Genetic Susceptibility to Glomerulonephritis in Children: Analysis of Structural Kidney Genes and Immune System Genes
Abstract
1. Introduction
2. Patients and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rodriíguez-Iturbe, B.; Najafian, B.; Silva, A.; Alpers, C.E. Acute Postinfectious Glomerulonephritis in Children. In Pediatric Nephrology, 7th ed.; Avner, E.D., Harmon, V.E., Niaudet, P., Yoshikawa, N., Emma, F., Goldstein, S.L., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 959–981. ISBN 978-3-662-43596-0. [Google Scholar]
- Floege, J.; Amann, K. Primary glomerulonephritides. Lancet 2016, 387, 2036–2048. [Google Scholar] [CrossRef] [PubMed]
- Floege, J. Primary glomerulonephritis: A review of important recent discoveries. Kidney Res. Clin. Pract. 2013, 32, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.Y.; Chen, Y.C.; Chiu, I.J.; Wu, M.S. Genetic insight into primary glomerulonephritis. Nephrology 2022, 27, 649–657. [Google Scholar] [CrossRef] [PubMed]
- Jiyun, Y.; Guisen, L.; Li, Z.; Yi, S.; Jicheng, L.; Fang, L.; Xiaoqi, L.; Shi, M.; Cheng, J.; Ying, L.; et al. The genetic variants at the HLA-DRB1 gene are associated with primary IgA nephropathy in Han Chinese. BMC Med. Genet. 2012, 13, 33. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Jie, W.; Yanlong, Y.; Xuefeng, G.; Aihua, T.; Yong, G.; Zheng, L.; Youjie, Z.; Haiying, Z.; Xue, Q.; et al. Genome-wide association study identifies TNFSF13 as a susceptibility gene for IgA in a South Chinese population in smokers. Immunogenetics 2012, 64, 747–753. [Google Scholar] [CrossRef] [PubMed]
- Giacomelli, M.; Kumar, R.; Tampella, G.; Ceffa, S.; Bontempelli, M. IL-4, IL-10 and TNF-α polymorphisms in idiopathic membranous nephropathy (IMN). Open J. Immunol. 2015, 5, 233. [Google Scholar] [CrossRef]
- Huang, S.U.; Kulatunge, O.; O’Sullivan, K.M. Deciphering the Genetic Code of Autoimmune Kidney Diseases. Genes 2023, 14, 1028. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Yu, C.; Zhao, P.; Ding, Y.; Liang, X.; Zhao, Y.; Yue, X.; Wu, Y.; Yin, W. The genetics of Henoch-Schönlein purpura: A systematic review and meta-analysis. Rheumatol. Int. 2013, 33, 1387–1395. [Google Scholar] [CrossRef] [PubMed]
- López-Mejías, R.; Carmona, F.D.; Castañeda, S.; Genre, F.; Remuzgo-Martínez, S.; Sevilla-Perez, B.; Ortego-Centeno, N.; Llorca, J.; Ubilla, B.; Mijares, V.; et al. A genome-wide association study suggests the HLA Class II region as the major susceptibility locus for IgA vasculitis. Sci. Rep. 2017, 7, 5088. [Google Scholar] [CrossRef] [PubMed]
- Leung, A.K.C.; Barankin, B.; Leong, K.F. Henoch-Schönlein Purpura in Children: An Updated Review. Curr. Pediatr. Rev. 2020, 16, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wu, L.; Chai, M.; Huang, X.; Zhu, J.; Li, S.; Zhang, J.; Zhang, H. Angiotensin-converting enzyme insertion/deletion polymorphism and susceptibility to Henoch-Schönlein purpura: A meta-analysis. J. Renin Angiotensin Aldosterone Syst. 2019, 20, 1470320319836302. [Google Scholar] [CrossRef] [PubMed]
- Wuttke, M.; Kottgen, A. Insights into kidney diseases from genome-wide association studies. Nat. Rev. Nephrol. 2016, 12, 549–562. [Google Scholar] [CrossRef] [PubMed]
- Piras, D.; Zoledziewska, M.; Cucca, F.; Pani, A. Genome-Wide Analysis Studies and Chronic Kidney Disease. Kidney Dis. 2017, 3, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, H.C.; Langefeld, C.D.; Freedman, B.I. Genetic epidemiology in kidney disease. Nephrol. Dial. Transplant. 2017, 32, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Żywiec, J.; Kiliś-Pstrusińska, K.; Tomaszewski, M.; Grzeszczak, W. Analysis of the association between rs12917707 and rs11864909 single nucleotide polymorphisms in the region of the uromoduline gene and chronic kidney disease—A family-based study. Ann. Agric. Envrion. Med. 2017, 24, 464–466. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.T.; Garnaas, M.K.; Tin, A.; Kottgen, A.; Franceschini, N.; Peralta, C.A.; de Boer, I.H.; Lu, X.; Atkinson, E.; Ding, J.; et al. Genetic association for renal traits among participants of African ancestry reveals new loci for renal function. PLoS Genet. 2011, 7, e1002264. [Google Scholar] [CrossRef] [PubMed]
- Köttgen, A.; Glazer, N.L.; Dehghan, A.; Hwang, S.J.; Katz, R.; Li, M.; Yang, Q.; Gudnason, V.; Launer, L.J.; Harris, T.B.; et al. Multiple loci associated with indices of renal function and chronic kidney disease. Nat. Genet. 2009, 41, 712–717. [Google Scholar] [CrossRef] [PubMed]
- Okada, Y.; Sim, X.; Go, M.J.; Wu, J.Y.; Gu, D.; Takeuchi, F.; Takahashi, A.; Maeda, S.; Tsunoda, Y.; Chen, P.; et al. Meta-analysis identifies multiple loci associated with kidney function-related traits in east Asian populations. Nat. Genet. 2012, 44, 904–909. [Google Scholar] [CrossRef] [PubMed]
- Yeo, N.C.; O’Meara, C.C.; Bonomo, J.A.; Veth, K.N.; Tomar, R.; Flister, M.J.; Drummond, I.A.; Bowden, D.W.; Freedman, B.I.; Lazar, J.; et al. Shroom3 contributes to the maintenance of the glomerular filtration barrier integrity. Genome Res. 2015, 25, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, L.; He, K.; Gao, B.; Wang, F.; Zhao, M.; Zhang, L.; On Behalf of the Chinese Cohort Study of Chronic Kidney Disease C-Stride. UMOD Polymorphisms Associated with Kidney Function, Serum Uromodulin and Risk of Mortality among Patients with Chronic Kidney Disease, Results from the C-STRIDE Study. Genes 2021, 12, 1687. [Google Scholar] [CrossRef] [PubMed]
- Takata, T.; Isomoto, H. The Versatile Role of Uromodulin in Renal Homeostasis and Its Relevance in Chronic Kidney Disease. Intern. Med. 2024, 63, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Harshman, L.A.; Zepeda-Orozco, D. Genetic Considerations in Pediatric Chronic Kidney Disease. J. Pediatr. Genet. 2016, 5, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Mai, M.; Jiang, Y.; Wu, X.; Liu, G.; Zhu, Y.; Zhu, W. Association of TGF-β1, IL-4, and IL-10 Polymorphisms with Chronic Kidney Disease Susceptibility: A Meta-Analysis. Front. Genet. 2020, 11, 79. [Google Scholar] [CrossRef] [PubMed]
- Kłak, A.; Paradowska-Gorycka, A.; Kwiatkowska, B.; Raciborski, F. Personalized medicine in rheumatology. Rheumatology 2016, 54, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Padula, M.C.; Leccese, P.; Lascaro, N.; Radice, R.P.; Limongi, A.R.; Sorrento, G.G.; Carbone, T.; Padula, A.A.; Martelli, G.; D’Angelo, S. Correlation of Tumor Necrosis Factor-α-308G>A Polymorphism with Susceptibility, Clinical Manifestations, and Severity in Behçet Syndrome: Evidences from an Italian Genetic Case-Control Study. DNA Cell Biol. 2020, 39, 1104–1110. [Google Scholar] [CrossRef] [PubMed]
- Jang, D.I.; Lee, A.H.; Shin, H.Y.; Song, H.R.; Park, J.H.; Kang, T.B.; Lee, S.R.; Yang, S.H. The Role of Tumor Necrosis Factor Alpha (TNF-α) in Autoimmune Disease and Current TNF-α Inhibitors in Therapeutics. Int. J. Mol. Sci. 2021, 22, 2719. [Google Scholar] [CrossRef] [PubMed]
- Salomon, B.L. Insights into the biology and therapeutic implications of TNF and regulatory T cells. Nat. Rev. Rheumatol. 2021, 17, 487–504. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.C.; Baeten, D.L.; Josien, R. Emerging role of IL-17 and Th17 cells in systemic lupus erythematosus. Clin. Immunol. 2014, 154, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Koga, M.; Kawasaki, A.; Ito, I.; Furuya, T.; Ohashi, J.; Kyogoku, C.; Ito, S.; Hayashi, T.; Matsumoto, I.; Kusaoi, M.; et al. Cumulative association of eight susceptibility genes with systemic lupus erythematosus in a Japanese female population. J. Hum. Genet. 2011, 56, 503–507. [Google Scholar] [CrossRef] [PubMed]
- Lai, K.N.; Leung, J.C.K.; Chan, L.Y.Y.; Saleem, M.A.; Mathieson, P.W.; Lai, F.M.; Tang, S.C.W. Activation of podocytes by mesangial-derived TNF-alpha: Glomerulopodocytic communication in IgA nephropathy. Am. J. Physiol. Ren. Physiol. 2008, 294, F945–F955. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.M.; Yang, S.; Cha, R.; Kim, M.; An, J.N.; Paik, J.H.; Kim, D.K.; Kang, S.-W.; Lim, C.S.; Kim, Y.S.; et al. Circulating TNF receptors are significant prognostic biomarkers for idiopathic membranous nephropathy. PLoS ONE 2014, 9, e104354. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.A.; Dykes, D.D.; Polesky, H.F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988, 16, 1215. [Google Scholar] [CrossRef] [PubMed]
- Excoffier, L.; Lischer, H.E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Ozen, S.; Alikasifoglu, M.; Bakkaloglu, A.; Duzova, A.; Jarosova, K.; Nemcova, D.; Besbas, N.; Vencovsky, J.; Tuncbilek, E. Tumour necrosis factor alpha G-->A -238 and G-->A -308 polymorphisms in juvenile idiopathic arthritis. Rheumatology 2002, 41, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.H.; Liu, Y.Q.; Zhang, L.; Li, H.; Li, X.B.; Ouyang, Q.; Zhu, G.Y. Genetic polymorphisms of the TNF-α-308G/A are associated with metabolic syndrome in asthmatic patients from Hebei province, China. Int. J. Clin. Exp. Pathol. 2015, 8, 13739–13746. [Google Scholar] [PubMed]
- Verweij, C.L. Tumour necrosis factor gene polymorphisms as severity markers in rheumatoid arthritis. Ann. Rheum. Dis. 1999, 58 (Suppl. S1), I20–I26. [Google Scholar] [CrossRef] [PubMed]
- Lanka, S.; Rachel K, V.; Arji, A.; Raju, R.; Suvvari, T.K.; Thakwani, M.; Supriya, Y.L.; Meenavilli, B.C.; Ravuru, S.K.; Sivaraj, N. Association of Tumor Necrosis Factor-Alpha (TNF-α) rs1800629 Polymorphism in Chronic Kidney Disease. Cureus 2024, 16, e60332. [Google Scholar] [CrossRef] [PubMed]
- Manchanda, P.K.; Kumar, A.; Kaul, A.; Mittal, R.D. Correlation between a gene polymorphism of tumor necrosis factor-alpha (G/A) and end-stage renal disease: A pilot study from north India. Clin. Chim. Acta Int. J. Clin. Chem. 2006, 370, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Sookoian, S.C.; González, C.; Pirola, C.J. Meta-analysis on the G-308A tumor necrosis factor alpha gene variant and phenotypes associated with the metabolic syndrome. Obes. Res. 2005, 13, 2122–2131. [Google Scholar] [CrossRef] [PubMed]
- Padula, M.C.; Padula, A.A.; D’Angelo, S.; Lascaro, N.; Radice, R.P.; Martelli, G.; Leccese, P. TNFα rs1800629 Polymorphism and Response to Anti-TNFα Treatment in Behçet Syndrome: Data from an Italian Cohort Study. J. Pers. Med. 2023, 13, 1347. [Google Scholar] [CrossRef] [PubMed]
- Kapila, N.; Gonzalez, A.; Rosado, J.M.; Flocco, G.; Salomon, F.; Abusaif, M.; Hussain, I.; Moor, M.A.; Modaresi-Esfeh, J.; Castro, F.J. Safety of anti-TNF agents in patients with compensated cirrhosis: A case-control study. Ther. Adv. Gastroenterol. 2021, 14, 17562848211037094. [Google Scholar] [CrossRef] [PubMed]
- Minozzi, S.; Bonovas, S.; Lytras, T.; Pecoraro, V.; González-Lorenzo, M.; Bastiampillai, A.J.; Gabrielli, E.M.; Lonati, A.C.; Moja, L.; Cinquini, M.; et al. Risk of infections using anti-TNF agents in rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis: A systematic review and meta-analysis. Expert. Opin. Drug Saf. 2016, 15 (Suppl. S1), 11–34. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, R.; Mariz, E.; Bernardes, M.; Costa, L. Autoimmune pitfalls in treatment with TNFα inhibitors. Reum. Clin. 2017, 13, 182–183. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Casals, M.; Brito-Zerón, P.; Soto, M.J.; Cuadrado, M.J.; Khamashta, M.A. Autoimmune diseases induced by TNF-targeted therapies. Best Pract. Res. Clin. Rheumatol. 2008, 22, 847–861. [Google Scholar] [CrossRef] [PubMed]
- Bounia, C.A.; Theodoropoulou, E.N.; Liossis, S.C. Glomerulonephritis in Two Patients with SpA Treated with TNF-α Blockers and a Review of the Literature. Biologics 2021, 15, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Stokes, M.B.; Foster, K.; Markowitz, G.S.; Ebrahimi, F.; Hines, W.; Kaufman, D.; Moore, B.; Wolde, D.; D’Agati, V.D. Development of glomerulonephritis during anti-TNF-alpha therapy for rheumatoid arthritis. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc.—Eur. Ren. Assoc. 2005, 20, 1400–1406. [Google Scholar] [CrossRef]
- Valova, S.; Tilkiyan, E.; Kostyaneva, S.; Zdravkova, I.; Erkanyan, I.; Hristov, B. Glomerulonephritis associated with anti -TNF-α therapy. Nephrol. Dial. Transplant. 2024, 39, gfae069–1282–2475. [Google Scholar] [CrossRef]
- Vázquez-Huerta, D.I.; Alvarez-Rodríguez, B.A.; Topete-Reyes, J.F.; Muñoz-Valle, J.F.; Parra-Michel, R.; Fuentes-Ramírez, F. Tumor necrosis factor alpha -238 G/A and -308 G/A polymorphisms and soluble TNF-α levels in chronic kidney disease: Correlation with clinical variables. Int. J. Clin. Exp. Med. 2014, 7, 2111–2119. [Google Scholar] [PubMed]
Feature | N (%) or Median (IQR) |
---|---|
Type of glomerulonephritis | |
Primary | 40 (56.3%) |
Steroid-sensitive nephrotic syndrome | 12 (16.9%) |
IgA nephropathy | 10 (14.1%) |
IgM nephropathy | 7 (9.9%) |
Membranoproliferative glomerulonephritis | 5 (7.0%) |
Focal segmental glomerulosclerosis | 3 (4.2%) |
Membranous glomerulonephritis | 1 (1.4%) |
Anti-glomerular basement membrane glomerulonephritis | 1 (1.4%) |
Rapid progressive glomerulonephritis | 1 (1.4%) |
Secondary | 31 (43.7%) |
Lupus nephritis | 19 (26.8%) |
Henoch–Schoenlein purpura nephritis | 10 (14.1%) |
Glomerulonephritis in ANCA vasculitis | 2 (2.8%) |
Gender | |
Male | 33 (46.5%) |
Female | 38 (53.5%) |
Age at onset (years) | 8 (4–13) |
Diagnostic delay (months) | 1 (0–2) |
Estimated glomerular filtration rate (mL/min/1.73 m2) at diagnosis | 133 (103–158) |
<90% | 12 (16.9%) |
Duration of disease before sampling (months) | 67 (38–103) |
Age at sampling (years) | 14 (7–17) |
Therapy during disease course | |
None | 7 (9.9%) |
Corticosteroid | 23 (32.4%) |
Corticosteroid and non-steroid immunosuppressant | 34 (47.9%) |
Corticosteroid, non-steroid immunosuppressant, and rituximab | 7 (9.9%) |
Complete remission | |
Yes | 39 (54.9%) |
No | 32 (45.1%) |
Time from therapy initiation to complete remission (years) | 6.5 (5–11.5) |
Dialysis | |
No | 67 (94.4%) |
Acute | 2 (2.8%) |
Chronic | 2 (2.8%) |
Hypertension at sampling | |
Yes | 32 (45.1%) |
No | 39 (54.9%) |
Estimated glomerular filtration rate (mL/min/1.73 m2) at sampling | 148 (126–163.5) |
<90% | 7 (9.9%) |
Characteristic | At the Time of Diagnosis (N (%) or Mean (Standard Deviation) or Median (Interquartile Range)) | At the Time of Sampling (N (%) or Mean (Standard Deviation) or Median (Interquartile Range)) |
---|---|---|
C-reactive protein (mg/L) | 3.5 (0.75–10.7) | 0.5 (0.3–2.15) |
Erythrocyte sedimentation rate (mm/h) | 60 (20–80) | 8 (5–18.5) |
Blood hemoglobin (g/L) | 121.7 (17.2) | 131.1 (15.9) |
Glycemia (mmol/L) | 4.8 (0.9) | 4.8 (0.4) |
Urea (mmol/L) | 4.5 (3.7–6.1) | 4.1 (3.5–5.2) |
Creatinine (umol/L) | 50 (35.5–70) | 50 (39–69) |
Protein (g/L) | 62.0 (13.6) | 67.4 (8.6) |
Albumin (g/L) | 37 (26–43) | 45 (41.5–46) |
Sodium (mmol/L) | 137.6 (2.8) | 138.8 (2.8) |
Potassium (mmol/L) | 4.3 (0.8) | 4.3 (0.4) |
Chloride (mmol/L) | 101.6 (3.3) | 102.0 (2.7) |
Calcium (mmol/L) | 2.12 (0.56) | 2.36 (0.33) |
Magnesium (mmol/L) | 0.81 (0.19) | 0.82 (0.13) |
Phosphorus (mmol/L) | 1.44 (0.42) | 1.45 (0.34) |
Bicarbonate (mmol/L) | 22.4 (2.8) | 23.6 (2.1) |
Triglycerides (mmol/L) | 1.5 (0.89–2.29) | 1.0 (0.61–1.56) |
Total cholesterol (mmol/L) | 5.04 (4.18–7.57) | 4.7 (4.14–5.74) |
HDL cholesterol (mmol/L) | 1.34 (1.02–1.84) | 1.79 (1.2–2.0) |
LDL cholesterol (mmol/L) | 2.68 (2.16–4.7) | 2.94 (2.26–3.42) |
Hematuria | 50 (70.4%) | 18 (25.4%) |
Proteinuria | 35 (49.3%) | 8 (11.3%) |
24 h proteinuria (mg/day) | 942 (263.5–1877.5) | 135.5 (81–304.5) |
Gene (SNP) | HC (N = 119) N (%) | GN Patients (N = 71) N (%) | p Value | OR (95% CI) |
---|---|---|---|---|
IL10 (rs1800896) | ||||
Allele | 238 | 142 | ||
G | 102 (42.9) | 64 (45.1) | 0.671 | 1.094 (0.719–1.663) |
A | 136 (57.1) | 78 (54.9) | ||
Genotype | 119 | 71 | ||
GG | 20 (17.1) | 12 (16.9) | 0.806 | 1.108 (0.506–2.424) |
GA | 62 (53.0) | 40 (56.3) | 0.843 (0.466–1.522) | |
AA | 37 (31.6) | 19 (26.8) | 1.220 (0.635–2.343) | |
IL10 (rs1800871) | ||||
Allele | 238 | 142 | ||
C | 179 (75.2) | 114 (80.3) | 0.254 | 1.342 (0.807–2.229) |
T | 59 (24.8) | 28 (19.7) | ||
Genotype | 119 | 71 | ||
CC | 66 (56.4) | 46 (64.8) | 0.434 § | 1.477 (0.805–2.709) |
CT | 47 (40.2) | 22 (31.0) | 0.687 (0.368–1.282) | |
TT | 6 (5.1) | 3 (4.2) | 0.831 (0.201–3.431) | |
IL10 (rs3024505) | ||||
Allele | 236 | 142 | ||
G | 200 (84.8) | 120 (84.5) | 1.000 | 0.982 (0.552–1.747) |
A | 36 (15.2) | 22 (15.5) | ||
Genotype | 118 | 71 | ||
GG | 83 (70.9) | 52 (73.2) | 0.217§ | 1.154 (0.598–2.227) |
GA | 34 (29.1) | 16 (22.5) | 0.718 (0.362–1.425) | |
AA | 1 (0.8) | 3 (4.2) | 5.161 (0.526–50.609) | |
TNF (rs1800629) | ||||
Allele | 238 | 142 | ||
G | 215 (90.3) | 115 (81.0) | 0.009 | 0.455 (0.249–0.830) |
A | 23 (9.7) | 27 (19.0) | ||
Genotype | 119 | 71 | ||
GG | 97 (82.9) | 46 (64.8) | 0.021 § | 0.417 (0.213–0.817) |
GA | 21 (17.9) | 23 (32.4) | 2.236 (1.127–4.435) | |
AA | 1 (0.8) | 2 (2.8) | 3.420 (0.304–38.418) | |
TNF (rs361525) | ||||
Allele | 238 | 142 | ||
G | 234 (98.3) | 137 (96.5) | 0.303 § | 0.468 (0.124–1.773) |
A | 4 (1.7) | 5 (3.5) | ||
Genotype | 119 | 71 | ||
GG | 115 (98.3) | 66 (93.0) | 0.298 § | 0.459 (0.119–1.769) |
GA | 4 (3.4) | 5 (7.0) | 2.178 (0.565–8.394) | |
AA | 0 (0) | 0 (0) | NA | |
IL6 (rs1800795) | ||||
Allele | 238 | 142 | ||
G | 156 (65.6) | 93 (65.5) | 1.000 | 0.997 (0.644–1.544) |
C | 82 (34.4) | 49 (34.5) | ||
Genotype | 119 | 71 | ||
GG | 52 (44.4) | 31 (43.7) | 1.000 | 0.998 (0.552–1.806) |
GC | 52 (44.4) | 31 (43.7) | 0.998 (0.552–1.806) | |
CC | 15 (12.8) | 9 (12.7) | 1.006 (0.415–2.436) | |
IL12B (rs3212227) | ||||
Allele | 234 | 142 | ||
T | 177 (75.6) | 103 (72.5) | 0.517 | 0.850 (0.529–1.366) |
G | 57 (24.4) | 39 (27.5) | ||
Genotype | 117 | 71 | ||
TT | 71 (60.7) | 35 (49.3) | 0.057 § | 0.629 (0.347–1.142) |
TG | 35 (29.9) | 33 (46.5) | 2.034 (1.103–3.750) | |
GG | 11 (9.4) | 3 (4.2) | 0.425 (0.114–1.579) | |
IL23R (rs11209026) | ||||
Allele | 238 | 140 | ||
G | 227 (95.4) | 135 (96.4) | 0.624 § | 0.308 (0.445–3.846) |
A | 11 (4.6) | 5 (3.6) | ||
Genotype | 119 | 70 | ||
GG | 108 (92.3) | 65 (92.9) | 0.788 § | 1.324 (0.440–3.982) |
GA | 11 (9.4) | 5 (7.1) | 0.755 (0.251–2.271) | |
AA | 0 (0) | 0 (0) | NA | |
UMOD (rs12917707) | ||||
Allele | 222 | 140 | ||
G | 178 (80.2) | 114 (81.4) | 0.764 | 1.084 (0.632–1.857) |
T | 44 (19.8) | 26 (18.6) | ||
Genotype | 111 | 70 | ||
GG | 73 (65.8) | 49 (70.0) | 0.636 § | 1.214 (0.637–2.313) |
GT | 32 (28.8) | 16 (22.9) | 0.731 (0.366–1.462) | |
TT | 6 (5.4) | 5 (7.1) | 1.346 (0.395–4.589) | |
SHROOM3 (rs17319721) | ||||
Allele | 224 | 142 | ||
A | 90 (40.2) | 57 (40.14) | 1.000 | 0.998 (0.650–1.533) |
G | 134 (59.8) | 85 (59.86) | ||
Genotype | 112 | 71 | ||
AA | 17 (15.2) | 14 (19.7) | 0.456 | 1.372 (0.629–2.993) |
AG | 56 (50.0) | 29 (40.8) | 0.690 (0.378–1.259) | |
GG | 39 (34.8) | 28 (39.4) | 1.218 (0.659–2.253) |
TNF Haplotypes | HC # (N = 118) N (%) | GN Patients (N = 70) N (%) | p Value | OR (95% CI) |
---|---|---|---|---|
GGGG | 92 (77.9) | 42 (60.0) | 0.008 | 0.424 (0.222–0.809) |
GGGA | 4 (3.4) | 4 (5.7) | 0.473 § | 1.727 (0.418–7.136) |
GGAG | 21 (17.8) | 22 (31.4) | 0.031 | 2.117 (1.061–4.224) |
AGAG | 1 (0.8) | 2 (2.8) | 0.556 § | 3.441 (0.306–38.661) |
Total | 236 | 140 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peric, M.; Anicin, A.; Brankovic, M.; Stajic, N.; Putnik, J.; Paripovic, A.; Jankovic, M.; Bozovic, I.; Perovic, V.; Novakovic, I.; et al. Genetic Susceptibility to Glomerulonephritis in Children: Analysis of Structural Kidney Genes and Immune System Genes. J. Clin. Med. 2025, 14, 5119. https://doi.org/10.3390/jcm14145119
Peric M, Anicin A, Brankovic M, Stajic N, Putnik J, Paripovic A, Jankovic M, Bozovic I, Perovic V, Novakovic I, et al. Genetic Susceptibility to Glomerulonephritis in Children: Analysis of Structural Kidney Genes and Immune System Genes. Journal of Clinical Medicine. 2025; 14(14):5119. https://doi.org/10.3390/jcm14145119
Chicago/Turabian StylePeric, Marina, Aleksandra Anicin, Marija Brankovic, Natasa Stajic, Jovana Putnik, Aleksandra Paripovic, Milena Jankovic, Ivo Bozovic, Vladimir Perovic, Ivana Novakovic, and et al. 2025. "Genetic Susceptibility to Glomerulonephritis in Children: Analysis of Structural Kidney Genes and Immune System Genes" Journal of Clinical Medicine 14, no. 14: 5119. https://doi.org/10.3390/jcm14145119
APA StylePeric, M., Anicin, A., Brankovic, M., Stajic, N., Putnik, J., Paripovic, A., Jankovic, M., Bozovic, I., Perovic, V., Novakovic, I., Vukomanovic, V., & Milosevic, E. (2025). Genetic Susceptibility to Glomerulonephritis in Children: Analysis of Structural Kidney Genes and Immune System Genes. Journal of Clinical Medicine, 14(14), 5119. https://doi.org/10.3390/jcm14145119