Immune Checkpoint Inhibitors and Allograft Rejection Risk: Emerging Evidence Regarding Their Use in Kidney Transplant Recipients
Abstract
1. Introduction
2. Immune Checkpoint Inhibitor Mechanism of Action
3. Overview of the Challenges Associated with Using Immune Checkpoint Inhibitors
3.1. ICI-Associated Acute Kidney Injury
3.2. Differentiating ICI-Associated Acute Tubulointerstitial Nephritis from Allograft Rejection
4. Literature Examining Immune Checkpoint Inhibitor Use in Kidney Transplant Recipients
4.1. Methods
4.2. Results
4.2.1. Clinical Trials
4.2.2. Retrospective Cohort Studies
4.2.3. Case Series and Case Reports
Risk of Rejection and Graft Survival in Mono- vs. Combined Therapy
Risk of Rejection and Immunosuppressive Regimens
Cancer Response and Patient Survival
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tonelli, M.; Wiebe, N.; Knoll, G.; Bello, A.; Browne, S.; Jadhav, D.; Klarenbach, S.; Gill, J. Systematic review: Kidney transplantation compared with dialysis in cl inically relevant outcomes. Am. J. Transplant. 2011, 11, 2093–2109. [Google Scholar] [CrossRef] [PubMed]
- Pesavento, T.E. Kidney Transplantation in the Context of Renal Replacement Therapy. Clin. J. Am. Soc. Nephrol. 2009, 4, 2035. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.; Ison, M.G.; Danziger-Isakov, L. Long-Term Infectious Complications of Kidney Transplantation. Clin. J. Am. Soc. Nephrol. 2022, 17, 286–295. [Google Scholar] [CrossRef] [PubMed]
- Gaston, R.S. Improving long-term outcomes in kidney transplantation: Towards a new paradigm of post-transplant care in the united states. Trans. Am. Clin. Climatol. Assoc. 2016, 127, 350–361. [Google Scholar] [PubMed]
- Joosten, S.A.; Sijpkens, Y.W.; Van Kooten, C.; Paul, L.C. Chronic renal allograft rejection: Pathophysiologic considerations. Kidney Int. 2005, 68, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kasiske, B.L.; Snyder, J.J.; Gilbertson, D.T.; Wang, C. Cancer after kidney transplantation in the United States. Am. J. Transplant. 2004, 4, 905–913. [Google Scholar] [CrossRef] [PubMed]
- Collett, D.; Mumford, L.; Banner, N.R.; Neuberger, J.; Watson, C. Comparison of the incidence of malignancy in recipients of different t ypes of organ: A UK Registry audit. Am. J. Transplant. 2010, 10, 1889–1896. [Google Scholar] [CrossRef] [PubMed]
- Cheung, C.Y.; Tang, S.C.W. An update on cancer after kidney transplantation. Nephrol. Dial. Transplant. 2019, 34, 914–920. [Google Scholar] [CrossRef] [PubMed]
- Al-Adra, D.; Al-Qaoud, T.; Fowler, K.; Wong, G. De Novo Malignancies after Kidney Transplantation. Clin. J. Am. Soc. Nephrol. 2022, 17, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Ietto, G.; Gritti, M.; Pettinato, G.; Carcano, G.; Gasperina, D.D. Tumors after kidney transplantation: A population study. World J. Surg. Oncol. 2023, 21, 18. [Google Scholar] [CrossRef] [PubMed]
- Mittal, A.; Colegio, O.R. Skin Cancers in Organ Transplant Recipients. Am. J. Transplant. 2017, 17, 2509–2530. [Google Scholar] [CrossRef] [PubMed]
- Gioco, R.; Corona, D.; Agodi, A.; Privitera, F.; Barchitta, M.; Giaquinta, A.; Alba, I.; D’Errico, S.; Pinto, F.; De Pasquale, C.; et al. De Novo Cancer Incidence and Prognosis After Kidney Transplantation: A Single Center Analysis. Transplant. Proc. 2019, 51, 2927–2930. [Google Scholar] [CrossRef] [PubMed]
- Opelz, G.; Döhler, B. Lymphomas after solid organ transplantation: A collaborative transplan t study report. Am. J. Transplant. 2004, 4, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Smyth, M.J.; Godfrey, D.I.; Trapani, J.A. A fresh look at tumor immunosurveillance and immunotherapy. Nat. Immunol. 2001, 2, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Bromberg, J.F.; Horvath, C.M.; Wen, Z.; Schreiber, R.D.; Darnell, J.E., Jr. Transcriptionally active Stat1 is required for the antiproliferative effects of both interferon alpha and interferon gamma. Proc. Natl. Acad. Sci. USA 1996, 93, 7673–7678. [Google Scholar] [CrossRef] [PubMed]
- Coughlin, C.M.; Salhany, K.E.; Gee, M.S.; LaTemple, D.C.; Kotenko, S.; Ma, X.; Gri, G.; Wysocka, M.; Kim, J.E.; Liu, L.; et al. Tumor cell responses to IFNgamma affect tumorigenicity and response to IL-12 therapy and antiangiogenesis. Immunity 1998, 9, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Gerosa, F.; Baldani-Guerra, B.; Nisii, C.; Marchesini, V.; Carra, G.; Trinchieri, G. Reciprocal activating interaction between natural killer cells and dendritic cells. J. Exp. Med. 2002, 195, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Piccioli, D.; Sbrana, S.; Melandri, E.; Valiante, N.M. Contact-dependent stimulation and inhibition of dendritic cells by natural killer cells. J. Exp. Med. 2002, 195, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Dunn, G.P.; Bruce, A.T.; Ikeda, H.; Old, L.J.; Schreiber, R.D. Cancer immunoediting: From immunosurveillance to tumor escape. Nat. Immunol. 2002, 3, 991–998. [Google Scholar] [CrossRef] [PubMed]
- Piselli, P.; Busnach, G.; Fratino, L.; Citterio, F.; Ettorre, G.M.; De Paoli, P.; Serraino The Immunosuppression and Cancer Study Group, D. De novo malignancies after organ transplantation: Focus on viral infections. Curr. Mol. Med. 2013, 13, 1217–1227. [Google Scholar] [CrossRef] [PubMed]
- Rostaing, L.; Wéclawiak, H.; Mengelle, C.; Kamar, N. Viral infections after kidney transplantation. Ital. J. Urol. Nephrol. 2011, 63, 59–71. [Google Scholar]
- Elkhalifa, A.M.E.; Nabi, S.U.; Shah, O.S.; Bashir, S.M.; Muzaffer, U.; Ali, S.I.; Wani, I.A.; Alzerwi, N.A.N.; Elderdery, A.Y.; Alanazi, A.; et al. Insight into Oncogenic Viral Pathways as Drivers of Viral Cancers: Implication for Effective Therapy. Curr. Oncol. 2023, 30, 1924–1944. [Google Scholar] [CrossRef] [PubMed]
- Pierangeli, A.; Antonelli, G.; Gentile, G. Immunodeficiency-associated viral oncogenesis. Clin. Microbiol. Infect. 2015, 21, 975–983. [Google Scholar] [CrossRef] [PubMed]
- Tower, H.; Ruppert, M.; Britt, K. The Immune Microenvironment of Breast Cancer Progression. Cancers 2019, 11, 1375. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.A. New NCCN Guidelines: Recognition and Management of Immunotherapy-Relat ed Toxicity. J. Natl. Compr. Cancer Netw. JNCCN 2018, 16, 594–596. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Yan, C.; Xu, Y.; Li, D.; Guo, M.; Sun, L.; Zhu, Z. Allograft rejection following immune checkpoint inhibitors in solid or gan transplant recipients: A safety analysis from a literature review and a pharmacovigilance system. Cancer Med. 2023, 12, 5181–5194. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.S.; Ortuno, S.; Lebrun-Vignes, B.; Johnson, D.B.; Moslehi, J.J.; Hertig, A.; Salem, J.-E. Transplant rejections associated with immune checkpoint inhibitors: A pharmacovigilance study and systematic literature review. Eur. J. Cancer 2021, 148, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Babamohamadi, M.; Mohammadi, N.; Faryadi, E.; Haddadi, M.; Merati, A.; Ghobadinezhad, F.; Amirian, R.; Izadi, Z.; Hadjati, J. Anti-CTLA-4 nanobody as a promising approach in cancer immunotherapy. Cell Death Dis. 2024, 15, 17. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Wu, H.; Wu, J.; Ding, P.a.; He, J.; Sang, M.; Liu, L. Mechanisms of immune checkpoint inhibitors: Insights into the regulation of circular RNAS involved in cancer hallmarks. Cell Death Dis. 2024, 15, 3. [Google Scholar] [CrossRef] [PubMed]
- Gardner, D.; Jeffery, L.E.; Sansom, D.M. Understanding the CD28/CTLA-4 (CD152) Pathway and Its Implications for Costimulatory Blockade. Am. J. Transplant. 2014, 14, 1985–1991. [Google Scholar] [CrossRef] [PubMed]
- Walker, L.S.; Sansom, D.M. The emerging role of CTLA4 as a cell-extrinsic regulator of T cell res ponses. Nat. Rev. Immunol. 2011, 11, 852–863. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, R.H. A cell culture model for T lymphocyte clonal anergy. Science 1990, 248, 1349–1356. [Google Scholar] [CrossRef] [PubMed]
- Francisco, L.M.; Salinas, V.H.; Brown, K.E.; Vanguri, V.K.; Freeman, G.J.; Kuchroo, V.K.; Sharpe, A.H. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J. Exp. Med. 2009, 206, 3015–3029. [Google Scholar] [CrossRef] [PubMed]
- Kooshkaki, O.; Derakhshani, A.; Hosseinkhani, N.; Torabi, M.; Safaei, S.; Brunetti, O.; Racanelli, V.; Silvestris, N.; Baradaran, B. Combination of Ipilimumab and Nivolumab in Cancers: From Clinical Practice to Ongoing Clinical Trials. Int. J. Mol. Sci. 2020, 21, 4427. [Google Scholar] [CrossRef] [PubMed]
- Kalia, V.; Penny, L.A.; Yuzefpolskiy, Y.; Baumann, F.M.; Sarkar, S. Quiescence of Memory CD8+ T Cells Is Mediated by Regulatory T Cells through Inhibitory Receptor CTLA-4. Immunity 2015, 42, 1116–1129. [Google Scholar] [CrossRef] [PubMed]
- Førde, D.; Kilvær, T.; Pedersen, M.I.; Blix, E.S.; Urbarova, I.; Paulsen, E.-E.; Rakaee, M.; Busund, L.-T.R.; Donnem, T.; Andersen, S. High density of TCF1+ stem-like tumor-infiltrating lymphocytes is associated with favorable disease-specific survival in NSCLC. Front. Immunol. 2024, 15, 1504220. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, P.; Wang, L.; Wu, J.; Tian, Y.; Chen, C.; Li, D.; Yao, Z.; Chen, R.; Xiang, G.; Gong, J.; et al. Overcoming cold tumors: A combination strategy of immune checkpoint inhibitors. Front. Immunol. 2024, 15, 1344272. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Geng, H.; Liu, Y.; Liu, L.; Chen, Y.; Wu, F.; Liu, Z.; Ling, S.; Wang, Y.; Zhou, L. Hot and cold tumors: Immunological features and the therapeutic strategies. MedComm 2023, 4, e343. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.T.; Sun, Z.J. Turning cold tumors into hot tumors by improving T-cell infiltration. Theranostics 2021, 11, 5365–5386. [Google Scholar] [CrossRef] [PubMed]
- Morrison, S.A.; Vinson, A.J. Acute Allograft Rejection in Kidney Transplant Recipients Treated With Immune Checkpoint Inhibitors: An Educational Case Report. Can. J. Kidney Health Dis. 2024, 11, 20543581241289191. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, R.J.; Weng, F.L.; Kandula, P. Acute and Chronic Allograft Dysfunction in Kidney Transplant Recipients. Med. Clin. N. Am. 2016, 100, 487–503. [Google Scholar] [CrossRef] [PubMed]
- Aguirre, L.E.; Guzman, M.E.; Lopes, G.; Hurley, J. Immune Checkpoint Inhibitors and the Risk of Allograft Rejection: A Co mprehensive Analysis on an Emerging Issue. Oncologist 2019, 24, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Belum, V.R.; Benhuri, B.; Postow, M.A.; Hellmann, M.D.; Lesokhin, A.M.; Segal, N.H.; Motzer, R.J.; Wu, S.; Busam, K.J.; Wolchok, J.D.; et al. Characterisation and management of dermatologic adverse events to agen ts targeting the PD-1 receptor. Eur. J. Cancer 2016, 60, 12–25. [Google Scholar] [CrossRef] [PubMed]
- Haanen, J.B.A.G.; Carbonnel, F.; Robert, C.; Kerr, K.M.; Peters, S.; Larkin, J.; Jordan, K. Management of toxicities from immunotherapy: ESMO Clinical Practice Gu idelines for diagnosis, treatment and follow-up. Ann. Oncol. 2017, 28, iv119–iv142. [Google Scholar] [CrossRef] [PubMed]
- Osorio, J.C.; Ni, A.; Chaft, J.E.; Pollina, R.; Kasler, M.K.; Stephens, D.; Rodriguez, C.; Cambridge, L.; Rizvi, H.; Wolchok, J.D.; et al. Antibody-mediated thyroid dysfunction during T-cell checkpoint blockad e in patients with non-small-cell lung cancer. Ann. Oncol. 2017, 28, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Karaviti, D.; Kani, E.R.; Karaviti, E.; Gerontiti, E.; Michalopoulou, O.; Stefanaki, K.; Kazakou, P.; Vasileiou, V.; Psaltopoulou, T.; Paschou, S.A. Thyroid disorders induced by immune checkpoint inhibitors. Endocrine 2024, 85, 67–79. [Google Scholar] [CrossRef] [PubMed]
- Da Cunha, T.; Wu, G.Y.; Vaziri, H. Immunotherapy-induced Hepatotoxicity: A Review. J. Clin. Transl. Hepatol. 2022, 10, 1194–1204. [Google Scholar] [CrossRef] [PubMed]
- Losurdo, G.; Angelillo, D.; Favia, N.; Sergi, M.C.; Di Leo, A.; Triggiano, G.; Tucci, M. Checkpoint Inhibitor-Induced Colitis: An Update. Biomedicines 2023, 11, 1496. [Google Scholar] [CrossRef] [PubMed]
- Mooradian, M.J.; Wang, D.Y.; Coromilas, A.; Lumish, M.; Chen, T.; Giobbie-Hurder, A.; Johnson, D.B.; Sullivan, R.J.; Dougan, M. Mucosal inflammation predicts response to systemic steroids in immune checkpoint inhibitor colitis. J. Immunother. Cancer 2020, 8, e000451. [Google Scholar] [CrossRef] [PubMed]
- Nishino, M.; Sholl, L.M.; Hatabu, H.; Ramaiya, N.H.; Hodi, F.S. Anti–PD-1–Related Pneumonitis during Cancer Immunotherapy. N. Engl. J. Med. 2015, 373, 288–290. [Google Scholar] [CrossRef] [PubMed]
- Khunger, M.; Rakshit, S.; Pasupuleti, V.; Hernandez, A.V.; Mazzone, P.; Stevenson, J.; Pennell, N.A.; Velcheti, V. Incidence of Pneumonitis With Use of Programmed Death 1 and Programmed Death-Ligand 1 Inhibitors in Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis of Trials. Chest 2017, 152, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Murakami, N.; Motwani, S.; Riella, L.V. Renal complications of immune checkpoint blockade. Curr. Probl. Cancer 2017, 41, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Short, S.A.P.; Sise, M.E.; Prosek, J.M.; Madhavan, S.M.; Soler, M.J.; Ostermann, M.; Herrmann, S.M.; Abudayyeh, A.; Anand, S.; et al. Acute kidney injury in patients treated with immune checkpoint inhibit ors. J. Immunother. Cancer 2021, 9, e003467. [Google Scholar] [CrossRef] [PubMed]
- Cortazar, F.B.; Kibbelaar, Z.A.; Glezerman, I.G.; Abudayyeh, A.; Mamlouk, O.; Motwani, S.S.; Murakami, N.; Herrmann, S.M.; Manohar, S.; Shirali, A.C.; et al. Clinical Features and Outcomes of Immune Checkpoint Inhibitor-Associat ed AKI: A Multicenter Study. J. Am. Soc. Nephrol. 2020, 31, 435–446. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Pan, J.; Shen, D.; Peng, L.; Mao, Z.; Wang, C.; Meng, H.; Zhou, Q.; Chen, S. Immune Checkpoint Inhibitor Associated Autoimmune Encephalitis, Rare and Novel Topic of Neuroimmunology: A Case Report and Review of the Literature. Brain Sci. 2022, 12, 773. [Google Scholar] [CrossRef] [PubMed]
- Marini, A.; Bernardini, A.; Gigli, G.L.; Valente, M.; Muñiz-Castrillo, S.; Honnorat, J.; Vogrig, A. Neurologic Adverse Events of Immune Checkpoint Inhibitors. Neurology 2021, 96, 754–766. [Google Scholar] [CrossRef] [PubMed]
- Palaskas, N.; Lopez-Mattei, J.; Durand, J.B.; Iliescu, C.; Deswal, A. Immune Checkpoint Inhibitor Myocarditis: Pathophysiological Characteristics, Diagnosis, and Treatment. J. Am. Heart Assoc. 2020, 9, e013757. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.R.; Saliba, A.N.; Wolanskyj-Spinner, A.P. Immunotherapy-associated Autoimmune Hemolytic Anemia. Hematol./Oncol. Clin. N. Am. 2022, 36, 365–380. [Google Scholar] [CrossRef] [PubMed]
- Kitchlu, A.; Jhaveri, K.D.; Wadhwani, S.; Deshpande, P.; Harel, Z.; Kishibe, T.; Henriksen, K.; Wanchoo, R. A Systematic Review of Immune Checkpoint Inhibitor-Associated Glomerular Disease. Kidney Int. Rep. 2021, 6, 66–77. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, S.M.; Abudayyeh, A.; Gupta, S.; Gudsoorkar, P.; Klomjit, N.; Motwani, S.S.; Karam, S.; Costa, E.S.V.T.; Khalid, S.B.; Anand, S.; et al. Diagnosis and management of immune checkpoint inhibitor-associated nephrotoxicity: A position statement from the American Society of Onco-nephrology. Kidney Int. 2025, 107, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Gumusay, O.; Callan, J.; Rugo, H.S. Immunotherapy toxicity: Identification and management. Breast Cancer Res. Treat. 2022, 192, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Perazella, M.A.; Shirali, A.C. Immune checkpoint inhibitor nephrotoxicity: What do we know and what s hould we do? Kidney Int. 2020, 97, 62–74. [Google Scholar] [CrossRef] [PubMed]
- Mauiyyedi, S.; Crespo, M.; Collins, A.B.; Schneeberger, E.E.; Pascual, M.A.; Saidman, S.L.; Tolkoff-Rubin, N.E.; Williams, W.W.; Delmonico, F.L.; Cosimi, A.B.; et al. Acute humoral rejection in kidney transplantation: II. Morphology, imm unopathology, and pathologic classification. J. Am. Soc. Nephrol. 2002, 13, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Schenk, K.M.; Deutsch, J.S.; Chandra, S.; Davar, D.; Eroglu, Z.; Khushalani, N.I.; Luke, J.J.; Ott, P.A.; Sosman, J.A.; Aggarwal, V.; et al. Nivolumab + Tacrolimus + Prednisone ± Ipilimumab for Kidney Transplant Recipients With Advanced Cutaneous Cancers. J. Clin. Oncol. 2024, 42, 1011–1020. [Google Scholar] [CrossRef] [PubMed]
- Hanna, G.J.; Dharanesswaran, H.; Giobbie-Hurder, A.; Harran, J.J.; Liao, Z.; Pai, L.; Tchekmedyian, V.; Ruiz, E.S.; Waldman, A.H.; Schmults, C.D.; et al. Cemiplimab for Kidney Transplant Recipients With Advanced Cutaneous Squamous Cell Carcinoma. J. Clin. Oncol. 2024, 42, 1021–1030. [Google Scholar] [CrossRef] [PubMed]
- Carroll, R.P.; Boyer, M.; Gebski, V.; Hockley, B.; Johnston, J.K.; Kireta, S.; Tan, H.; Taylor, A.; Wyburn, K.; Rzalcberg, J. Immune checkpoint inhibitors in kidney transplant recipients: A multicentre, single-arm, phase 1 study. Lancet Oncol. 2022, 23, 1078–1086. [Google Scholar] [CrossRef] [PubMed]
- Owoyemi, I.; Vaughan, L.E.; Costello, C.M.; Thongprayoon, C.; Markovic, S.N.; Herrmann, J.; Otley, C.C.; Taner, T.; Mangold, A.R.; Leung, N.; et al. Clinical outcomes of solid organ transplant recipients with metastatic cancers who are treated with immune checkpoint inhibitors: A single-center analysis. Cancer 2020, 126, 4780–4787. [Google Scholar] [CrossRef] [PubMed]
- Murakami, N.; Mulvaney, P.; Danesh, M.; Abudayyeh, A.; Diab, A.; Abdel-Wahab, N.; Abdelrahim, M.; Khairallah, P.; Shirazian, S.; Kukla, A.; et al. A multi-center study on safety and efficacy of immune checkpoint inhib itors in cancer patients with kidney transplant. Kidney Int. 2021, 100, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Lesouhaitier, M.; Dudreuilh, C.; Tamain, M.; Kanaan, N.; Bailly, E.; Legoupil, D.; Deltombe, C.; Perrin, P.; Manson, G.; Vigneau, C.; et al. Checkpoint blockade after kidney transplantation. Eur. J. Cancer 2018, 96, 111–114. [Google Scholar] [CrossRef] [PubMed]
- Zehou, O.; Leibler, C.; Arnault, J.P.; Sayegh, J.; Montaudie, H.; Remy, P.; Glotz, D.; Cordonnier, C.; Martin, L.; Lebbe, C. Ipilimumab for the treatment of advanced melanoma in six kidney transplant patients. Am. J. Transplant. 2018, 18, 3065–3071. [Google Scholar] [CrossRef] [PubMed]
- Venkatachalam, K.; Malone, A.F.; Heady, B.; Santos, R.D.; Alhamad, T. Poor Outcomes With the Use of Checkpoint Inhibitors in Kidney Transplant Recipients. Transplantation 2020, 104, 1041–1047. [Google Scholar] [CrossRef] [PubMed]
- Delyon, J.; Zuber, J.; Dorent, R.; Poujol-Robert, A.; Peraldi, M.-N.; Anglicheau, D.; Lebbe, C. Immune Checkpoint Inhibitors in Transplantation—A Case Series and Comp rehensive Review of Current Knowledge. Transplantation 2021, 105, 67–78. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, B.; Cowhig, C.; McAnallen, S.; Hanko, J.B.; Naidoo, J.; Clarkson, M.R.; Conlon, P.J. Immune Checkpoint Inhibitor Use in Kidney Transplant Patients: A National Case Series From Ireland. Clin. Transplant. 2025, 39, e70101. [Google Scholar] [CrossRef] [PubMed]
- Ong, M.; Ibrahim, A.M.; Bourassa-Blanchette, S.; Canil, C.; Fairhead, T.; Knoll, G. Antitumor activity of nivolumab on hemodialysis after renal allograft rejection. J. Immunother. Cancer 2016, 4, 64. [Google Scholar] [CrossRef] [PubMed]
- Herz, S.; Hofer, T.; Papapanagiotou, M.; Leyh, J.C.; Meyenburg, S.; Schadendorf, D.; Ugurel, S.; Roesch, A.; Livingstone, E.; Schilling, B.; et al. Checkpoint inhibitors in chronic kidney failure and an organ transplant recipient. Eur. J. Cancer 2016, 67, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Alhamad, T.; Venkatachalam, K.; Linette, G.P.; Brennan, D.C. Checkpoint Inhibitors in Kidney Transplant Recipients and the Potential Risk of Rejection. Am. J. Transplant. 2016, 16, 1332–1333. [Google Scholar] [CrossRef] [PubMed]
- Jose, A.; Yiannoullou, P.; Bhutani, S.; Denley, H.; Morton, M.; Picton, M.; Summers, A.; van Dellen, D.; Augustine, T. Renal Allograft Failure After Ipilimumab Therapy for Metastatic Melanoma: A Case Report and Review of the Literature. Transplant. Proc. 2016, 48, 3137–3141. [Google Scholar] [CrossRef] [PubMed]
- Lipson, E.J.; Bagnasco, S.M.; Moore, J., Jr.; Jang, S.; Patel, M.J.; Zachary, A.A.; Pardoll, D.M.; Taube, J.M.; Drake, C.G. Tumor Regression and Allograft Rejection after Administration of Anti-PD-1. N. Engl. J. Med. 2016, 374, 896–898. [Google Scholar] [CrossRef] [PubMed]
- Kwatra, V.; Karanth, N.; Priyadarshana, K.; Charakidis, M. Pembrolizumab for metastatic melanoma in renal allograft recipient with subsequent graft rejection and treatment response failure, a case report. Asia-Pac. J. Clin. Oncol. 2016, 12, 119–120. [Google Scholar] [CrossRef] [PubMed]
- Barnett, R.; Barta, V.S.; Jhaveri, K.D. Preserved Renal-Allograft Function and the PD-1 Pathway Inhibitor Nivolumab. N. Engl. J. Med. 2017, 376, 191–192. [Google Scholar] [CrossRef] [PubMed]
- Winkler, J.K.; Gutzmer, R.; Bender, C.; Lang, N.; Zeier, M.; Enk, A.H.; Hassel, J.C. Safe Administration of An Anti-PD-1 Antibody to Kidney-transplant Patients: 2 Clinical Cases and Review of the Literature. J. Immunother. 2017, 40, 341–344. [Google Scholar] [CrossRef] [PubMed]
- Deltombe, C.; Garandeau, C.; Quereux, G.; Renaudin, K.; Hourmant, M. Severe allograft rejection and autoimmune hemolytic anemia after anti-PD1 therapy in a kidney transplanted patient. Transpl. Int. 2017, 30, 405. [Google Scholar] [CrossRef] [PubMed]
- Sadaat, M.; Jang, S. Complete Tumor Response to Pembrolizumab and Allograft Preservation in Renal Allograft Recipient on Immunosuppressive Therapy. J. Oncol. Pract. 2018, 14, 198–199. [Google Scholar] [CrossRef] [PubMed]
- Goldman, J.W.; Abdalla, B.; Mendenhall, M.A.; Sisk, A.; Hunt, J.; Danovitch, G.M.; Lum, E.L. PD 1 checkpoint inhibition in solid organ transplants: 2 sides of a coin—Case report. BMC Nephrol. 2018, 19, 210. [Google Scholar] [CrossRef] [PubMed]
- Akturk, H.K.; Alkanani, A.; Zhao, Z.; Yu, L.; Michels, A.W. PD-1 inhibitor immune-related adverse events in patients with preexisting endocrine autoimmunity. J. Clin. Endocrinol. Metab. 2018, 103, 3589–3592. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Visger Von, J.; Prosek, J.; Rovin, B.; Pesavento, T.E.; Olencki, T.; Pandey, D. Preserved Renal Allograft Function and Successful Treatment of Metastatic Merkel Cell Cancer Post Nivolumab Therapy. Transplantation 2019, 103, E52–E53. [Google Scholar] [CrossRef] [PubMed]
- Hurkmans, D.P.; Verhoeven, J.; de Leur, K.; Boer, K.; Joosse, A.; Baan, C.C.; von Der Thüsen, J.H.; van Schaik, R.H.N.; Mathijssen, R.H.J.; van Der Veldt, A.A.M.; et al. Donor-derived cell-free DNA detects kidney transplant rejection during nivolumab treatment. J. Immunother. Cancer 2019, 7, 182. [Google Scholar] [CrossRef] [PubMed]
- Hanna, D.L.; Law, S.J.; Merrick, S.A.; Heptinstall, L.; Bass, P.; Dupont, P.; Sheri, A. The successful use of pembrolizumab in a renal transplant recipient with metastatic melanoma. Melanoma Res. 2020, 30, 321–324. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.; Baxter, M.; Casasola, R. Acute renal transplant rejection following nivolumab therapy for metastatic melanoma. BMJ Case Rep. 2021, 14, e238037. [Google Scholar] [CrossRef] [PubMed]
- Padala, S.A.; Patel, S.K.; Vakiti, A.; Patel, N.; Gani, I.; Kapoor, R.; Muhammad, S. Pembrolizumab-induced severe rejection and graft intolerance syndrome resulting in renal allograft nephrectomy. J. Oncol. Pharm. Pract. 2021, 27, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Soellradl, I.; Kehrer, H.; Cejka, D. Use of Ipilimumab and Pembrolizumab in Metastatic Melanoma in a Combined Heart and Kidney Transplant Recipient: A Case Report. Transplant. Proc. 2020, 52, 657–659. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Shinagare, A.B.; Rennke, H.G.; Ghai, S.; Lorch, J.H.; Ott, P.A.; Rahma, O.E. The Safety and Efficacy of Checkpoint Inhibitors in Transplant Recipie nts: A Case Series and Systematic Review of Literature. Oncologist 2020, 25, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Paoluzzi, L.; Ow, T.J. Safe Administration of Cemiplimab to a Kidney Transplant Patient with Locally Advanced Squamous Cell Carcinoma of the Scalp. Curr. Oncol. 2021, 28, 574–580. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, G.; Sugiyama, T.; Ito, T.; Otsuka, A.; Miyake, H. Renal allograft rejection after treatment with nivolumab in patients with metastatic renal cell carcinoma. Int. Cancer Conf. J. 2021, 10, 116–118. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Afzal, M.; Shirai, K. Durable complete response to early immunotherapy discontinuation in a kidney transplant recipient with advanced cutaneous squamous cell carcinoma: A case report and review of literature. Transplant. Immunol. 2023, 81, 101932. [Google Scholar] [CrossRef] [PubMed]
- Antonelli, J.P.; Quach, M.; Mahajan, A.; Pleva, J.; Ma, V.T. Rapid Life-Saving Response to Anti-PD-1 in a Solid Organ Transplant Recipient with Metastatic Cutaneous Squamous Cell Carcinoma: A Case Report and Review. J. Immunother. 2024, 47, 216–219. [Google Scholar] [CrossRef] [PubMed]
- Saleem N, Wang J, Rejuso A; et al. Outcomes of Solid Organ Transplant Recipients With Advanced Cancers Receiving Immune Checkpoint Inhibitors: A Systematic Review and Individual Participant Data Meta-Analysis. JAMA Oncol. 2025; new online. [CrossRef]
Adverse Event | Clinical Presentation/Features |
---|---|
Allograft Rejection | Fever, fatigue, graft tenderness, elevated creatinine, proteinuria, hematuria [40,41,42] |
Skin Toxicities | Rash, pruritus, vitiligo, severe forms include Stevens–Johnson syndrome [43,44] |
Endocrinopathies | Hypothyroidism, transient hyperthyroidism, autoimmune diabetes mellitus [44,45,46] |
Hepatotoxicity | Elevated liver enzymes, lobular hepatitis, autoimmune hepatitis-like patterns [47] |
Gastrointestinal Disorders | Colitis, abdominal pain, mucosal hyperenhancement on imaging [48,49] |
Pneumonitis | Cough, dyspnea, hypoxia, ground-glass opacities or interstitial patterns [50,51] |
Acute Kidney Injury | Acute interstitial nephritis [52], elevated serum creatinine [53,54] |
Rare Immune-Related Adverse Events | Autoimmune encephalitis [55], Guillain–Barré syndrome [56], myocarditis [57], autoimmune hemolytic anemia [58] |
Author | Study Design (n) | Age (Years) (IQR) | ICI | Dose | Cancer Treated | Time from Kidney Transplant to ICI Administration (IQR) | Immunosuppressive Regimen | Rejection | Graft Survival | Cancer Response | Mortality |
---|---|---|---|---|---|---|---|---|---|---|---|
Clinical Trials | |||||||||||
Schenk et al., 2024 [64] | Multicenter phase I/II trial (14) | (n = 8) Nivolumab group 66 (44–81) | Nivolumab | 480 mg IV once every 4 weeks | 5 patients with cSCC, 2 patients with Merkel cell carcinoma 1 patient with metastatic melanoma | 13 years (8.7–21.4) | Tacrolimus and prednisolone | T-cell-mediated and antibody-mediated rejection in the metastatic melanoma patient | Yes, except for the metastatic melanoma patient | Progressive disease in all | Total deaths: 6, out of which 5 died within a year |
(n = 6) Nivolumab and ipilimumab 65 (44–77) | Nivolumab and Ipilimumab | Ipilimumab as 1 mg/kg and nivolumab as 3 mg/kg IV once every 3 weeks for 4 doses | 3 patients with cSCC 2 patients with Merkel cell carcinoma 1 patient with metastatic melanoma | 11.7 years (8.7–21.4) | T-cell-mediated and antibody-mediated rejection in 1 patient with Merkel cell carcinoma and T-cell-mediated rejection only in the patient with cSCC | Yes, except for 1 patient with Merkel cell carcinoma and 1 with cSCC | Progressive disease in the 2 patients with Merkel cell carcinoma and the patient with metastatic melanoma Stable disease in 1 patient with cSCC complete response in 2 patients with cSCC | ||||
Hanna et al., 2024 [65] | Phase I, single-arm, single-center, non-randomized trial (12) | 62.5 (43–86) | Cemiplimab | Cemiplimab at a dose of 350 mg every 21 days for up to 35 doses over 2 years | Advanced cSCC, Metastatic disease in 7 patients | 7.2 years (2.8–21.1) | mTOR inhibitor and Prednisone 40 mg once, day before and the day of each cemiplimab cycle followed by 20 mg once daily on days 4–6, 10 mg once daily on day 7 continued till the day before each cycle | No | Yes | Three patients achieved a complete response (CR), two had a partial response (PR), and two patients exhibited stable disease | One patient died due to angioedema related to everolimus and an angiotensin-converting enzyme inhibitor Two deaths were attributed to progressive disease |
Carroll RP et al., 2022 [66] | Prospective multicenter single-arm phase 1 trial (17) | 67 (59–71) | Nivolumab | An infusion of nivolumab at 3 mg/kg every 2 weeks, for the first 5 doses After that, a fixed 480 mg infusion once every 4 weeks, continued for up to 2 years | 6 patients with cSCC of the head and neck 3 patients with SCC of the head and neck and oropharynx 2 patients with renal tract carcinoma 2 patients with Merkel cell carcinoma 1 patient with Hepatocellular carcinoma (HCC) 1 patient with melanoma 1 patient with non-small cell lung cancer 1 patient with colorectal cancer | 15.6 years (6.6–20.4) | Low-dose prednisone and Tacrolimus +/− MMF | Rejection occurred in 2 patients | 1 graft loss; death-censored 2-year kidney allograft survival 89% (8/9) | Complete response: 4 (24%); partial response: 5 (29%) | 9/17 deaths (all cancer-related) |
Retrospective Cohort Studies | |||||||||||
Owoyemi et al., 2020 [67] | Retrospective cohort (7) | 69 (53–70) | Nivolumab in 2 patients Pembrolizumab in 2 patients Cemiplimab in 2 patients Nivolumab followed by atezolizumab in 1 patient | NA | Metastatic cSCC in 4 patients NSCLC (adenocarcinoma) in 1 patient metastatic melanoma in 1 patient breast cancer in 1 patient | NA | Tacrolimus, MMF, and prednisone in 1 patient Tacrolimus and prednisone in 2 patients Sirolimus in 1 patient Sirolimus and prednisone in 2 patients prednisone only in 1 patient | 1/7 (14%) Only the patient who received cemiplimab experienced rejection | Yes | Progressive disease in 4 patients stable disease in 3 patients | 4/7 (57%) died (3 due to cancer progression, 1 due to infection after colitis) |
Murakami et al., 2021 [68] | Retrospective cohort (69) | 65 (55–71) | 29 patients on pembrolizumab 11 patients on nivolumab 10 patients on cemiplimab 3 patients on atezolizumab 3 patients on avelumab 2 patients on ipilimumab 11 patients on PD-1/CTLA-4 combination | Standard FDA-labeled doses for each agent (2- or 3-week anti-PD-1/PD-L1; 3-week ipilimumab; Q3-weekly nivolumab + ipilimumab) | 24 patients with metastatic cSCC 8 patients with NSCLC 4 patients with Merkel cell carcinoma 3 patients with renal cell carcinoma 2 patients with bladder cancer 6 patients with other cancers | 9.33 years (4.1–15.6) | 85% on steroids; 49% on 2-drug regimens; 55% on mTORi, 35% on CNI 65% had regimen changes immediately before ICI (most commonly CNI to mTOR, antimetabolite stopped, steroid increased) | 29/69 (42%) developed rejection Biopsy proven rejections were 14 TCMR: 7 patients, Mixed TCMR and ABMR: 7 | 19/69 (28%) graft losses | Complete response in 5 patients partial response in 15 patients stable disease in 11 patients progressive disease in 34 patients unknown response in 4 patients | 16 deaths among rejection cases |
Case Series | |||||||||||
Lesouhaitier et al., 2018 [69] | Case series (7) | 57 | Nivolumab | 5 doses | NSCLC (adenocarcinoma) | 2.25 years | Steroid and mTOR inhibitor | No | Yes | Progressive disease | Yes |
70 | Pembrolizumab | 4 doses | Metastatic melanoma | 8.75 years | Steroid and MMF | No | Yes | Complete response | No | ||
72 | Avelumab | 8 doses | Merckel cell carcinoma | 3.5 years | Steroid and mTOR inhibitor | No | Yes | Progressive disease | Yes | ||
68 | Ipilimumab | 4 doses | Metastatic melanoma | 0.75 years | Steroid, MMF, and mTOR inhibitor | No | Yes | Progressive disease | Yes | ||
64 | Nivolumab | 9 doses | NSCLC (adenocarcinoma) | 6 years | Tacrolimus and MMF | Yes | No | Progressive disease | Yes | ||
73 | Nivolumab | 2 doses | Metastatic melanoma | 1.25 years | Tacrolimus and MMF | Yes | No | Progressive disease | Yes | ||
85 | Pembrolizumab | 2 doses | Metastatic melanoma | 28 years | Cyclosporine | Yes | Yes | Progressive disease | No | ||
Zehou et al., 2018 [70] | Case series (6) | 67 | Ipilimumab | 4 doses | Metastatic melanoma | 2.25 years | MMF, everolimus, and prednisone 10 mg/day | No | Yes | Progressive disease | Death from tumor progression |
57 | Ipilimumab | 4 doses | 5.5 years | Sirolimus and prednisone | No | Yes | Progressive disease | Death from tumor progression | |||
74 | Ipilimumab then nivolumab | 3 doses of ipilimumab then 1 dose of nivolumab | 4.75 years | Everolimus, azathioprine, and prednisone 5 mg/day | No | Yes | Progressive disease | Death from tumor progression | |||
68 | Ipilimumab | 4 doses | 0.8 years | MMF, everolimus, and prednisone 20 mg/day | No | Yes | Progressive disease | Death from tumor progression | |||
44 | Ipilimumab then dacarbazine | 1 dose of Ipilimumab, then 1 dose of dacarbazine | 26 years | Prednisone 20 mg/day | T-cell-mediated rejection | Yes | Stable disease | Death from tumor progression and infection | |||
66 | Ipilimumab | 4 doses | 23.5 years | Everolimus and prednisone 5 mg/day | No | Yes | Partial response | Death from cardiac disorder | |||
Venkatachalam et al., 2019 [71] | Case series (6) | 69 | Pembrolizumab | NA | Metastatic cSCC | 2 years | Prednisone 5 mg daily and everolimus 0.75 mg BID | T-cell-mediated rejection | No | Progressive disease | Yes |
67 | Pembrolizumab | NA | Metastatic cSCC | 22 years | Prednisone 7.5 mg daily and everolimus 0.5 mg BID | No | Yes | Progressive disease | Yes | ||
56 | Nivolumab | NA | Renal cell carcinoma | 2 years | Prednisone 5 mg daily and everolimus with target trough levels of 4–6 ng/ml | No | Yes | Progressive disease | NA | ||
38 | Pembrolizumab then ipilimumab then nivolumab | NA | Metastatic melanoma | 20 years | Sirolimus, and prednisone 10 mg daily, then maintained on prednisone 10 mg daily alone | No | Yes | Progressive disease | NA | ||
68 | Ipilimumab then pembrolizumab | 4 doses of ipilimumab then 1 dose of pembrolizumab | Metastatic melanoma | 15 years | Prednisone 5 mg daily | Acute cellular and antibody-mediated rejection | No | Complete response | No | ||
58 | Pembrolizumab | NA | NSCLC (adenocarcinoma) | 10 years | Prednisone 10 mg daily | No | Yes | Progressive disease | NA | ||
Delyon et al., 2020 [72] | Case series (4) | 66 | Cemiplimab | 5 cycles, 3 mg/kg every 2 weeks | cSCC | 24 years | Prednisone 10 mg/d | Yes | No | Progressive disease | Death from tumor progression |
63 | Pembrolizumab | 1 cycle, 2 mg/kg every 3 weeks | Kaposi sarcoma | 9 years | Prednisone 7.5 mg/d | Yes | No | Partial response | No | ||
76 | Avelumab | 3 cycles, 10 mg/kg every 2 weeks | Merkel cell carcinoma | 21 years | Cyclosporine and MMF | No | Yes | Progressive disease | Death from tumor progression | ||
55 | Ipilimumab then nivolumab | 1 cycle, Ipilimumab 3 mg/kg every 3 weeks nivolumab 1 mg/kg every 3 weeks | BRAF wild-type melanoma | 2 years | Cyclosporine, Dexamethasone | No | Yes | Progressive disease | Death from tumor progression | ||
O’Connell et al., 2025 [73] | Case series (5) | 69 | Pembrolizumab | NA | Metastatic melanoma | 5 years | Prednisolone | No | Yes | Progressive disease | Yes |
66 | Nivolumab | Metastatic melanoma | 21 years | Prednisolone | Yes | No | Stable disease | No | |||
62 | Pembrolizumab | Metastatic cSCC | 12 years | Prednisolone | Yes | No | Stable disease | No | |||
59 | Ipilimumab + nivolumab | Metastatic melanoma | 1.5 years | Sirolimus and doubled dose of prednisolone | T-cell-mediated rejection | No | Progressive disease | Yes | |||
59 | Pembrolizumab | Metastatic melanoma | 22 years | Doubled dose of prednisolone | Yes | No | Stable disease | No | |||
Case Reports | |||||||||||
Ong et al., 2016 [74] | Case report (1) | 63 | Nivolumab | A single intravenous dose of 324 mg | Metastatic melanoma | 12 years | Prednisone 10 mg daily | T-cell-mediated rejection | No | Complete response | No |
Herz et al., 2016 [75] | Case report (1) | 77 | Ipilimumab (initially), then Nivolumab | Ipilimumab: 3 mg/kg BW q3wk Nivolumab: 3 mg/kg BW q2wk | Metastatic melanoma | 8 years | Prednisone 5 mg daily and tacrolimus 2 mg BID | No | Yes | Progressive disease | No |
Alhamad et al., 2016 [76] | Case report (1) | 68 | Ipilimumab then Pembrolizumab | Ipilimumab as 3 mg/kg every 3 weeks / One dose of pembrolizumab before rejection | Metastatic melanoma | 15 years | Prednisone 5 mg daily | Antibody-mediated rejection | No | Progressive disease | No |
Jose et al., 2016 [77] | Case report (1) | 40 | Ipilimumab | 2 cycles of Ipilimumab as 3 mg/kg every 3 weeks | Metastatic melanoma | 16 years | Prednisone 5 mg daily | T-cell-mediated rejection | No | Progressive disease | Death from tumor progression |
Lipson et al., 2016 [78] | Case report (1) | 57 | Pembrolizumab | NA | Metastatic cSCC | 25 years | Prednisone 5 mg daily | T-cell-mediated rejection | No | Partial response | No |
Kwatra et al., 2017 [79] | Case report (1) | 58 | Pembrolizumab | 2 cycles of pembrolizumab 2 mg/kg every 3 weeks | Metastatic melanoma | 16 years | Azathioprine 100 mg daily and everolimus 0.5 mg twice daily | T-cell-mediated rejection | No | Progressive disease | Yes, the patient refused the options of hemodialysis |
Barnett et al., 2017 [80] | Case report (1) | 70 | Nivolumab | 3 mg/kg intravenously every 2 weeks | Metastatic adenocarcinoma of the duodenum | 6 years | Prednisone 20 mg daily and sirolimus 4–6 ng per milliliter | T-cell-mediated rejection | Yes | Stable disease | No |
Winkler et al., 2017 [81] | Case report (2) | 60 | Nivolumab | NA | Metastatic melanoma | 13 years | Prednisolone and MMF | No | Yes | Progressive disease | Death from tumor progression |
58 | Pembrolizumab | NA | 32 years | Cyclosporine | Progressive disease | Death from tumor progression | |||||
Deltombe et al., 2017 [82] | Case report (1) | 73 | Nivolumab | 2 cycles of 3 mg/kg 30 days interval | Metastatic melanoma | 15 months | Everolimus (2.5 mg/d) | T-cell-mediated rejection | No | Progressive disease | Death from tumor progression |
Sadaat et al., 2017 [83] | Case report (1) | 63 | Pembrolizumab | 4 cycles of 2 mg/kg every 3 weeks | Metastatic cSCC | 13 years | Prednisone 2.5 mg and sirolimus 2 mg | No | Yes | Complete response | No |
Goldman et al., 2018 [84] | Case report (1) | 50 | Nivolumab | 3 mg/kg every 2 weeks | Metastatic cSCC | 8.5 years | Prednisone 5 mg daily | T-cell-mediated rejection | No | Stable disease | No |
Akturk et al., 2018 [85] | Case report (1) | 52 | Pembrolizumab (200 mg), then Nivolumab (240 mg) | IV infusion of 200 mg pembrolizumab followed by 240 mg of IV nivolumab in 2 weeks The patient continued nivolumab therapy, receiving eight additional infusions over 6 months | Metastatic melanoma | 10 years | Prednisone 10 mg daily | T-cell-mediated rejection | No | Partial response | No |
Singh et al., 2018 [86] | Case report (1) | 71 | Nivolumab | 13 cycles of nivolumab (240 mg, 3 mg/kg per month) | Merkel cell carcinoma | 12 years | Prednisone 10 mg daily | No | Yes | Stable disease with complete resolution of cancer symptoms | No |
Hurkmans et al., 2019 [87] | Case report (1) | 72 | Nivolumab | 4 doses of 3 mg/kg every 2 weeks | Metastatic melanoma | 5 years | Prednisolone 20 mg/day | T-cell-mediated rejection | No | Progressive disease | Yes |
Hanna et al., 2019 [88] | Case report (1) | 52 | Ipilimumab then pembrolizumab | 8 cycles, dose NR | Metastatic melanoma | 5 years | Tacrolimus 1.5 mg twice daily and MMF 250 mg twice daily and later Prednisone 20 mg daily | T-cell-mediated rejection | Yes | Excellent partial response | No |
Tan et al., 2020 [89] | Case report (1) | 71 | Nivolumab | 480 mg every 4 weeks | Metastatic melanoma | 16 years | Tacrolimus 1.5 mg BID and prednisolone 5 mg daily | T-cell-mediated rejection | No | Complete response | No |
Padala et al., 2020 [90] | Case report (1) | 46 | Pembrolizumab | NA | Metastatic endometrial adenocarcinoma | 10 years | Sirolimus and prednisone | Yes | No | Partial response | No |
Soellradl et al., 2020 [91] | Case report (1) | 72 | Ipilimumab then pembrolizumab | 4 cycles of ipilimumab 1 cycle of pembrolizumab | Metastatic melanoma | 8 years | Sirolimus | T-cell-mediated rejection | No | Progressive disease | Death from tumor progression and severe candida sepsis |
Kumar et al., 2024 [92] | Case report (2) | 66 | Pembrolizumab | 11 cycles, 200 mg intravenous every 3 weeks | Metastatic cSCC | 14.5 years | MMF 500 BID, sirolimus 2 mg daily, and prednisolone 20 mg daily | T-cell-mediated rejection | Yes | Complete response | No |
78 | Pembrolizumab | 2 cycles, 200 mg intravenous every 3 weeks | Metastatic melanoma | 12 years | MMF 750 mg BID and sirolimus 1 mg daily and prednisone 5 mg daily | T-cell-mediated rejection | Partial response | ||||
Paoluzzi et al., 2021 [93] | Case report (1) | 72 | Cemiplimab | 10 cycles, 350 mg IV every 3 weeks | Locally advanced cSCC | 10 years | Prednisone 5 mg/d | No | Yes | Partial response | No |
Ishikawa et al., 2021 [94] | Case report (1) | 64 | Nivolumab | 3 doses of nivolumab 3 mg/kg every 2 weeks | metastatic RCC | 9 years | NA | T-cell-mediated rejection | Yes | Progressive disease | Death from tumor progression |
Lu et al., 2023 [95] | Case report (1) | 74 | Pembrolizumab | 4 cycles of pembrolizumab | Metastatic cSCC | 6 years | Everolimus and prednisone 5 mg daily | No | Yes | Complete response | No |
Antonelli et al., 2024 [96] | Case report (1) | Early 40 s | Pembrolizumab | 19 cycles of 200 mg intravenous every 3 weeks | Metastatic cSCC | 9 years | Sirolimus (goal of 4–8 ng/mL) and prednisone 5 mg twice daily | No | Yes | Complete response | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.A.; Mehmood, M.; EL Azzazi, H.; Shaikh, S.; Bhasin-Chhabra, B.; Gudsoorkar, P.; Nair, S.S.; Kodali, L.; Mour, G.; Swaminathan, S.; et al. Immune Checkpoint Inhibitors and Allograft Rejection Risk: Emerging Evidence Regarding Their Use in Kidney Transplant Recipients. J. Clin. Med. 2025, 14, 5152. https://doi.org/10.3390/jcm14145152
Khan MA, Mehmood M, EL Azzazi H, Shaikh S, Bhasin-Chhabra B, Gudsoorkar P, Nair SS, Kodali L, Mour G, Swaminathan S, et al. Immune Checkpoint Inhibitors and Allograft Rejection Risk: Emerging Evidence Regarding Their Use in Kidney Transplant Recipients. Journal of Clinical Medicine. 2025; 14(14):5152. https://doi.org/10.3390/jcm14145152
Chicago/Turabian StyleKhan, Muhammad Ali, Munir Mehmood, Hind EL Azzazi, Samiullah Shaikh, Bhavna Bhasin-Chhabra, Prakash Gudsoorkar, Sumi Sukumaran Nair, Lavanya Kodali, Girish Mour, Sundararaman Swaminathan, and et al. 2025. "Immune Checkpoint Inhibitors and Allograft Rejection Risk: Emerging Evidence Regarding Their Use in Kidney Transplant Recipients" Journal of Clinical Medicine 14, no. 14: 5152. https://doi.org/10.3390/jcm14145152
APA StyleKhan, M. A., Mehmood, M., EL Azzazi, H., Shaikh, S., Bhasin-Chhabra, B., Gudsoorkar, P., Nair, S. S., Kodali, L., Mour, G., Swaminathan, S., & Abu Jawdeh, B. G. (2025). Immune Checkpoint Inhibitors and Allograft Rejection Risk: Emerging Evidence Regarding Their Use in Kidney Transplant Recipients. Journal of Clinical Medicine, 14(14), 5152. https://doi.org/10.3390/jcm14145152