Scholar] [CrossRef]
- Calixte, R.; Ye, Z.; Haq, R.; Aladhamy, S.; Camacho-Rivera, M. Demographic and Social Patterns of the Mean Values of Inflammatory Markers in U.S. Adults: A 2009–2016 NHANES Analysis. Diseases 2023, 11, 14. [Google Scholar] [CrossRef]
- Accardi, G.; Calabro, A.; Caldarella, R.; Caruso, C.; Ciaccio, M.; Di Simone, M.; Ligotti, M.E.; Meraviglia, S.; Zarcone, R.; Candore, G.; et al. Immune-Inflammatory Response in Lifespan-What Role Does It Play in Extreme Longevity? A Sicilian Semi- and Supercentenarians Study. Biology 2024, 13, 1010. [Google Scholar] [CrossRef]
- Imtiaz, F.; Shafique, K.; Mirza, S.S.; Ayoob, Z.; Vart, P.; Rao, S. Neutrophil lymphocyte ratio as a measure of systemic inflammation in prevalent chronic diseases in Asian population. Int. Arch. Med. 2012, 5, 2. [Google Scholar] [CrossRef]
- Lee, J.S.; Kim, N.Y.; Na, S.H.; Youn, Y.H.; Shin, C.S. Reference values of neutrophil-lymphocyte ratio, lymphocyte-monocyte ratio, platelet-lymphocyte ratio, and mean platelet volume in healthy adults in South Korea. Medicine 2018, 97, e11138. [Google Scholar] [CrossRef]
- Nam, S.-H.; Kang, S.-G.; Song, S.-W. The Neutrophil-Lymphocyte Ratio Is Associated with Coronary Artery Calcification in Asymptomatic Korean Males: A Cross-Sectional Study. Biomed. Res. Int. 2017, 2017, 989417. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Zou, S.; Wang, C.; Tan, X.; Yu, M. Neutrophil-to-lymphocyte and platelet-to-lymphocyte ratio in Chinese Han population from Chaoshan region in South China. BMC Cardiovasc. Disord. 2019, 19, 125. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Huang, Y.; Luo, N.; Qiu, J.; Lin, Y.; Huang, Y.; Zheng, X.; Qiu, W.; Du, S.; Ye, W.; et al. TyG Index and Related Indices Predicting Hypertension: Mediation by Neutrophil-to-Lymphocyte Ratio in Multiple Chinese Cohorts. Nutrients 2025, 17, 2859. [Google Scholar] [CrossRef] [PubMed]
- Martinez de Toda, I.; Gonzalez-Sanchez, M.; Diaz-Del Cerro, E.; Valera, G.; Carracedo, J.; Guerra-Perez, N. Sex differences in markers of oxidation and inflammation. Implications for ageing. Mech. Ageing Dev. 2023, 211, 111797. [Google Scholar] [CrossRef]
- Han, Y.C.; Yang, T.H.; Kim, D.I.; Jin, H.Y.; Chung, S.R.; Seo, J.S.; Jang, J.S.; Kim, D.K.; Kim, D.K.; Kim, K.H.; et al. Neutrophil to Lymphocyte Ratio Predicts Long-Term Clinical Outcomes in Patients with ST-Segment Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention. Korean Circ. J. 2013, 43, 93–99. [Google Scholar] [CrossRef]


| Low (<1.5, n = 159) | High (≥1.5, n = 144) | p-Value | |
|---|---|---|---|
| Clinical parameters | |||
| Age, years | 57.5 ± 9.0 | 57.4 ± 10.2 | 0.936 |
| Sex, male | 78 (49.1) | 99 (68.8) | <0.001 |
| Hypertension | 49 (30.8) | 46 (31.9) | 0.833 |
| Diabetes mellitus | 23 (14.5) | 26 (18.1) | 0.397 |
| Hyperlipidemia | 61 (38.4) | 51 (35.4) | 0.596 |
| Smoking | 25 (15.8) | 42 (29.2) | 0.005 |
| Body mass index | 24.0 (22.0–26.2) | 25.3 (23.2–27.9) | 0.001 |
| White blood cell, ×109/L | 4800.0 (4100.0–5900.0) | 5950.0 (5050.0–6900.0) | <0.001 |
| Neutrophil, ×109/L | 2309.1 (1876.5–2867.0) | 3630.6 (3099.6–4460.7) | <0.001 |
| Lymphocyte, ×109/L | 2085.4 ± 577.9 | 1741.0 ± 491.0 | <0.001 |
| Total cholesterol, mg/dL | 201.9 ± 39.7 | 193.0 ± 43.5 | 0.066 |
| Triglyceride, mg/dL | 107.0 (81.0–149.0) | 120.0 (89.0–171.0) | 0.081 |
| LDL cholesterol, mg/dL | 123.2 ± 32.0 | 119.4 ± 34.0 | 0.310 |
| HDL cholesterol, mg/dL | 54.0 (46.0–64.0) | 49.0 (42.0–59.0) | 0.003 |
| Fasting blood glucose, mg/dL | 98.0 (91.0–108.0) | 101.0 (90.0–110.0) | 0.424 |
| Metabolic parameters [SUV, TBR] | |||
| pICA | 1.43 (1.28–1.65) | 1.43 (1.31–1.67) | 0.937 |
| Thoracic aorta | 1.84 (1.66–2.02) | 1.87 (1.68–2.06) | 0.669 |
| Spleen | 1.28 (1.18–1.44) | 1.35 (1.17–1.53) | 0.125 |
| Liver | 1.97 (1.79–2.17) | 1.97 (1.80–2.21) | 0.542 |
| L3–5 | 1.23 (1.05–1.49) | 1.33 (1.13–1.64) | 0.025 |
| Psoas | 0.58 (0.47–0.69) | 0.59 (0.51–0.68) | 0.266 |
| Visceral fat | 0.32 (0.25–0.42) | 0.35 (0.26–0.47) | 0.053 |
| SubQ fat | 0.18 (0.14–0.22) | 0.19 (0.14–0.25) | 0.130 |
| 10-year ASCVD risk † | 5.7 (2.3–10.9) | 8.1 (3.0–16.3) | 0.014 |
| 10-year ASCVD risk category | 0.098 | ||
| Low | 70 (44.0) | 53 (37.0) | |
| Borderline | 22 (13.8) | 17 (11.9) | |
| Intermediate | 54 (34.0) | 48 (33.6) | |
| High | 13 (8.2) | 25 (17.5) | |
| No Adjustment | Adjustment for Age and Sex | |||
|---|---|---|---|---|
| OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
| Clinical parameter | ||||
| Age | 0.999 (0.976–1.023) | 0.936 | ||
| Sex, male | 2.285 (1.428–3.655) | <0.001 | ||
| Hypertension | 1.054 (0.648–1.713) | 0.833 | 0.950 (0.567–1.594) | 0.847 |
| Diabetes mellitus | 1.303 (0.706–2.405) | 0.397 | 1.249 (0.667–2.337) | 0.487 |
| Hyperlipidemia | 0.881 (0.552–1.407) | 0.596 | 0.908 (0.563–1.466) | 0.694 |
| Smoking | 2.191 (1.253–3.828) | 0.006 | 1.663 (0.893–3.095) | 0.109 |
| Body mass index | 1.103 (1.037–1.173) | 0.002 | 1.085 (1.019–1.155) | 0.011 |
| White blood cell | 1.001 (1.000–1.001) | <0.001 | 1.001 (1.000–1.001) | <0.001 |
| Neutrophil | 1.002 (1.002–1.003) | <0.001 | 1.002 (1.002–1.003) | <0.001 |
| Lymphocyte | 0.999 (0.998–0.999) | <0.001 | 0.999 (0.998–0.999) | <0.001 |
| Total cholesterol | 0.995 (0.989–1.000) | 0.067 | 0.996 (0.990–1.002) | 0.188 |
| Triglyceride | 1.002 (0.999–1.006) | 0.146 | 1.001 (0.998–1.004) | 0.522 |
| LDL cholesterol | 0.996 (0.990–1.003) | 0.309 | 0.997 (0.990–1.004) | 0.443 |
| HDL cholesterol | 0.972 (0.955–0.990) | 0.003 | 0.982 (0.963–1.002) | 0.081 |
| Fasting blood glucose | 1.000 (0.993–1.008) | 0.905 | 1.000 (0.992–1.008) | 0.931 |
| PET metabolic parameters | ||||
| pICA | 0.861 (0.421–1.761) | 0.681 | 0.821 (0.393–1.713) | 0.599 |
| Thoracic aorta | 0.876 (0.469–1.637) | 0.679 | 0.922 (0.486–1.749) | 0.805 |
| Spleen | 1.705 (0.676–4.302) | 0.258 | 2.210 (0.849–5.752) | 0.104 |
| Liver | 1.291 (0.611–2.727) | 0.504 | 1.307 (0.603–2.831) | 0.497 |
| L3–5 | 1.921 (1.038–3.558) | 0.038 | 2.350 (1.208–4.571) | 0.012 |
| Psoas | 2.715 (0.636–11.581) | 0.177 | 4.467 (0.962–20.732) | 0.056 |
| Visceral fat | 7.570 (1.567–36.585) | 0.012 | 12.230 (2.322–64.403) | 0.003 |
| SubQ fat | 16.103(0.934–277.680) | 0.056 | 10.896 (0.598–198.551) | 0.107 |
| Intermediate and High Risk (≥7.5%) | High Risk (≥20%) | |||
|---|---|---|---|---|
| Model | AUC (95% CI) | p-Value (Versus Ref.) | AUC (95% CI) | p-Value (Versus Ref.) |
| 1. NLR (ref.) | 0.542 | NA | 0.643 | NA |
| 2. NLR, sex, smoking, BMI, HDL | 0.742 | <0.001 | 0.810 | 0.002 |
| 3. NLR, sex, smoking, BMI, HDL, SUVpeak of vertebra, SUVpeak of visceral fat | 0.786 | <0.001 | 0.826 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.J.; Kim, J.; Kim, J.Y.; Paeng, J.C.; Choi, Y.Y.; Kim, Y.S.; Choi, K.-H.; Kim, J.-M.; Choi, N.; Kim, J. Neutrophil-to-Lymphocyte Ratio, Bone Marrow, and Visceral Fat Metabolism as Predictors of Future Cardiovascular Disease in an Asymptomatic Healthy Population. J. Clin. Med. 2025, 14, 6709. https://doi.org/10.3390/jcm14196709
Lee SJ, Kim J, Kim JY, Paeng JC, Choi YY, Kim YS, Choi K-H, Kim J-M, Choi N, Kim J. Neutrophil-to-Lymphocyte Ratio, Bone Marrow, and Visceral Fat Metabolism as Predictors of Future Cardiovascular Disease in an Asymptomatic Healthy Population. Journal of Clinical Medicine. 2025; 14(19):6709. https://doi.org/10.3390/jcm14196709
Chicago/Turabian StyleLee, Soo Jin, Jahae Kim, Ji Young Kim, Jin Chul Paeng, Yun Young Choi, Young Seo Kim, Kang-Ho Choi, Jeong-Min Kim, Nayeon Choi, and Jiyeong Kim. 2025. "Neutrophil-to-Lymphocyte Ratio, Bone Marrow, and Visceral Fat Metabolism as Predictors of Future Cardiovascular Disease in an Asymptomatic Healthy Population" Journal of Clinical Medicine 14, no. 19: 6709. https://doi.org/10.3390/jcm14196709
APA StyleLee, S. J., Kim, J., Kim, J. Y., Paeng, J. C., Choi, Y. Y., Kim, Y. S., Choi, K.-H., Kim, J.-M., Choi, N., & Kim, J. (2025). Neutrophil-to-Lymphocyte Ratio, Bone Marrow, and Visceral Fat Metabolism as Predictors of Future Cardiovascular Disease in an Asymptomatic Healthy Population. Journal of Clinical Medicine, 14(19), 6709. https://doi.org/10.3390/jcm14196709

