Frozen Elephant Trunk in Acute Aortic Syndrome: Retrospective Results from a Low-Volume Center
Abstract
1. Introduction
2. Patients and Methods
2.1. Study Population
2.2. Surgical Technique
2.3. Data Collection
2.4. Definition of Clinical Parameters
2.5. Statistical Analysis
3. Results
3.1. Demographics, Risk Factors, and Clinical Status at Admission
3.2. Intraoperative Data
3.3. Evolution of FET Implantation Technique over Time
3.4. Clinical Outcomes
4. Discussion
Limitations and Strengths
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AAD | Acute aortic dissection |
AMDS | Ascyrus Medical Dissection Stent |
ATAAD | Acute type A aortic dissection |
CTA | Computed tomography angiography |
CX | Aortic cross-clamp |
DHCA | Deep hypothermic circulatory arrest |
dSINE | Distal stent graft-induced new entry |
FET | Frozen elephant trunk |
LSA | Left subclavian artery |
mRS | Modified Rankin Scale |
RIFLE | Risk, Injury, Failure, Loss of kidney function, and End-stage kidney disease |
SACP | Selective antegrade cerebral perfusion |
TEVAR | Thoracic endovascular aortic repair |
References
- Roselli, E.E.; Kramer, B.; Germano, E.; Toth, A.; Vargo, P.R.; Bakaeen, F.; Menon, V.; Blackstone, E.H. Collaborators from Cleveland Clinic Aorta Center. The modified frozen elephant trunk may outperform limited and extended-classic repair in acute type I dissection. Eur. J. Cardiothorac. Surg. 2023, 63, ezad122. [Google Scholar] [CrossRef] [PubMed]
- Chabry, Y.; Porterie, J.; Gautier, C.-H.; Nader, J.; Chaufour, X.; Alsac, J.M.; Reix, T.; Marcheix, B.; Koskas, F.; Ruggieri, V.G.; et al. The frozen elephant trunk technique in an emergency: THORAFLEX French National Registry offers new insights. Cardiothorac. Surg. 2021, 59, 458–466. [Google Scholar] [CrossRef]
- Fattouch, K.; Sampognaro, R.; Navarra, E.; Caruso, M.; Pisano, C.; Coppola, G.; Speziale, G.; Ruvolo, G. Long-Term Results After Repair of Type A Acute Aortic Dissection According to False Lumen Patency. Ann. Thorac. Surg. 2009, 88, 1244–1250. [Google Scholar] [CrossRef] [PubMed]
- Rylski, B.; Suedkamp, M.; Beyersdorf, F.; Nitsch, B.; Hoffmann, I.; Blettner, M.; Weigang, E. Outcome after surgery for acute aortic dissection type A in patients over 70 years: Data analysis from the German Registry for Acute Aortic Dissection Type A (GERAADA). Eur. J. Cardiothorac. Surg. 2011, 40, 435–440. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hagan, P.G.; Nienaber, C.A.; Isselbacher, E.M.; Bruckman, D.; Karavite, D.J.; Russman, P.L.; Evangelista, A.; Fattori, R.; Suzuki, T.; Oh, J.K.; et al. The International Registry of Acute Aortic Dissection (IRAD): New insights into an old disease. J. Am. Med. Assoc. 2000, 283, 897–903. [Google Scholar] [CrossRef]
- Biancari, F.; Juvonen, T.; Fiore, A.; Perrotti, A.; Herve, A.; Touma, J.; Pettinari, M.; Peterss, S.; Buech, J.; Dell’Aquila, A.M.; et al. Current Outcome after Surgery for Type A Aortic Dissection. Ann. Surg. 2023, 278, e885–e892. [Google Scholar] [CrossRef]
- Lejot, A.; Ledieu, G.; Lenne, X.; Bruandet, A.; Delsart, P.; Girard, A.; Patterson, B.; Sobocinski, J. Aortic dissection: Results of the invasive treatment in France between 2012 and 2018 according to the French national database. J. Cardiovasc. Surg. 2023, 64, 526–533. [Google Scholar] [CrossRef] [PubMed]
- Okita, Y.; Kumamaru, H.; Motomura, N.; Miyata, H.; Takamoto, S. Current status of open surgery for acute type A aortic dissection in Japan. J. Thorac. Cardiovasc. Surg. 2022, 164, 785–794.e1. [Google Scholar] [CrossRef]
- Isselbacher, E.M.; Preventza, O.; Hamilton Black, J.; Augoustides, J.G.; Beck, A.W.; Bolen, M.A.; Braverman, A.C.; Bray, B.E.; Brown-Zimmerman, M.M.; Chen, E.P.; et al. 2022 ACC/AHA Guideline for the Diagnosis and Management of Aortic Disease. J. Am. Coll. Cardiol. 2022, 80, e223–e393. [Google Scholar] [CrossRef] [PubMed]
- Tochii, M.; Takami, Y.; Ishikawa, H.; Ishida, M.; Higuchi, Y.; Sakurai, Y.; Amano, K.; Takagi, Y. Aortic remodeling with frozen elephant trunk technique for Stanford type A aortic dissection using Japanese J-graft open stent graft. Heart Vessels 2019, 34, 307–315. [Google Scholar] [CrossRef]
- Czerny, M.; Schmidli, J.; Adler, S.; Van Den Berg, J.C.; Bertoglio, L.; Carrel, T.; Chiesa, R.; Clough, R.E.; Eberle, B.; Etz, C.; et al. Current options and recommendations for the treatment of thoracic aortic pathologies involving the aortic arch: An expert consensus document of the European Association for Cardio-Thoracic surgery (EACTS) and the European Society for Vascular Surgery (ESVS). Eur. J. Cardio-Thorac. Surg. 2019, 55, 133–162. [Google Scholar] [CrossRef]
- Iafrancesco, M.; Goebel, N.; Mascaro, J.; Franke, U.F.W.; Pacini, D.; Di Bartolomeo, R.; Weiss, G.; Grabenwöger, M.; Leontyev, S.A.; Mohr, F.W.; et al. Aortic diameter remodelling after the frozen elephant trunk technique in aortic dissection: Results from an international multicentre registry. Eur. J. Cardio-Thorac. Surg. 2017, 52, 310–318. [Google Scholar] [CrossRef]
- Erbel, R.; Aboyans, V.; Boileau, C.; Bossone, E.; Di Bartolomeo, R.; Eggebrecht, H.; Evangelista, A.; Falk, V.; Frank, H.; Gaemperli, O.; et al. 2014 ESC Guidelines on the diagnosis and treatment of aortic diseases. Pol. Heart J. 2014, 72, 1169–1252. [Google Scholar] [CrossRef] [PubMed]
- Czerny, M.; Grabenwoger, M.; Berger, T.; Aboyans, V.; Della Corte, A.; Chen, E.P.; Desai, N.D.; Dumfarth, J.; Elefteriades, J.A.; Etz, C.D.; et al. EACTS/STS Guidelines for diagnosing and treating acute and chronic syndromes of the aortic organ. Eur. J. Cardiothorac. Surg. 2024, 65, ezad426. [Google Scholar] [CrossRef]
- Preventza, O.; Liao, J.L.; Olive, J.K.; Simpson, K.; Critsinelis, A.C.; Price, M.D.; Galati, M.; Cornwell, L.D.; Orozco-Sevilla, V.; Omer, S.; et al. Neurologic complications after the frozen elephant trunk procedure: A meta-analysis of more than 3000 patients. J. Thorac. Cardiovasc. Surg. 2020, 160, 20–33.e4. [Google Scholar] [CrossRef] [PubMed]
- Smith, H.N.; Boodhwani, M.; Ouzounian, M.; Saczkowski, R.; Gregory, A.J.; Herget, E.J.; Appoo, J.J. Classification and outcomes of extended arch repair for acute Type A aortic dissection: A systematic review and meta-analysis. Interact. Cardiovasc. Thorac. Surg. 2017, 24, 450–459. [Google Scholar] [CrossRef][Green Version]
- Almodóvar, L.F.; Cañadas, P.L.; Puga, A.E.; Mayorga, I.N.; Miñano, J.A.; Casado, M.S.; Cañas, A.C. Single Low-Volume Center Experience with Frozen Elephant Trunk in Acute Type A Aortic Dissections. AORTA 2018, 6, 125–129. [Google Scholar] [CrossRef]
- Rylski, B.; Pacini, D.; Beyersdorf, F.; Quintana, E.; Schachner, T.; Tsagakis, K.; Ronchey, S.; Durko, A.; De Paulis, R.; Siepe, M.; et al. Standards of reporting in open and endovascular aortic surgery (STORAGE guidelines). Eur. J. Cardiothorac. Surg. 2019, 56, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Rylski, B.; Muñoz, C.; Beyersdorf, F.; Siepe, M.; Reser, D.; Carrel, T.; Schoenhoff, F.; Schlensak, C.; Lescan, M.; Eckstein, H.-H.; et al. How does descending aorta geometry change when it dissects? Eur. J. Cardio-Thorac. Surg. 2018, 53, 815–821. [Google Scholar] [CrossRef]
- Berezowski, M.; Kosiorowska, K.; Beyersdorf, F.; Riesterer, T.; Jasinski, M.; Plonek, T.; Siepe, M.; Czerny, M.; Rylski, B. Modelling of predissection aortic size in acute descending aortic dissection. Interact. Cardiovasc. Thorac. Surg. 2019, 29, 124–129. [Google Scholar] [CrossRef]
- Gottardi, R.; Voetsch, A.; Krombholz-Reindl, P.; Winkler, A.; Steindl, J.; Dinges, C.; Kirnbauer, M.; Neuner, M.; Berger, T.; Seitelberger, R. Comparison of the conventional frozen elephant trunk implantation technique with a modified implantation technique in zone 1. Eur. J. Cardiothorac. Surg. 2020, 57, 669–675. [Google Scholar] [CrossRef] [PubMed]
- Venkataraman, R.; Kellum, J.A. Defining acute renal failure: The RIFLE criteria. J. Intensive Care Med. 2007, 22, 187–193. [Google Scholar] [CrossRef]
- Sievers, H.H.; Rylski, B.; Czerny, M.; Baier, A.L.M.; Kreibich, M.; Siepe, M.; Beyersdorf, F. Aortic dissection reconsidered: Type, entry site, malperfusion classification adding clarity and enabling outcome prediction. Interact. Cardiovasc. Thorac. Surg. 2020, 30, 451–457. [Google Scholar] [CrossRef]
- Rylski, B.; Beyersdorf, F.; Kari, F.A.; Schlosser, J.; Blanke, P.; Siepe, M. Acute type A aortic dissection extending beyond ascending aorta: Limited or extensive distal repair. J. Thorac. Cardiovasc. Surg. 2014, 148, 949–954, discussion 954. [Google Scholar] [CrossRef]
- Poon, S.S.; Theologou, T.; Harrington, D.; Kuduvalli, M.; Oo, A.; Field, M. Hemiarch versus total aortic arch replacement in acute type A dissection: A systematic review and meta-analysis. Ann. Cardiothorac. Surg. 2016, 5, 156–173. [Google Scholar] [CrossRef] [PubMed]
- Conzelmann, L.O.; Weigang, E.; Mehlhorn, U.; Abugameh, A.; Hoffmann, I.; Blettner, M.; Etz, C.D.; Czerny, M.; Vahl, C.F. Mortality in patients with acute aortic dissection type A: Analysis of pre- and intraoperative risk factors from the German Registry for Acute Aortic Dissection Type A (GERAADA). Eur. J. Cardio-Thorac. Surg. 2016, 49, e44–e52. [Google Scholar] [CrossRef]
- Easo, J.; Weigang, E.; Holzl, P.P.; Horst, M.; Hoffmann, I.; Blettner, M.; Dapunt, O.E. Influence of operative strategy for the aortic arch in DeBakey type I aortic dissection—Analysis of the German Registry for Acute Aortic Dissection type A (GERAADA). Ann. Cardiothorac. Surg. 2013, 2, 175–180. [Google Scholar] [CrossRef]
- Larsen, M.; Trimarchi, S.; Patel, H.J.; Di Eusanio, M.; Greason, K.L.; Peterson, M.D.; Fattori, R.; Hutchison, S.; Desai, N.D.; Korach, A.; et al. Extended versus limited arch replacement in acute Type A aortic dissection. Eur. J. Cardiothorac. Surg. 2017, 52, 1104–1110. [Google Scholar] [CrossRef]
- Gaudry, M.; Porto, A.; Guivier-Curien, C.; Blanchard, A.; Bal, L.; Resseguier, N.; Omnes, V.; De Masi, M.; Ejargue, M.; Jacquier, A.; et al. Results of a prospective follow-up study after type A aortic dissection repair: A high rate of distal aneurysmal evolution and reinterventions. Eur. J. Cardio-Thorac. Surg. 2022, 61, 152–159. [Google Scholar] [CrossRef]
- Weiss, G.; Santer, D.; Dumfarth, J.; Pisarik, H.; Harrer, M.L.; Folkmann, S.; Mach, M.; Moidl, R.; Grabenwoger, M. Evaluation of the downstream aorta after frozen elephant trunk repair for aortic dissections in terms of diameter and false lumen status. Eur. J. Cardio-Thorac. Surg. 2016, 49, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Beckmann, E.; Martens, A.; Kaufeld, T.; Natanov, R.; Krueger, H.; Rudolph, L.; Haverich, A.; Shrestha, M. Frozen elephant trunk in acute aortic type a dissection: Risk analysis of concomitant root replacement. Eur. J. Cardiothorac. Surg. 2022, 62, ezac051. [Google Scholar] [CrossRef] [PubMed]
- Mousavizadeh, M.; Daliri, M.; Aljadayel, H.A.; Mohammed, I.; Rezaei, Y.; Bashir, M.; Hosseini, S. Hypothermic circulatory arrest time affects neurological outcomes of frozen elephant trunk for acute type A aortic dissection: A systematic review and meta-analysis. J. Card. Surg. 2021, 36, 3337–3351. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, R.Y.; Basharat, K.; Zahra, S.A.; Tran, T.; Rimmer, L.; Harky, A.; Idhrees, M.; Bashir, M. “Proximalization is Advancement”—Zone 3 Frozen Elephant Trunk vs Zone 2 Frozen Elephant Trunk: A Literature Review. Vasc. Endovasc. Surg. 2021, 55, 612–618. [Google Scholar] [CrossRef] [PubMed]
- Zierer, A.; Voeller, R.K.; Hill, K.E.; Kouchoukos, N.T.; Damiano, R.J.; Moon, M.R. Aortic Enlargement and Late Reoperation After Repair of Acute Type A Aortic Dissection. Ann. Thorac. Surg. 2007, 84, 479–487. [Google Scholar] [CrossRef]
- Kreibich, M.; Berger, T.; Rylski, B.; Chen, Z.; Beyersdorf, F.; Siepe, M.; Czerny, M. Aortic reinterventions after the frozen elephant trunk procedure. J. Thorac. Cardiovasc. Surg. 2020, 159, 392–399.e1. [Google Scholar] [CrossRef]
All | Non-FET | FET | p-Value | |
---|---|---|---|---|
Patients n (%) | 202 | 136 (67) | 66 (33) | |
Age [years] | 63 (54–72) | 65 (54–72) | 60 (53–70) | 0.213 |
Female sex | 70 (35) | 53 (39) | 17 (26) | 0.083 |
Delay diagnosis—surgery [h | 2 (1–4) | 2 (1–4) | 2 (1–4) | 0.131 |
Preoperative renal failure | 25 (12) | 18 (13) | 7 (11) | 0.656 |
BMI [kg/m2] | 26 (24–30) | 26 (24–29) | 26 (24–30) | 0.460 |
Preoperative coronary artery disease | 25 (12) | 18 (13) | 7 (11) | 0.656 |
Preoperative stroke | 16 (8) | 9 (7) | 7 (11) | 0.405 |
Preoperative hemiparesis | 11 (5) | 9 (7) | 2 (3) | 0.509 |
Clinical symptoms of malperfusion | 34 (17) | 25 (18) | 9 (14) | 0.431 |
Intubation at referral | 10 (5) | 8 (6) | 2 (3) | 0.503 |
Inotropic support | 9 (5) | 8 (6) | 1 (2) | 0.276 |
Aortic regurgitation ≥ moderate | 47 (23) | 33 (24) | 14 (21) | 0.413 |
EuroScore II | 6.1 (3.6–12.5) | 7.4 (4.3–7.4) | 4.7 (3.3–8.4) | 0.070 |
GERAADA score | 18.2 (11.2–26.6) | 16.4 (10.7–26.3) | 20.1 (13.0–27.0) | 0.311 |
All (n = 202) | Non-FET (n = 136) | FET (n = 66) | p-Value | |
---|---|---|---|---|
Classification | <0.001 | |||
Stanford type A | 185 (92) | 134 (99) | 51 (77) | |
Stanford type B | 5 (3) | 0 (0) | 5 (8) | |
Type non-A non-B | 12 (6) | 2 (2) | 10 (15) | |
Most proximal entry tear location | 0.021 | |||
None | 22 (11) | 15 (11) | 7 (11) | |
Root | 50 (25) | 38 (28) | 12 (18) | |
Ascending | 73 (36) | 54 (40) | 19 (29) | |
Arch | 46 (23) | 25 (18) | 21 (32) | |
Descending | 11 (5) | 4 (3) | 7 (11) | |
Supra-aortic vessel involvement | 97 (48) | 66 (49) | 31 (47) | 0.881 |
Radiographic signs of malperfusion | ||||
None | 104 (52) | 80 (59) | 24 (36) | 0.022 |
Coronary | 9 (5) | 6 (4) | 3 (5) | |
Visceral | 32 (16) | 18 (13) | 14 (21) | |
Peripheral | 15 (7) | 9 (7) | 6 (9) | |
Unknown | 18 (9) | 7 (5) | 11 (17) | |
Multiple | 24 (12) | 16 (12) | 8 (12) | |
Malperfusion syndrome | 25 (18) | 9 (14) | 34 (17) | 0.431 |
All (n = 202) | Non-FET (n = 136) | FET (n = 66) | p-Value | |
---|---|---|---|---|
Arterial cannulation | ||||
Aortic | 92 (46) | 60 (44) | 32 (49) | 0.283 |
Axillary | 100 (50) | 67 (49) | 33 (50) | |
Femoral | 10 (5) | 9 (7) | 1 (2) | |
Lowest body temperature [°C] | 26 (25–27) | 26 (24–28) | 26 (25–27) | 0.991 |
Cerebral perfusion strategy | ||||
None | 25 (10) | 25 (13) | 0 (0) | 0.001 |
Unilateral | 104 (42) | 78 (40) | 26 (47) | |
Bilateral | 119 (48) | 90 (47) | 29 (53) | |
Operative times [min] | ||||
CPB | 211 (170–265) | 195 (158–261) | 234 (189–234) | 0.011 |
HCA | 32 (23–44) | 26 (21–35) | 43 (34–43) | <0.001 |
SCP | 33 (21–50) | 26 (19–38) | 47 (37–62) | <0.001 |
CX | 124 (88–160) | 120 (85–165) | 130 (94–158) | 0.509 |
Arch procedure | ||||
None | 19 (9) | 19 (14) | 0 (0) | <0.001 |
Hemiarch | 93 (46) | 93 (68) | 0 (0) | |
Conv. arch replacement | 24 (12) | 24 (18) | 0 (0) | |
FET | 66 (33) | 0 (0) | 66 (100) | |
Root procedure | ||||
Supracoronary replacement | 107 (53) | 66 (49) | 41 (62) | 0.186 |
Selective Sinus replacement | 5 (3) | 2 (2) | 3 (5) | |
Bentall | 68 (34) | 52 (38) | 16 (24) | |
David | 10 (5) | 7 (7) | 3 (5) | |
Yacoub + Ring | 12 (6) | 9 (7) | 3 (5) | |
FET implant technique | ||||
Zone 0 | 0 (0) | <0.001 | ||
Zone 1 | 3 (5) | |||
Zone 2 | 31 (47) | |||
Zone 3 | 32 (49) | |||
Extra-anatomical LSA bypass | 24 (12) | 8 (6) | 16 (24) | <0.001 |
Concomitant cardiac procedures | ||||
CABG | 27 (13) | 23 (17) | 4 (6) | 0.046 |
Mitral valve repair/replacement | 11 (6) | 5 (4) | 6 (9) | 0.183 |
Tricuspid valve repair | 14 (7) | 9 (7) | 5 (8) | 0.775 |
All (n = 202) | Non-FET (n = 136) | FET (n = 66) | p-Value | |
---|---|---|---|---|
Disabling stroke | 17 (8) | 9 (7) | 8 (12) | 0.190 |
Spinal cord injury | 1 (1) | 0 (0) | 1 (2) | 0.327 |
Postoperative renal replacement therapy | 33 (16) | 20 (15) | 13 (18) | 0.418 |
Ventilation time [hours] | 29 (12–94) | 28 (12–101) | 31 (12–84) | 0.618 |
Secondary distal extension (TEVAR) | 16 (8) | 5 (4) | 11 (17) | 0.002 |
Aorta-related reoperation during FU | 6 (6) | 4 (6) | 2 (6) | 1.000 |
30-day mortality | 32 (16) | 17 (13) | 15 (23) | 0.068 |
Long-term mortality * | 54 (27) | 31 (23) | 23 (35) | 0.123 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voetsch, A.; Gottardi, R.; Winkler, A.; Meissl, D.; Gansterer, K.; Seitelberger, R.; Krombholz-Reindl, P. Frozen Elephant Trunk in Acute Aortic Syndrome: Retrospective Results from a Low-Volume Center. J. Clin. Med. 2025, 14, 6697. https://doi.org/10.3390/jcm14196697
Voetsch A, Gottardi R, Winkler A, Meissl D, Gansterer K, Seitelberger R, Krombholz-Reindl P. Frozen Elephant Trunk in Acute Aortic Syndrome: Retrospective Results from a Low-Volume Center. Journal of Clinical Medicine. 2025; 14(19):6697. https://doi.org/10.3390/jcm14196697
Chicago/Turabian StyleVoetsch, Andreas, Roman Gottardi, Andreas Winkler, Domenic Meissl, Katja Gansterer, Rainald Seitelberger, and Philipp Krombholz-Reindl. 2025. "Frozen Elephant Trunk in Acute Aortic Syndrome: Retrospective Results from a Low-Volume Center" Journal of Clinical Medicine 14, no. 19: 6697. https://doi.org/10.3390/jcm14196697
APA StyleVoetsch, A., Gottardi, R., Winkler, A., Meissl, D., Gansterer, K., Seitelberger, R., & Krombholz-Reindl, P. (2025). Frozen Elephant Trunk in Acute Aortic Syndrome: Retrospective Results from a Low-Volume Center. Journal of Clinical Medicine, 14(19), 6697. https://doi.org/10.3390/jcm14196697