Targeting the Substrate: Mechanism-Based Ablation Strategies for Persistent Atrial Fibrillation
Abstract
1. Introduction
2. What Are the Basic Mechanisms of AF?
- AF Triggers
- Perpetuation of AF
- Functional reentry: Reentrant activity in the absence of underlying substrate or anatomical obstacles.
- ○
- The leading circle concept: Reentry happens in a circuit that matches the wavelength in size, featuring a central core that remains continuously refractory or unexcited [10]. Centripetal waves approaching the center sustain this subsequent refractoriness. When there is a slow conduction velocity or a short refractory period, it results in a reduced wavelength, making the spontaneous cessation of AF unlikely [2].
- ○
- Anatomical reentry: Reentry happens when there is a unidirectional block and slow conduction, resulting in a shorter wavelength than the circuit’s length. Such conditions are often found in the atria of AF patients, especially when fibrosis is present [2]. AF drivers are more commonly detected in the LA, whereas drivers in the right atrium were observed in 20% of the cases [2,28]. Simultaneous biatrial septal mapping in patients with PsAF shows that the left and right sides of the interatrial septum act as electrically separate structures, promoting reentrant activity through conduction slowing and block, further supporting the persistence of reentrant wavefronts [29].
- Atrial remodeling comprises both structural and functional changes that contribute to atrial arrhythmias, such as electrical, structural, and autonomic remodeling [10].
- ○
- Electrical remodeling: AF and rapid arrhythmias affect ion channel expression and function. The high atrial rate during AF triggers protective mechanisms that limit calcium entry by inactivating calcium currents, which shorten the refractory period, and enhance potassium currents, which increase repolarization. This shortens the AP duration, increasing atrial vulnerability and sustaining AF. Additionally, impaired calcium handling contributes to contractile dysfunction and ectopic activity [1,10]. Electrical remodeling can contribute to early recurrence after cardioversion, progression from paroxysmal to more persistent forms, or the development of drug resistance [1]. Additionally, it is responsible for modifying the expression and localization of connexins, leading to conduction abnormalities [1].
- ○
- Structural remodeling is defined by alterations in cellular ultrastructure and tissue characteristics that result in atrial dilatation and fibrosis [1]. Fibrosis represents the most important structural change that induces AF [1,10]. It can be reactive (located at the interstitial space) or reparative (replaces dead myocytes) [10]. Fibrosis increases the separation of myocytes in subendocardial atrial bundles and between the endocardial and epicardial layers, leading to endo-epicardial dissociation, which creates barriers to the propagation of activation wavefronts [2]. Beyond fibrosis, the atrial structure undergoes changes such as fatty infiltration, the presence of inflammatory cells, tissue necrosis, and amyloid accumulation. Adipose tissue exerts a paracrine effect by releasing adipokines that possess profibrotic characteristics. Additionally, it creates obstacles to wavefront conduction and promotes reentrant circuits [2,7].
- ○
- Autonomic and neural remodeling: Neural remodeling includes an increase in atrial innervation. Gould et al. demonstrated an increased atrial sympathetic innervation in patients with PsAF [2,32]. Atrial sympathetic innervation was reported to increase in response to rapid rates of AF. Patients with heart failure have been found to have enlarged cardiac ganglia and more sympathetic/parasympathetic fibers in their PVs and posterior left atrium, promoting AF maintenance [1].
3. Mapping Technologies for Persistent Atrial Fibrillation
4. Standard or Personalized Approach for Radiofrequency Ablation?
Author (Year) | Study Design | No of Patients Included | Follow-Up Period | VGA Group Strategy (No of Patients) | Control Group Strategy (No of Patients) | Primary Outcome | Rhythm Control Outcome After the First Procedure (VGA vs. Control) |
---|---|---|---|---|---|---|---|
Wang et al. (2014) [95] | RCT | 124 | 12 months | PVI + LVA (64) | PVI + stepwise (60) | All-atrial tachycardia recurrence | 65.5% vs. 45% (p = 0.04) |
Cutler et al. (2016) [96] | Retrospective | 141 | 12 months | PVI + LVA (65) | PVI (66) | All-atrial tachycardia recurrence | 80% vs. 57% (p = 0.005) |
Yang et al. (2016) [97] | Retrospective | 164 | 30 months | PVI + LVA (86) | PVI + stepwise (78) | All-atrial tachycardia recurrence | 69.8% vs. 51.3% (p = 0.011) |
Jadidi et al. (2016) [30] | Prospective | 151 | 13 months | PVI + LVA (85) | PVI (66) | All-atrial tachycardia recurrence | 69% vs. 47% (p < 0.001) |
Yamaguchi et al. (2016) [98] | Retrospective | 55 | 18 months | PVI + LVA (39) | PVI (16) | All-atrial tachycardia recurrence | 72% vs. 79% (p = 0.4) |
Yang et al. (2017) [99] | RCT | 229 | 18 months | PVI + LVA (114) | PVI + stepwise (115) | All-atrial tachycardia recurrence | 74% vs. 71.5% (p = 0.325) |
Kumagai et al. (2019) [100] | RCT | 54 | 24 months | PVI + BOXI + LVA (33) | PVI + BOXI (21) | All-atrial tachycardia recurrence | 67% vs. 62% (p = 0.722) |
Nery et al. (2020) [101] | Retrospective | 145 | 18 months | PVI + LVA (95) | PVI (50) | All-atrial tachycardia recurrence | 72% vs. 58% (p = 0.02) |
Liu et al. (2021) [102] | Retrospective | 136 | 18 months | PVI + LVA-guided linear ablation (97) | PVI + non-LVA guided linear ablation (39) | All-atrial tachycardia recurrence | 83% vs. 62% (p = 0.043) |
Hwang et al. (2021) [103] | RCT | 50 | 12 months | PVI + LVA-CFAE (25) | PVI (25) | All-atrial tachycardia recurrence | 60% vs. 40% (p = 0.329) |
Suzuki et al. (2022) [104] | Retrospective | 128 | 9.3 months | PVI + LVA (64) | PVI + linear (64) | AF or atrial flutter recurences | 45% vs. 23% (p = 0.014) |
Huo et al. (2022) [92] | RCT | 324 | 12 months | PVI + LVA (161) | PVI (163) | All-atrial tachycardia recurrence | 50% vs. 35% (p = 0.01) |
Masuda et al. (2025) [94] | RCT | 342 | 12 months | PVI + LVA (170) | PVI (171) | All-atrial tachycardia recurrence | 61% vs. 50% (p = 0.127) |
5. Other Energy Sources
6. Can Machine Learning and Artificial Intelligence Improve Patient Selection and Downstream Clinical Outcomes?
6.1. Patient Selection
6.2. Substrate Mapping
6.3. Real-Time Procedural Guidance
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Leventopoulos, G.; Koros, R.; Travlos, C.; Perperis, A.; Chronopoulos, P.; Tsoni, E.; Koufou, E.-E.; Papageorgiou, A.; Apostolos, A.; Kaouris, P.; et al. Mechanisms of Atrial Fibrillation: How Our Knowledge Affects Clinical Practice. Life 2023, 13, 1260. [Google Scholar] [CrossRef]
- Cheniti, G.; Vlachos, K.; Pambrun, T.; Hooks, D.; Frontera, A.; Takigawa, M.; Bourier, F.; Kitamura, T.; Lam, A.; Martin, C.; et al. Atrial Fibrillation Mechanisms and Implications for Catheter Ablation. Front. Physiol. 2018, 9, 1458. [Google Scholar] [CrossRef]
- Falasconi, G.; Penela, D.; Soto-Iglesias, D.; Francia, P.; Teres, C.; Saglietto, A.; Jauregui, B.; Viveros, D.; Bellido, A.; Alderete, J.; et al. Personalized Pulmonary Vein Antrum Isolation Guided by Left Atrial Wall Thickness for Persistent Atrial Fibrillation. EP Eur. 2023, 25, euad118. [Google Scholar] [CrossRef]
- Vanam, S.; Darden, D.; Munir, M.B.; Aldaas, O.; Hsu, J.C.; Han, F.T.; Hoffmayer, K.S.; Raissi, F.; Birgersdotter-Green, U.; Feld, G.K.; et al. Characteristics and Outcomes of Recurrent Atrial Fibrillation after Prior Failed Pulmonary Vein Isolation. J. Interv. Card. Electrophysiol. 2022, 64, 715–722. [Google Scholar] [CrossRef] [PubMed]
- Saglietto, A.; Falasconi, G.; Soto-Iglesias, D.; Francia, P.; Penela, D.; Alderete, J.; Viveros, D.; Bellido, A.F.; Franco-Ocaña, P.; Zaraket, F.; et al. Assessing Left Atrial Intramyocardial Fat Infiltration from Computerized Tomography Angiography in Patients with Atrial Fibrillation. EP Eur. 2023, 25, euad351. [Google Scholar] [CrossRef] [PubMed]
- Landra, F.; Saglietto, A.; Falasconi, G.; Penela, D.; Soto-Iglesias, D.; Curti, E.; Tonello, B.; Teresi, L.; Turturiello, D.; Franco-Ocaña, P.; et al. Left Atrial Intramyocardial Fat at Pulmonary Vein Reconnection Sites during Atrial Fibrillation Redo Ablation. EP Eur. 2025, 27, euaf038. [Google Scholar] [CrossRef]
- Tzeis, S.; Gerstenfeld, E.P.; Kalman, J.; Saad, E.B.; Shamloo, A.S.; Andrade, J.G.; Barbhaiya, C.R.; Baykaner, T.; Boveda, S.; Calkins, H.; et al. 2024 European Heart Rhythm Association/Heart Rhythm Society/Asia Pacific Heart Rhythm Society/Latin American Heart Rhythm Society Expert Consensus Statement on Catheter and Surgical Ablation of Atrial Fibrillation. Heart Rhythm 2024, 21, e31–e149. [Google Scholar] [CrossRef]
- Heijman, J.; Linz, D.; Schotten, U. Dynamics of Atrial Fibrillation Mechanisms and Comorbidities. Annu. Rev. Physiol. 2021, 83, 83–106. [Google Scholar] [CrossRef]
- Andrade, J.G.; Deyell, M.W.; Khairy, P.; Champagne, J.; Leong-Sit, P.; Novak, P.; Sterns, L.; Roux, J.-F.; Sapp, J.; Bennett, R.; et al. Atrial Fibrillation Progression after Cryoablation vs. Radiofrequency Ablation: The CIRCA-DOSE Trial. Eur. Heart J. 2024, 45, 510–518. [Google Scholar] [CrossRef]
- Heijman, J.; Voigt, N.; Nattel, S.; Dobrev, D. Cellular and Molecular Electrophysiology of Atrial Fibrillation Initiation, Maintenance, and Progression. Circ. Res. 2014, 114, 1483–1499. [Google Scholar] [CrossRef]
- Gudbjartsson, D.F.; Arnar, D.O.; Helgadottir, A.; Gretarsdottir, S.; Holm, H.; Sigurdsson, A.; Jonasdottir, A.; Baker, A.; Thorleifsson, G.; Kristjansson, K.; et al. Variants Conferring Risk of Atrial Fibrillation on Chromosome 4q25. Nature 2007, 448, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, E.J.; Rice, K.M.; Arking, D.E.; Pfeufer, A.; van Noord, C.; Smith, A.V.; Schnabel, R.B.; Bis, J.C.; Boerwinkle, E.; Sinner, M.F.; et al. Variants in ZFHX3 Are Associated with Atrial Fibrillation in Individuals of European Ancestry. Nat. Genet. 2009, 41, 879–881. [Google Scholar] [CrossRef] [PubMed]
- Ellinor, P.T.; Lunetta, K.L.; Glazer, N.L.; Pfeufer, A.; Alonso, A.; Chung, M.K.; Sinner, M.F.; de Bakker, P.I.W.; Mueller, M.; Lubitz, S.A.; et al. Common Variants in KCNN3 Are Associated with Lone Atrial Fibrillation. Nat. Genet. 2010, 42, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Ellinor, P.T.; Lunetta, K.L.; Albert, C.M.; Glazer, N.L.; Ritchie, M.D.; Smith, A.V.; Arking, D.E.; Müller-Nurasyid, M.; Krijthe, B.P.; Lubitz, S.A.; et al. Meta-Analysis Identifies Six New Susceptibility Loci for Atrial Fibrillation. Nat. Genet. 2012, 44, 670–675. [Google Scholar] [CrossRef]
- Sinner, M.F.; Tucker, N.R.; Lunetta, K.L.; Ozaki, K.; Smith, J.G.; Trompet, S.; Bis, J.C.; Lin, H.; Chung, M.K.; Nielsen, J.B.; et al. Integrating Genetic, Transcriptional, and Functional Analyses to Identify 5 Novel Genes for Atrial Fibrillation. Circulation 2014, 130, 1225–1235. [Google Scholar] [CrossRef]
- Low, S.-K.; Takahashi, A.; Ebana, Y.; Ozaki, K.; Christophersen, I.E.; Ellinor, P.T.; Ogishima, S.; Yamamoto, M.; Satoh, M.; Sasaki, M.; et al. Identification of Six New Genetic Loci Associated with Atrial Fibrillation in the Japanese Population. Nat. Genet. 2017, 49, 953–958. [Google Scholar] [CrossRef]
- Bapat, A.; Anderson, C.D.; Ellinor, P.T.; Lubitz, S.A. Genomic Basis of Atrial Fibrillation. Heart 2018, 104, 201–206. [Google Scholar] [CrossRef]
- Campbell, H.M.; Wehrens, X.H.T. Genetics of Atrial Fibrillation: An Update. Curr. Opin. Cardiol. 2018, 33, 304. [Google Scholar] [CrossRef]
- Gianni, C.; Mohanty, S.; Trivedi, C.; Di Biase, L.; Natale, A. Novel Concepts and Approaches in Ablation of Atrial Fibrillation: The Role of Non-Pulmonary Vein Triggers. EP Eur. 2018, 20, 1566–1576. [Google Scholar] [CrossRef]
- Meng, S.; Al-Kaisey, A.M.; Parameswaran, R.; Sunderland, N.; Budgett, D.M.; Kistler, P.M.; Smaill, B.H.; Kalman, J.M. Pulmonary Veins Function as Echo Chambers in Persistent Atrial Fibrillation: Circuitous Re-Entry Generates Outgoing Wavefronts. JACC Clin. Electrophysiol. 2024, 10, 1313–1325. [Google Scholar] [CrossRef]
- Chung, M.K.; Eckhardt, L.L.; Chen, L.Y.; Ahmed, H.M.; Gopinathannair, R.; Joglar, J.A.; Noseworthy, P.A.; Pack, Q.R.; Sanders, P.; Trulock, K.M.; et al. Lifestyle and Risk Factor Modification for Reduction of Atrial Fibrillation: A Scientific Statement from the American Heart Association. Circulation 2020, 141, e750–e772. [Google Scholar] [CrossRef] [PubMed]
- Pyman, E.; Ernault, A.C.; Patel, K.H.K.; Ng, F.S.; Coronel, R. Subepicardial Adipose Tissue as a Modulator of Arrhythmias. Heart Rhythm 2025, 22, 1110–1118. [Google Scholar] [CrossRef] [PubMed]
- Huber, A.T.; Fankhauser, S.; Wittmer, S.; Chollet, L.; Lam, A.; Maurhofer, J.; Madaffari, A.; Seiler, J.; Servatius, H.; Haeberlin, A.; et al. Epicardial Adipose Tissue Dispersion at CT and Recurrent Atrial Fibrillation after Pulmonary Vein Isolation. Eur. Radiol. 2024, 34, 4928–4938. [Google Scholar] [CrossRef] [PubMed]
- Barrio-Lopez, M.T.; Ruiz-Canela, M.; Goni, L.; Valiente, A.M.; Garcia, S.R.; de la O, V.; Anton, B.D.; Fernandez-Friera, L.; Castellanos, E.; Martínez-González, M.A.; et al. Mediterranean Diet and Epicardial Adipose Tissue in Patients with Atrial Fibrillation Treated with Ablation: A Substudy of the ‘PREDIMAR’ Trial. Eur. J. Prev. Cardiol. 2024, 31, 348–355. [Google Scholar] [CrossRef]
- Hu, X.; Jiang, W.; Wu, S.; Xu, K.; Zhang, D.; Zhang, Y.; Liu, X.; Qin, M. Extra-Pulmonary Vein Driver Mapping and Ablation for Persistent Atrial Fibrillation in Obese Patients. EP Eur. 2021, 23, 701–709. [Google Scholar] [CrossRef]
- Chen, J.; Mei, Z.; Yang, Y.; Dai, C.; Wang, Y.; Zeng, R.; Liu, Q. Epicardial Adipose Tissue Is Associated with Higher Recurrence Risk after Catheter Ablation in Atrial Fibrillation Patients: A Systematic Review and Meta-Analysis. BMC Cardiovasc. Disord. 2022, 22, 264. [Google Scholar] [CrossRef]
- Vijayakumar, R.; Faddis, M.N.; Cuculich, P.S.; Rudy, Y. Mechanisms of Persistent Atrial Fibrillation and Recurrences within 12 Months Post-Ablation: Non-Invasive Mapping with Electrocardiographic Imaging. Front. Cardiovasc. Med. 2022, 9, 1052195. [Google Scholar] [CrossRef]
- Hocini, M.; Nault, I.; Wright, M.; Veenhuyzen, G.; Narayan, S.M.; Jaïs, P.; Lim, K.-T.; Knecht, S.; Matsuo, S.; Forclaz, A.; et al. Disparate Evolution of Right and Left Atrial Rate During Ablation of Long-Lasting Persistent Atrial Fibrillation. J. Am. Coll. Cardiol. 2010, 55, 1007–1016. [Google Scholar] [CrossRef]
- Al-Kaisey, A.M.; Parameswaran, R.; Anderson, R.; Hawson, J.; Nam, M.; Sugumar, H.; Chieng, D.; Watts, T.; McLellan, A.; Kistler, P.M.; et al. Insights from Simultaneous Left and Right Atrial Septal Mapping in Patients with Persistent Atrial Fibrillation. JACC Clin. Electrophysiol. 2022, 8, 970–982. [Google Scholar] [CrossRef]
- Jadidi, A.S.; Lehrmann, H.; Keyl, C.; Sorrel, J.; Markstein, V.; Minners, J.; Park, C.-I.; Denis, A.; Jaïs, P.; Hocini, M.; et al. Ablation of Persistent Atrial Fibrillation Targeting Low-Voltage Areas with Selective Activation Characteristics. Circ. Arrhythm. Electrophysiol. 2016, 9, e002962. [Google Scholar] [CrossRef]
- Marrouche, N.F.; Wazni, O.; McGann, C.; Greene, T.; Dean, J.M.; Dagher, L.; Kholmovski, E.; Mansour, M.; Marchlinski, F.; Wilber, D.; et al. Effect of MRI-Guided Fibrosis Ablation vs Conventional Catheter Ablation on Atrial Arrhythmia Recurrence in Patients with Persistent Atrial Fibrillation: The DECAAF II Randomized Clinical Trial. JAMA 2022, 327, 2296–2305. [Google Scholar] [CrossRef]
- Gould, P.A.; Yii, M.; Mclean, C.; Finch, S.; Marshall, T.; Lambert, G.W.; Kaye, D.M. Evidence for Increased Atrial Sympathetic Innervation in Persistent Human Atrial Fibrillation. Pacing Clin. Electrophysiol. 2006, 29, 821–829. [Google Scholar] [CrossRef]
- Gunawardene, M.A.; Willems, S. Atrial Fibrillation Progression and the Importance of Early Treatment for Improving Clinical Outcomes. EP Eur. 2022, 24, ii22–ii28. [Google Scholar] [CrossRef] [PubMed]
- Crowley, R.; Chieng, D.; Segan, L.; William, J.; Sugumar, H.; Prabhu, S.; Voskoboinik, A.; Ling, L.-H.; Morton, J.B.; Lee, G.; et al. Persistent Atrial Fibrillation Phenotypes and Ablation Outcomes: Persistent from Outset vs Progression From Paroxysmal AF. JACC Clin. Electrophysiol. 2025, 11, 10–18. [Google Scholar] [CrossRef]
- Terricabras, M.; Piccini, J.P.; Verma, A. Ablation of Persistent Atrial Fibrillation: Challenges and Solutions. J. Cardiovasc. Electrophysiol. 2020, 31, 1809–1821. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-J.; Lo, M.-T.; Chang, S.-L.; Lo, L.-W.; Hu, Y.-F.; Chao, T.-F.; Chung, F.-P.; Liao, J.-N.; Lin, C.-Y.; Kuo, H.-Y.; et al. Benefits of Atrial Substrate Modification Guided by Electrogram Similarity and Phase Mapping Techniques to Eliminate Rotors and Focal Sources Versus Conventional Defragmentation in Persistent Atrial Fibrillation. JACC Clin. Electrophysiol. 2016, 2, 667–678. [Google Scholar] [CrossRef] [PubMed]
- Narayan, S.M.; Krummen, D.E.; Shivkumar, K.; Clopton, P.; Rappel, W.-J.; Miller, J.M. Treatment of Atrial Fibrillation by the Ablation of Localized Sources: CONFIRM (Conventional Ablation for Atrial Fibrillation with or Without Focal Impulse and Rotor Modulation) Trial. J. Am. Coll. Cardiol. 2012, 60, 628–636. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Lin, Y.-J.; Higa, S.; Tsai, W.-C.; Lo, M.-T.; Chiang, C.-H.; Chang, S.-L.; Lo, L.-W.; Hu, Y.-F.; Chao, T.-F.; et al. Catheter Ablation with Morphologic Repetitiveness Mapping for Persistent Atrial Fibrillation. JAMA Netw. Open 2023, 6, e2344535. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Lin, Y.-J.; Lo, M.-T.; Chiang, C.-H.; Chen, Y.-Y.; Kuo, L.; Chang, S.-L.; Lo, L.-W.; Hu, Y.-F.; Chao, T.-F.; et al. Efficacy of Patient-Specific Strategy: Catheter Ablation Strategy of Persistent Atrial Fibrillation Based on Morphological Repetitiveness by Periodicity and Similarity. Circ. Arrhythm. Electrophysiol. 2021, 14, e009719. [Google Scholar] [CrossRef]
- Chang, T.-Y.; Lin, C.-Y.; Lin, Y.-J.; Wu, C.-I.; Chang, S.-L.; Lo, L.-W.; Hu, Y.-F.; Chung, F.-P.; Tuan, T.-C.; Chao, T.-F.; et al. Long-Term Outcome of Patients with Long-Standing Persistent Atrial Fibrillation Undergoing Ablation Guided by a Novel High-Density Panoramic Mapping System: A Propensity Score Matching Study. Heart Rhythm O2 2022, 3, 269–278. [Google Scholar] [CrossRef]
- Takahashi, Y.; Kobori, A.; Hiroshima, K.; Sakamoto, Y.; Kimura, M.; Inaba, O.; Tanimoto, K.; Hanazawa, R.; Hirakawa, A.; Goya, M.; et al. Mapping-Guided Ablation for Persistent Atrial Fibrillation (MAP-AF): A Multicenter, Single-Blind, Randomized Controlled Trial. Circ. Arrhythm. Electrophysiol. 2024, 17, e012829. [Google Scholar] [CrossRef] [PubMed]
- Aronis, K.N.; Trayanova, N.A. Endocardial-Epicardial Dissociation in Persistent Atrial Fibrillation. Circ. Arrhythm. Electrophysiol. 2020, 13, e009110. [Google Scholar] [CrossRef] [PubMed]
- Eckstein, J.; Zeemering, S.; Linz, D.; Maesen, B.; Verheule, S.; van Hunnik, A.; Crijns, H.; Allessie, M.A.; Schotten, U. Transmural Conduction Is the Predominant Mechanism of Breakthrough During Atrial Fibrillation. Circ. Arrhythm. Electrophysiol. 2013, 6, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Parameswaran, R.; Kalman, J.M.; Royse, A.; Goldblatt, J.; Larobina, M.; Watts, T.; Walters, T.E.; Nalliah, C.J.; Wong, G.; Al-Kaisey, A.; et al. Endocardial-Epicardial Phase Mapping of Prolonged Persistent Atrial Fibrillation Recordings. Circ. Arrhythm. Electrophysiol. 2020, 13, e008512. [Google Scholar] [CrossRef]
- Reddy, V.Y.; Kong, M.H.; Petru, J.; Maan, A.; Funasako, M.; Minami, K.; Ruppersberg, P.; Dukkipati, S.; Neuzil, P. Electrographic Flow Mapping of Persistent Atrial Fibrillation: Intra- and Inter-Procedure Reproducibility in the Absence of ‘Ground Truth’. EP Eur. 2023, 25, euad308. [Google Scholar] [CrossRef]
- Silva Garcia, E.; Lobo-Torres, I.; Fernández-Armenta, J.; Penela, D.; Fernandez-Garcia, M.; Gomez-Lopez, A.; Soto-Iglesias, D.; Fernández-Rivero, R.; Vazquez-Garcia, R.; Acosta, J.; et al. Functional Mapping to Reveal Slow Conduction and Substrate Progression in Atrial Fibrillation. EP Eur. 2023, 25, euad246. [Google Scholar] [CrossRef]
- Osorio-Jaramillo, E.; Cox, J.L.; Klenk, S.; Kaider, A.; Angleitner, P.; Werner, P.; Strassl, A.; Mach, M.; Laufer, G.; Ehrlich, M.P.; et al. Dynamic Electrophysiological Mechanism in Patients with Long-Standing Persistent Atrial Fibrillation. Front. Cardiovasc. Med. 2022, 9, 953622. [Google Scholar] [CrossRef]
- Vijayakumar, R.; Vasireddi, S.K.; Cuculich, P.S.; Faddis, M.N.; Rudy, Y. Methodology Considerations in Phase Mapping of Human Cardiac Arrhythmias. Circ. Arrhythm. Electrophysiol. 2016, 9, e004409. [Google Scholar] [CrossRef]
- Honarbakhsh, S.; Dhillon, G.; Abbass, H.; Waddingham, P.H.; Dennis, A.; Ahluwalia, N.; Welch, S.; Daw, H.; Sporton, S.; Chow, A.; et al. Noninvasive Electrocardiographic Imaging–Guided Targeting of Drivers of Persistent Atrial Fibrillation: The TARGET-AF1 Trial. Heart Rhythm 2022, 19, 875–884. [Google Scholar] [CrossRef]
- Dhillon, G.; Honarbakhsh, S.; Abbas, H.; Waddingham, P.; Dennis, A.S.; Ahluwalia, N.; Finlay, M.; Sohaib, A.; Welch, S.; Daw, H.; et al. ECGI Targeted Ablation for Persistent AF Not Responding to Pulmonary Vein Isolation: Results of a Two-Staged Strategy (TARGET AF2). Heart Rhythm O2 2023, 4, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Betts, T.R.; Good, W.W.; Melki, L.; Metzner, A.; Grace, A.; Verma, A.; Murray, S.; James, S.; Wong, T.; Boersma, L.V.A.; et al. Treatment of Pathophysiologic Propagation Outside of the Pulmonary Veins in Retreatment of Atrial Fibrillation Patients: RECOVER AF Study. EP Eur. 2023, 25, euad097. [Google Scholar] [CrossRef]
- Shi, R.; Chen, Z.; Pope, M.T.B.; Zaman, J.A.B.; Debney, M.; Marinelli, A.; Boyalla, V.; Sathishkumar, A.; Karim, N.; Cantor, E.; et al. Individualized Ablation Strategy to Treat Persistent Atrial Fibrillation: Core-to-Boundary Approach Guided by Charge-Density Mapping. Heart Rhythm 2021, 18, 862–870. [Google Scholar] [CrossRef]
- Shi, W.-R.; Wu, S.-H.; Zou, G.-C.; Xu, K.; Jiang, W.-F.; Zhang, Y.; Qin, M.; Liu, X. A Novel Approach for Quantitative Electrogram Analysis for Driver Identification: Implications for Ablation in Persistent Atrial Fibrillation. Front. Cardiovasc. Med. 2022, 9, 1049854. [Google Scholar] [CrossRef]
- Yoo, S.; Rottmann, M.; Ng, J.; Johnson, D.; Shanab, B.; Pfenniger, A.; Geist, G.E.; Mandava, S.; Burrell, A.; Zhang, W.; et al. Regions of Highly Recurrent Electrogram Morphology with Low Cycle Length Reflect Substrate for Atrial Fibrillation. JACC Basic Transl. Sci. 2023, 8, 68–84. [Google Scholar] [CrossRef]
- Pancorbo, L.; Ruipérez-Campillo, S.; Tormos, Á.; Guill, A.; Cervigón, R.; Alberola, A.; Chorro, F.J.; Millet, J.; Castells, F. Vector Field Heterogeneity for the Assessment of Locally Disorganised Cardiac Electrical Propagation Wavefronts from High-Density Multielectrodes. IEEE Open J. Eng. Med. Biol. 2024, 5, 32–44. [Google Scholar] [CrossRef]
- Van Schie, S.M.; Talib, S.; Knops, P.; Taverne, Y.J.H.J.; de Groot, N.M. Conduction Velocity and Anisotropic Properties of Fibrillation Waves During Acutely Induced and Long-Standing Persistent AF. JACC Clin. Electrophysiol. 2024, 10, 1592–1604. [Google Scholar] [CrossRef] [PubMed]
- Gigli, L.; Preda, A.; Coluzzi, D.; Sartore, M.; Vila, M.; Carbonaro, M.; Baroni, M.; Varrenti, M.; Vargiu, S.; Guarracini, F.; et al. Left Atrial Spatial Entropy: A Novel Tool for Electrophysiological Substrate Characterization in Atrial Fibrillation. Front. Physiol. 2024, 15, 1474568. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-C.; Mao, Y.-J.; Huang, Q.-Y.; Cheng, Z.-D.; He, S.-B.; Xu, Q.-X.; Zhang, Y. Meta-Analysis of Thermal Versus Pulse Field Ablation for Pulmonary Vein Isolation Durability in Atrial Fibrillation: Insights from Repeat Ablation. Clin. Cardiol. 2025, 48, e70151. [Google Scholar] [CrossRef] [PubMed]
- Wasmer, K.; Dechering, D.G.; Köbe, J.; Mönnig, G.; Pott, C.; Frommeyer, G.; Lange, P.S.; Kochhäuser, S.; Eckardt, L. Pulmonary Vein Reconnection and Arrhythmia Progression after Antral Linear Catheter Ablation of Paroxysmal and Persistent Atrial Fibrillation. Clin. Res. Cardiol. 2016, 105, 738–743. [Google Scholar] [CrossRef]
- William, J.; Chieng, D.; Curtin, A.G.; Sugumar, H.; Ling, L.H.; Segan, L.; Crowley, R.; Iyer, A.; Prabhu, S.; Voskoboinik, A.; et al. Radiofrequency Catheter Ablation of Persistent Atrial Fibrillation by Pulmonary Vein Isolation with or without Left Atrial Posterior Wall Isolation: Long-Term Outcomes of the CAPLA Trial. Eur. Heart J. 2025, 46, 132–143. [Google Scholar] [CrossRef]
- Lepillier, A.; Strisciuglio, T.; De Ruvo, E.; Scaglione, M.; Anselmino, M.; Sebag, F.A.; Pecora, D.; Gallagher, M.M.; Rillo, M.; Viola, G.; et al. Impact of Ablation Index Settings on Pulmonary Vein Reconnection. J. Interv. Card. Electrophysiol. 2022, 63, 133–142. [Google Scholar] [CrossRef]
- Galuszka, O.M.; Baldinger, S.H.; Servatius, H.; Seiler, J.; Madaffari, A.; Kozhuharov, N.; Thalmann, G.; Kueffer, T.; Muehl, A.; Maurhofer, J.; et al. Durability of CLOSE-Guided Pulmonary Vein Isolation in Persistent Atrial Fibrillation. JACC Clin. Electrophysiol. 2024, 10, 1090–1100. [Google Scholar] [CrossRef]
- Kueffer, T.; Stettler, R.; Maurhofer, J.; Madaffari, A.; Stefanova, A.; Iqbal, S.U.R.; Thalmann, G.; Kozhuharov, N.A.; Galuszka, O.; Servatius, H.; et al. Pulsed-Field vs Cryoballoon vs Radiofrequency Ablation: Outcomes after Pulmonary Vein Isolation in Patients with Persistent Atrial Fibrillation. Heart Rhythm 2024, 21, 1227–1235. [Google Scholar] [CrossRef] [PubMed]
- Saglietto, A.; Ballatore, A.; Gaita, F.; Scaglione, M.; De Ponti, R.; De Ferrari, G.M.; Anselmino, M. Comparative Efficacy and Safety of Different Catheter Ablation Strategies for Persistent Atrial Fibrillation: A Network Meta-Analysis of Randomized Clinical Trials. Eur. Heart J. Qual. Care Clin. Outcomes 2022, 8, 619–629. [Google Scholar] [CrossRef] [PubMed]
- Sang, C.; Liu, Q.; Lai, Y.; Xia, S.; Jiang, R.; Li, S.; Guo, Q.; Li, Q.; Gao, M.; Guo, X.; et al. Pulmonary Vein Isolation with Optimized Linear Ablation vs Pulmonary Vein Isolation Alone for Persistent AF: The PROMPT-AF Randomized Clinical Trial. JAMA 2025, 333, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Derval, N.; Tixier, R.; Duchateau, J.; Bouteiller, X.; Loock, T.; Denis, A.; Chauvel, R.; Bouyer, B.; Arnaud, M.; Yokoyama, M.; et al. Marshall-Plan Ablation Strategy Versus Pulmonary Vein Isolation in Persistent AF: A Randomized Controlled Trial. Circ. Arrhythm. Electrophysiol. 2025, 18, e013427. [Google Scholar] [CrossRef]
- Knecht, S.; Sohal, M.; Deisenhofer, I.; Albenque, J.-P.; Arentz, T.; Neumann, T.; Cauchemez, B.; Duytschaever, M.; Ramoul, K.; Verbeet, T.; et al. Multicentre Evaluation of Non-Invasive Biatrial Mapping for Persistent Atrial Fibrillation Ablation: The AFACART Study. EP Eur. 2017, 19, 1302–1309. [Google Scholar] [CrossRef]
- Yao, Y.; Hu, F.; Du, Z.; He, J.; Shi, H.; Zhang, J.; Cai, H.; Jia, Y.; Tang, M.; Niu, G.; et al. The Value of Extensive Catheter Linear Ablation on Persistent Atrial Fibrillation (the CLEAR-AF Study). Int. J. Cardiol. 2020, 316, 125–129. [Google Scholar] [CrossRef]
- Kistler, P.M.; Chieng, D.; Sugumar, H.; Ling, L.-H.; Segan, L.; Azzopardi, S.; Al-Kaisey, A.; Parameswaran, R.; Anderson, R.D.; Hawson, J.; et al. Effect of Catheter Ablation Using Pulmonary Vein Isolation with vs Without Posterior Left Atrial Wall Isolation on Atrial Arrhythmia Recurrence in Patients with Persistent Atrial Fibrillation: The CAPLA Randomized Clinical Trial. JAMA 2023, 329, 127–135. [Google Scholar] [CrossRef]
- Segan, L.; Chieng, D.; Prabhu, S.; Hunt, A.; Watts, T.; Klys, B.; Voskoboinik, A.; Sugumar, H.; Ling, L.-H.; Lee, G.; et al. Posterior Wall Isolation Improves Outcomes for Persistent AF with Rapid Posterior Wall Activity. JACC Clin. Electrophysiol. 2023, 9, 2536–2546. [Google Scholar] [CrossRef]
- DeLurgio, D.B.; Crossen, K.J.; Gill, J.; Blauth, C.; Oza, S.R.; Magnano, A.R.; Mostovych, M.A.; Halkos, M.E.; Tschopp, D.R.; Kerendi, F.; et al. Hybrid Convergent Procedure for the Treatment of Persistent and Long-Standing Persistent Atrial Fibrillation. Circ. Arrhythm. Electrophysiol. 2020, 13, e009288. [Google Scholar] [CrossRef]
- Doll, N.; Weimar, T.; Kosior, D.A.; Bulava, A.; Mokracek, A.; Mönnig, G.; Sahu, J.; Hunter, S.; Wijffels, M.; van Putte, B.; et al. Efficacy and Safety of Hybrid Epicardial and Endocardial Ablation versus Endocardial Ablation in Patients with Persistent and Longstanding Persistent Atrial Fibrillation: A Randomised, Controlled Trial. eClinicalMedicine 2023, 61. [Google Scholar] [CrossRef]
- Doll, N.; Weimar, T.; Suwalski, P.; Moennig, G.; Kosior, D.A.; Wijffels, M.; Van Putte, B.; Bulava, A.; Mokracek, A.; Rueb, N.; et al. Three-Year Safety and Effectiveness of Hybrid Ablation versus Catheter Ablation: Final Results of the CEASE-AF Trial. EP Eur. 2025, 27, euaf085.491. [Google Scholar] [CrossRef]
- La Fazia, V.M.; Pierucci, N.; Schiavone, M.; Compagnucci, P.; Mohanty, S.; Gianni, C.; Della Rocca, D.G.; Horton, R.; Al-Ahmad, A.; Di Biase, L.; et al. Comparative Effects of Different Power Settings for Achieving Transmural Isolation of the Left Atrial Posterior Wall with Radiofrequency Energy. EP Eur. 2024, 26, euae265. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Jiang, C.; Betts, T.R.; Chen, J.; Deisenhofer, I.; Mantovan, R.; Macle, L.; Morillo, C.A.; Haverkamp, W.; Weerasooriya, R.; et al. Approaches to Catheter Ablation for Persistent Atrial Fibrillation. N. Engl. J. Med. 2015, 372, 1812–1822. [Google Scholar] [CrossRef] [PubMed]
- Terricabras, M.; Mantovan, R.; Jiang, C.; Betts, T.R.; Chen, J.; Deisenhofer, I.; Macle, L.; Morillo, C.A.; Haverkamp, W.; Weerasooriya, R.; et al. Association Between Quality of Life and Procedural Outcome After Catheter Ablation for Atrial Fibrillation: A Secondary Analysis of a Randomized Clinical Trial. JAMA Netw. Open 2020, 3, e2025473. [Google Scholar] [CrossRef]
- Scott, P.A.; Silberbauer, J.; Murgatroyd, F.D. The Impact of Adjunctive Complex Fractionated Atrial Electrogram Ablation and Linear Lesions on Outcomes in Persistent Atrial Fibrillation: A Meta-Analysis. EP Eur. 2016, 18, 359–367. [Google Scholar] [CrossRef]
- Providência, R.; Lambiase, P.D.; Srinivasan, N.; Ganesh Babu, G.; Bronis, K.; Ahsan, S.; Khan, F.Z.; Chow, A.W.; Rowland, E.; Lowe, M.; et al. Is There Still a Role for Complex Fractionated Atrial Electrogram Ablation in Addition to Pulmonary Vein Isolation in Patients with Paroxysmal and Persistent Atrial Fibrillation? Circ. Arrhythm. Electrophysiol. 2015, 8, 1017–1029. [Google Scholar] [CrossRef]
- Sau, A.; Al-Aidarous, S.; Howard, J.; Shalhoub, J.; Sohaib, A.; Shun-Shin, M.; Novak, P.G.; Leather, R.; Sterns, L.D.; Lane, C.; et al. Optimum Lesion Set and Predictors of Outcome in Persistent Atrial Fibrillation Ablation: A Meta-Regression Analysis. EP Eur. 2019, 21, 1176–1184. [Google Scholar] [CrossRef]
- Hu, X.; Biase, L.D.; Hou, X.; Liu, X. Persistent Atrial Fibrillation Ablation: Glimpsing the Light Ahead? EP Eur. 2025, 27, euaf037. [Google Scholar] [CrossRef]
- Oral, H.; Chugh, A.; Yoshida, K.; Sarrazin, J.F.; Kuhne, M.; Crawford, T.; Chalfoun, N.; Wells, D.; Boonyapisit, W.; Veerareddy, S.; et al. A Randomized Assessment of the Incremental Role of Ablation of Complex Fractionated Atrial Electrograms After Antral Pulmonary Vein Isolation for Long-Lasting Persistent Atrial Fibrillation. J. Am. Coll. Cardiol. 2009, 53, 782–789. [Google Scholar] [CrossRef]
- Kim, T.; Uhm, J.; Kim, J.; Joung, B.; Lee, M.; Pak, H. Does Additional Electrogram-Guided Ablation After Linear Ablation Reduce Recurrence After Catheter Ablation for Longstanding Persistent Atrial Fibrillation? A Prospective Randomized Study. J. Am. Heart Assoc. 2017, 6, e004811. [Google Scholar] [CrossRef] [PubMed]
- Elayi, C.S.; Di Biase, L.; Bai, R.; Burkhardt, J.D.; Mohanty, P.; Sanchez, J.; Santangeli, P.; Hongo, R.; Gallinghouse, G.J.; Horton, R.; et al. Identifying the Relationship Between the Non-PV Triggers and the Critical CFAE Sites Post-PVAI to Curtail the Extent of Atrial Ablation in Longstanding Persistent AF. J. Cardiovasc. Electrophysiol. 2011, 22, 1199–1205. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.C.K.; Paisey, J.R.; Sopher, M.; Balasubramaniam, R.; Jones, M.; Qureshi, N.; Hayes, C.R.; Ginks, M.R.; Rajappan, K.; Bashir, Y.; et al. No Benefit of Complex Fractionated Atrial Electrogram Ablation in Addition to Circumferential Pulmonary Vein Ablation and Linear Ablation. Circ. Arrhythm. Electrophysiol. 2015, 8, 1316–1324. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.N.; Kim, D.Y.; Boo, K.Y.; Kim, Y.G.; Roh, S.Y.; Shim, J.; Choi, J.I.; Kim, Y.H. Combined Epicardial and Endocardial Approach for Redo Radiofrequency Catheter Ablation in Patients with Persistent Atrial Fibrillation: A Randomized Clinical Trial. EP Eur. 2022, 24, 1412–1419. [Google Scholar] [CrossRef]
- Muston, B.T.; Bilbrough, J.; Eranki, A.; Wilson-Smith, C.; Wilson-Smith, A.R. Mid-to-Long-Term Recurrence of Atrial Fibrillation in Surgical Treatment vs. Catheter Ablation: A Meta-Analysis Using Aggregated Survival Data. Ann. Cardiothorac. Surg. 2024, 13, 118–130. [Google Scholar] [CrossRef]
- De Martino, G.; Nasso, G.; Gasperetti, A.; Moscarelli, M.; Mancusi, C.; Della Ratta, G.; Calvanese, C.; Mitacchione, G.; Bonifazi, R.; Di Bari, N.; et al. Targeting Bachmann’s Bundle in Hybrid Ablation for Long-Standing Persistent Atrial Fibrillation: A Proof of Concept Study. J. Interv. Card. Electrophysiol. 2022, 64, 273–280. [Google Scholar] [CrossRef]
- Van Campenhout, M.J.H.; Yaksh, A.; Kik, C.; de Jaegere, P.P.; Ho, S.Y.; Allessie, M.A.; de Groot, N.M.S. Bachmann’s Bundle. Circ. Arrhythm. Electrophysiol. 2013, 6, 1041–1046. [Google Scholar] [CrossRef]
- Sun, J.; Chen, S.; Liang, M.; Zhang, Q.; Zhang, P.; Sun, M.; Ding, J.; Jin, Z.; Han, Y.; Wang, Z. Bachmann’s Bundle Modification in Addition to Circumferential Pulmonary Vein Isolation for Atrial Fibrillation: A Novel Ablation Strategy. Cardiol. Res. Pract. 2023, 2023, 2870188. [Google Scholar] [CrossRef]
- Chen, J.; Arentz, T.; Cochet, H.; Müller-Edenborn, B.; Kim, S.; Moreno-Weidmann, Z.; Minners, J.; Kohl, P.; Lehrmann, H.; Allgeier, J.; et al. Extent and Spatial Distribution of Left Atrial Arrhythmogenic Sites, Late Gadolinium Enhancement at Magnetic Resonance Imaging, and Low-Voltage Areas in Patients with Persistent Atrial Fibrillation: Comparison of Imaging vs. Electrical Parameters of Fibrosis and Arrhythmogenesis. EP Eur. 2019, 21, 1484–1493. [Google Scholar] [CrossRef]
- Boersma, L.; Andrade, J.G.; Betts, T.; Duytschaever, M.; Pürerfellner, H.; Santoro, F.; Tzeis, S.; Verma, A. Progress in Atrial Fibrillation Ablation during 25 Years of Europace Journal. EP Eur. 2023, 25, euad244. [Google Scholar] [CrossRef]
- Huo, Y.; Gaspar, T.; Schönbauer, R.; Wójcik, M.; Fiedler, L.; Roithinger, F.X.; Martinek, M.; Pürerfellner, H.; Kirstein, B.; Richter, U.; et al. Low-Voltage Myocardium-Guided Ablation Trial of Persistent Atrial Fibrillation. NEJM Evid. 2022, 1, EVIDoa2200141. [Google Scholar] [CrossRef]
- Mitran, R.-E.; Popa-Fotea, N.-M.; Iorgulescu, C.; Nastasa, A.; Pupaza, A.; Gondos, V.; Petre, I.-G.; Paja, S.-C.; Vatasescu, R.-G. Left Atrial Low-Voltage Areas Predict the Risk of Atrial Fibrillation Recurrence after Radiofrequency Ablation. Biomedicines 2023, 11, 3261. [Google Scholar] [CrossRef]
- Masuda, M.; Sunaga, A.; Tanaka, N.; Watanabe, T.; Minamiguchi, H.; Egami, Y.; Oka, T.; Minamisaka, T.; Kanda, T.; Okada, M.; et al. Low-Voltage-Area Ablation for Persistent Atrial Fibrillation: A Randomized Controlled Trial. Nat. Med. 2025, 31, 1661–1667. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, Z.; Mao, J.; He, B. A Novel Individualized Substrate Modification Approach for the Treatment of Long-Standing Persistent Atrial Fibrillation: Preliminary Results. Int. J. Cardiol. 2014, 175, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Cutler, M.J.; Johnson, J.; Abozguia, K.; Rowan, S.; Lewis, W.; Costantini, O.; Natale, A.; Ziv, O. Impact of Voltage Mapping to Guide Whether to Perform Ablation of the Posterior Wall in Patients with Persistent Atrial Fibrillation. J. Cardiovasc. Electrophysiol. 2016, 27, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Yang, B.; Wei, Y.; Zhang, F.; Ju, W.; Chen, H.; Li, M.; Gu, K.; Lin, Y.; Wang, B.; et al. Catheter Ablation of Nonparoxysmal Atrial Fibrillation Using Electrophysiologically Guided Substrate Modification During Sinus Rhythm After Pulmonary Vein Isolation. Circ. Arrhythm. Electrophysiol. 2016, 9, e003382. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Tsuchiya, T.; Nakahara, S.; Fukui, A.; Nagamoto, Y.; Murotani, K.; Eshima, K.; Takahashi, N. Efficacy of Left Atrial Voltage-Based Catheter Ablation of Persistent Atrial Fibrillation. J. Cardiovasc. Electrophysiol. 2016, 27, 1055–1063. [Google Scholar] [CrossRef]
- Yang, B.; Jiang, C.; Lin, Y.; Yang, G.; Chu, H.; Cai, H.; Lu, F.; Zhan, X.; Xu, J.; Wang, X.; et al. STABLE-SR (Electrophysiological Substrate Ablation in the Left Atrium During Sinus Rhythm) for the Treatment of Nonparoxysmal Atrial Fibrillation. Circ. Arrhythm. Electrophysiol. 2017, 10, e005405. [Google Scholar] [CrossRef]
- Kumagai, K.; Toyama, H.; Zhang, B. Effects of Additional Ablation of Low-Voltage Areas after Box Isolation for Persistent Atrial Fibrillation. J. Arrhythmia 2019, 35, 197–204. [Google Scholar] [CrossRef]
- Nery, P.B.; Alqarawi, W.; Nair, G.M.; Sadek, M.M.; Redpath, C.J.; Golian, M.; Dawood, W.A.; Chen, L.; Hansom, S.P.; Klein, A.; et al. Catheter Ablation of Low-Voltage Areas for Persistent Atrial Fibrillation: Procedural Outcomes Using High-Density Voltage Mapping. Can. J. Cardiol. 2020, 36, 1956–1964. [Google Scholar] [CrossRef]
- Liu, H.-T.; Yang, C.-H.; Lee, H.-L.; Chang, P.-C.; Wo, H.-T.; Wen, M.-S.; Wang, C.-C.; Yeh, S.-J.; Chou, C.-C. Clinical Outcomes of Low-Voltage Area-Guided Left Atrial Linear Ablation for Non-Paroxysmal Atrial Fibrillation Patients. PLoS ONE 2021, 16, e0260834. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.; Park, H.-S.; Han, S.; Lee, C.H.; Kim, I.-C.; Cho, Y.-K.; Yoon, H.-J.; wook Chung, J.; Kim, H.; Nam, C.-W.; et al. Ablation of Persistent Atrial Fibrillation Based on High Density Voltage Mapping and Complex Fractionated Atrial Electrograms: A Randomized Controlled Trial. Medicine 2021, 100, e26702. [Google Scholar] [CrossRef]
- Suzuki, N.; Kaneko, S.; Fujita, M.; Shinoda, M.; Kubota, R.; Ohashi, T.; Tatami, Y.; Suzuki, J.; Hori, H.; Adachi, K.; et al. Comparison of the Empirical Linear Ablation and Low Voltage Area-Guided Ablation in Addition to Pulmonary Vein Isolation in Patients with Persistent Atrial Fibrillation: A Propensity Score-Matched Analysis. BMC Cardiovasc. Disord. 2022, 22, 13. [Google Scholar] [CrossRef] [PubMed]
- Kheirkhahan, M.; Baher, A.; Goldooz, M.; Kholmovski, E.G.; Morris, A.K.; Csecs, I.; Chelu, M.G.; Wilson, B.D.; Marrouche, N.F. Left Atrial Fibrosis Progression Detected by LGE-MRI after Ablation of Atrial Fibrillation. Pacing Clin. Electrophysiol. 2020, 43, 402–411. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Kwon, O.-S.; Yu, H.T.; Kim, T.-H.; Uhm, J.-S.; Joung, B.; Lee, M.-H.; Pak, H.-N. Risk Factors for Stiff Left Atrial Physiology 1 Year After Catheter Ablation of Atrial Fibrillation. Front. Physiol. 2021, 12, 740600. [Google Scholar] [CrossRef] [PubMed]
- Moon, I.; Lee, S.; Lee, E.; Lee, S.-R.; Cha, M.-J.; Choi, E.-K.; Oh, S. Extensive Left Atrial Ablation Was Associated with Exacerbation of Left Atrial Stiffness and Dyspnea. J. Cardiovasc. Electrophysiol. 2019, 30, 2782–2789. [Google Scholar] [CrossRef]
- Khurram, I.M.; Maqbool, F.; Berger, R.D.; Marine, J.E.; Spragg, D.D.; Ashikaga, H.; Zipunnikov, V.; Kass, D.A.; Calkins, H.; Nazarian, S.; et al. Association Between Left Atrial Stiffness Index and Atrial Fibrillation Recurrence in Patients Undergoing Left Atrial Ablation. Circ. Arrhythm. Electrophysiol. 2016, 9, e003163. [Google Scholar] [CrossRef]
- Yakabe, D.; Ohtani, K.; Fukuyama, Y.; Araki, M.; Higo, T.; Nakamura, T.; Tsutsui, H. Prognostic Value of Left Atrial Calcification After Catheter Ablation for Atrial Fibrillation. JACC Clin. Electrophysiol. 2023, 9, 1108–1117. [Google Scholar] [CrossRef]
- Su, W.W.; Reddy, V.Y.; Bhasin, K.; Champagne, J.; Sangrigoli, R.M.; Braegelmann, K.M.; Kueffer, F.J.; Novak, P.; Gupta, S.K.; Yamane, T.; et al. Cryoballoon Ablation of Pulmonary Veins for Persistent Atrial Fibrillation: Results from the Multicenter STOP Persistent AF Trial. Heart Rhythm 2020, 17, 1841–1847. [Google Scholar] [CrossRef]
- Boveda, S.; Metzner, A.; Nguyen, D.Q.; Chun, K.R.J.; Goehl, K.; Noelker, G.; Deharo, J.-C.; Andrikopoulos, G.; Dahme, T.; Lellouche, N.; et al. Single-Procedure Outcomes and Quality-of-Life Improvement 12 Months Post-Cryoballoon Ablation in Persistent Atrial Fibrillation: Results from the Multicenter CRYO4PERSISTENT AF Trial. JACC Clin. Electrophysiol. 2018, 4, 1440–1447. [Google Scholar] [CrossRef]
- Reddy, V.Y.; Anic, A.; Koruth, J.; Petru, J.; Funasako, M.; Minami, K.; Breskovic, T.; Sikiric, I.; Dukkipati, S.R.; Kawamura, I.; et al. Pulsed Field Ablation in Patients with Persistent Atrial Fibrillation. JACC 2020, 76, 1068–1080. [Google Scholar] [CrossRef]
- Reddy, V.Y.; Dukkipati, S.R.; Neuzil, P.; Anic, A.; Petru, J.; Funasako, M.; Cochet, H.; Minami, K.; Breskovic, T.; Sikiric, I.; et al. Pulsed Field Ablation of Paroxysmal Atrial Fibrillation. JACC Clin. Electrophysiol. 2021, 7, 614–627. [Google Scholar] [CrossRef]
- Reddy, V.Y.; Gerstenfeld, E.P.; Natale, A.; Whang, W.; Cuoco, F.A.; Patel, C.; Mountantonakis, S.E.; Gibson, D.N.; Harding, J.D.; Ellis, C.R.; et al. Pulsed Field or Conventional Thermal Ablation for Paroxysmal Atrial Fibrillation. N. Engl. J. Med. 2023, 389, 1660–1671. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, B.; Bordignon, S.; Neven, K.; Reichlin, T.; Blaauw, Y.; Hansen, J.; Adelino, R.; Ouss, A.; Füting, A.; Roten, L.; et al. EUropean Real-World Outcomes with Pulsed Field ablatiOn in Patients with Symptomatic atRIAl Fibrillation: Lessons from the Multi-Centre EU-PORIA Registry. EP Eur. 2023, 25, euad185. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Haines, D.E.; Boersma, L.V.; Sood, N.; Natale, A.; Marchlinski, F.E.; Calkins, H.; Sanders, P.; Packer, D.L.; Kuck, K.-H.; et al. Pulsed Field Ablation for the Treatment of Atrial Fibrillation: PULSED AF Pivotal Trial. Circulation 2023, 147, 1422–1432. [Google Scholar] [CrossRef]
- Ekanem, E.; Reddy, V.Y.; Schmidt, B.; Reichlin, T.; Neven, K.; Metzner, A.; Hansen, J.; Blaauw, Y.; Maury, P.; Arentz, T.; et al. Multi-National Survey on the Methods, Efficacy, and Safety on the Post-Approval Clinical Use of Pulsed Field Ablation (MANIFEST-PF). EP Eur. 2022, 24, 1256–1266. [Google Scholar] [CrossRef] [PubMed]
- Turagam, M.K.; Neuzil, P.; Schmidt, B.; Reichlin, T.; Neven, K.; Metzner, A.; Hansen, J.; Blaauw, Y.; Maury, P.; Arentz, T.; et al. Safety and Effectiveness of Pulsed Field Ablation to Treat Atrial Fibrillation: One-Year Outcomes From the MANIFEST-PF Registry. Circulation 2023, 148, 35–46. [Google Scholar] [CrossRef]
- Chen, G.; Gao, M.; Lai, Y.; Huang, L.; Xia, S.; Zuo, S.; Guo, X.; Liu, N.; Long, D.; Dong, J.; et al. Feasibility and Safety of Pulsed-Field Ablation for Persistent Atrial Fibrillation: A Prospective Study. Pacing Clin. Electrophysiol. 2025, 48, 302–310. [Google Scholar] [CrossRef]
- Turagam, M.K.; Neuzil, P.; Petru, J.; Funasako, M.; Koruth, J.S.; Skoda, J.; Kralovec, S.; Reddy, V.Y. AF Ablation Using a Novel “Single-Shot” Map-and-Ablate Spherical Array Pulsed Field Ablation Catheter: 1-Year Outcomes of the First-in-Human PULSE-EU Trial. Heart Rhythm 2024, 21, 1218–1226. [Google Scholar] [CrossRef]
- Della Rocca, D.G.; Sorgente, A.; Pannone, L.; Cespón-Fernández, M.; Vetta, G.; Almorad, A.; Bala, G.; Del Monte, A.; Ströker, E.; Sieira, J.; et al. Multielectrode Catheter-Based Pulsed Field Ablation of Persistent and Long-Standing Persistent Atrial Fibrillation. EP Eur. 2024, 26, euae246. [Google Scholar] [CrossRef]
- Anter, E.; Mansour, M.; Nair, D.G.; Sharma, D.; Taigen, T.L.; Neuzil, P.; Kiehl, E.L.; Kautzner, J.; Osorio, J.; Mountantonakis, S.; et al. Dual-Energy Lattice-Tip Ablation System for Persistent Atrial Fibrillation: A Randomized Trial. Nat. Med. 2024, 30, 2303–2310. [Google Scholar] [CrossRef]
- Luo, A.; Chen, W.; Zhu, H.; Xie, W.; Chen, X.; Liu, Z.; Xin, Z. Machine Learning in the Management of Patients Undergoing Catheter Ablation for Atrial Fibrillation: Scoping Review. J. Med. Internet Res. 2025, 27, e60888. [Google Scholar] [CrossRef]
- Qiu, Y.; Guo, H.; Wang, S.; Yang, S.; Peng, X.; Xiayao, D.; Chen, R.; Yang, J.; Liu, J.; Li, M.; et al. Deep Learning-Based Multimodal Fusion of the Surface ECG and Clinical Features in Prediction of Atrial Fibrillation Recurrence Following Catheter Ablation. BMC Med. Inform. Decis. Mak. 2024, 24, 225. [Google Scholar] [CrossRef] [PubMed]
- Alhusseini, M.I.; Abuzaid, F.; Rogers, A.J.; Zaman, J.A.B.; Baykaner, T.; Clopton, P.; Bailis, P.; Zaharia, M.; Wang, P.J.; Rappel, W.-J.; et al. Machine Learning to Classify Intracardiac Electrical Patterns During Atrial Fibrillation. Circ. Arrhythm. Electrophysiol. 2020, 13, e008160. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Li, Y.; He, Q.; Wang, M.; Lan, X.; Zhang, K.; Ma, C.; Zhang, H. Predictive Value of Machine Learning for Recurrence of Atrial Fibrillation after Catheter Ablation: A Systematic Review and Meta-Analysis. Rev. Cardiovasc. Med. 2023, 24, 315. [Google Scholar] [CrossRef] [PubMed]
- Razeghi, O.; Kapoor, R.; Alhusseini, M.I.; Fazal, M.; Tang, S.; Roney, C.H.; Rogers, A.J.; Lee, A.; Wang, P.J.; Clopton, P.; et al. Atrial Fibrillation Ablation Outcome Prediction with a Machine Learning Fusion Framework Incorporating Cardiac Computed Tomography. J. Cardiovasc. Electrophysiol. 2023, 34, 1164–1174. [Google Scholar] [CrossRef]
- Park, H.; Kwon, O.-S.; Shim, J.; Kim, D.; Park, J.-W.; Kim, Y.-G.; Yu, H.T.; Kim, T.-H.; Uhm, J.-S.; Choi, J.-I.; et al. Artificial Intelligence Estimated Electrocardiographic Age as a Recurrence Predictor after Atrial Fibrillation Catheter Ablation. Npj Digit. Med. 2024, 7, 234. [Google Scholar] [CrossRef]
- Tang, S.; Razeghi, O.; Kapoor, R.; Alhusseini, M.I.; Fazal, M.; Rogers, A.J.; Rodrigo Bort, M.; Clopton, P.; Wang, P.J.; Rubin, D.L.; et al. Machine Learning–Enabled Multimodal Fusion of Intra-Atrial and Body Surface Signals in Prediction of Atrial Fibrillation Ablation Outcomes. Circ. Arrhythm. Electrophysiol. 2022, 15, e010850. [Google Scholar] [CrossRef]
- Ganesan, P.; Pedron, M.; Feng, R.; Rogers, A.J.; Deb, B.; Chang, H.J.; Ruiperez-Campillo, S.; Srivastava, V.; Brennan, K.A.; Giles, W.R.; et al. Comparing Phenotypes for Acute and Long-Term Response to Atrial Fibrillation Ablation Using Machine Learning. Circ. Arrhythm. Electrophysiol. 2025, 18, e012860. [Google Scholar] [CrossRef]
- Bahlke, F.; Englert, F.; Popa, M.; Bourier, F.; Reents, T.; Lennerz, C.; Kraft, H.; Martinez, A.T.; Kottmaier, M.; Syväri, J.; et al. First Clinical Data on Artificial Intelligence-Guided Catheter Ablation in Long-Standing Persistent Atrial Fibrillation. J. Cardiovasc. Electrophysiol. 2024, 35, 406–414. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Sotomi, Y.; Hikoso, S.; Kitamura, T.; Nakatani, D.; Okada, K.; Dohi, T.; Sunaga, A.; Kida, H.; Matsuoka, Y.; et al. Uplift Modeling to Identify Patients Who Require Extensive Catheter Ablation Procedures among Patients with Persistent Atrial Fibrillation. Sci. Rep. 2024, 14, 2634. [Google Scholar] [CrossRef]
- Fox, S.R.; Toomu, A.; Gu, K.; Kang, J.; Sung, K.; Han, F.T.; Hoffmayer, K.S.; Hsu, J.C.; Raissi, F.; Feld, G.K.; et al. Impact of Artificial Intelligence Arrhythmia Mapping on Time to First Ablation, Procedure Duration, and Fluoroscopy Use. J. Cardiovasc. Electrophysiol. 2024, 35, 916–928. [Google Scholar] [CrossRef]
- Deisenhofer, I.; Albenque, J.-P.; Busch, S.; Gitenay, E.; Mountantonakis, S.E.; Roux, A.; Horvilleur, J.; Bakouboula, B.; Oza, S.; Abbey, S.; et al. Artificial Intelligence for Individualized Treatment of Persistent Atrial Fibrillation: A Randomized Controlled Trial. Nat. Med. 2025, 31, 1286–1293. [Google Scholar] [CrossRef]
- Seitz, J.; Durdez, T.M.; Albenque, J.P.; Pisapia, A.; Gitenay, E.; Durand, C.; Monteau, J.; Moubarak, G.; Théodore, G.; Lepillier, A.; et al. Artificial Intelligence Software Standardizes Electrogram-Based Ablation Outcome for Persistent Atrial Fibrillation. J. Cardiovasc. Electrophysiol. 2022, 33, 2250–2260. [Google Scholar] [CrossRef] [PubMed]
- Seitz, J.; Mohr Durdez, T.; Lotteau, S.; Bars, C.; Pisapia, A.; Gitenay, E.; Monteau, J.; Reist, M.; Serdi, M.; Dayot, A.; et al. Artificial Intelligence–Adjudicated Spatiotemporal Dispersion: A Patient-Unique Fingerprint of Persistent Atrial Fibrillation. Heart Rhythm 2024, 21, 540–552. [Google Scholar] [CrossRef] [PubMed]
- Heil, E.; Dagres, N.; Boldt, L.-H.; Parwani, A.; Blaschke, F.; Schoeppenthau, D.; Attanasio, P.; Hättasch, R.; Tscholl, V.; Hindricks, G.; et al. AI-Guided Spatiotemporal Dispersion Mapping for Individualized Ablation in an All-Comer Cohort with Atrial Fibrillation. J. Interv. Card. Electrophysiol. 2025. Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Reddy, V.Y.; Langbein, A.; Petru, J.; Szili-Torok, T.; Funasako, M.; Dinshaw, L.; Wijchers, S.; Rillig, A.; Spitzer, S.G.; Bhagwandien, R.; et al. A Randomized Trial of Electrographic Flow-Guided Redo Ablation for Nonparoxysmal Atrial Fibrillation (FLOW-AF). JACC Clin. Electrophysiol. 2024, 10, 1856–1869. [Google Scholar] [CrossRef]
- Noten, A.M.E.; Romanov, A.; De Schouwer, K.; Beloborodov, V.; Bhagwandien, R.; Hoogendijk, M.G.; Mikheenko, I.; Wijchers, S.; Yap, S.-C.; Schwagten, B.; et al. Robotic Magnetic Navigation-Guided Catheter Ablation Establishes Highly Effective Pulmonary Vein Isolation in Patients with Paroxysmal Atrial Fibrillation When Compared to Conventional Ablation Techniques. J. Cardiovasc. Electrophysiol. 2023, 34, 2472–2483. [Google Scholar] [CrossRef]
- Li, X.; Bao, Y.; Jia, K.; Zhang, N.; Lin, C.; Wei, Y.; Xie, Y.; Luo, Q.; Ling, T.; Chen, K.; et al. Comparison of the Mid-Term Outcomes of Robotic Magnetic Navigation-Guided Radiofrequency Ablation versus Cryoballoon Ablation for Persistent Atrial Fibrillation. J. Cardiovasc. Dev. Dis. 2022, 9, 88. [Google Scholar] [CrossRef]
- Luo, Q.; Li, X.; Xie, Y.; Bao, Y.; Wei, Y.; Lin, C.; Liu, Z.; Zhang, N.; Ling, T.; Chen, K.; et al. Long-Term Outcomes of Cryoballoon versus Robotic Magnetic Navigation Guided Radiofrequency Ablation in Patients with Persistent Atrial Fibrillation. Sci. Rep. 2025, 15, 6181. [Google Scholar] [CrossRef] [PubMed]
- Ogbomo-Harmitt, S.; Muffoletto, M.; Zeidan, A.; Qureshi, A.; King, A.P.; Aslanidi, O. Exploring Interpretability in Deep Learning Prediction of Successful Ablation Therapy for Atrial Fibrillation. Front. Physiol. 2023, 14, 1054401. [Google Scholar] [CrossRef] [PubMed]
- De Pooter, J.; Timmers, L.; Boveda, S.; Combes, S.; Knecht, S.; Almorad, A.; De Asmundis, C.; Duytschaever, M. Validation of a Machine Learning Algorithm to Identify Pulmonary Vein Isolation during Ablation Procedures for the Treatment of Atrial Fibrillation: Results of the PVISION Study. EP Eur. 2024, 26, euae116. [Google Scholar] [CrossRef]
Radiofrequency Ablation (RFA) | Cryoablation | Pulsed Field Ablation | |
---|---|---|---|
Energy type | Thermal (heating) | Thermal (freezing) | Non-thermal (electroporation) |
Mechanism of action | Resistive heating → necrosis | Freezing → cellular injury | Electroporation → myocardial-specific membrane disruption |
Delivery | Point-by-point (catheter) | Single-shot (balloon) | Single-shot (balloon or multi-electrode array) and point-by-point (catheter) |
Optimal use in PsAF | PVI + substrate modification | PVI, PWI | PVI, PWI, mitral isthmus |
Advantages |
|
|
|
Limitations |
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marascu, G.-E.; Deaconu, A.I.; Mitran, R.-E.; Stanciulescu, L.A.; Vatasescu, R.G. Targeting the Substrate: Mechanism-Based Ablation Strategies for Persistent Atrial Fibrillation. J. Clin. Med. 2025, 14, 5147. https://doi.org/10.3390/jcm14145147
Marascu G-E, Deaconu AI, Mitran R-E, Stanciulescu LA, Vatasescu RG. Targeting the Substrate: Mechanism-Based Ablation Strategies for Persistent Atrial Fibrillation. Journal of Clinical Medicine. 2025; 14(14):5147. https://doi.org/10.3390/jcm14145147
Chicago/Turabian StyleMarascu, Gabriela-Elena, Alexandru Ioan Deaconu, Raluca-Elena Mitran, Laura Adina Stanciulescu, and Radu Gabriel Vatasescu. 2025. "Targeting the Substrate: Mechanism-Based Ablation Strategies for Persistent Atrial Fibrillation" Journal of Clinical Medicine 14, no. 14: 5147. https://doi.org/10.3390/jcm14145147
APA StyleMarascu, G.-E., Deaconu, A. I., Mitran, R.-E., Stanciulescu, L. A., & Vatasescu, R. G. (2025). Targeting the Substrate: Mechanism-Based Ablation Strategies for Persistent Atrial Fibrillation. Journal of Clinical Medicine, 14(14), 5147. https://doi.org/10.3390/jcm14145147