A Disintegrin and Metalloprotease 15 (ADAM15) as a Potential Predictor of Distant Metastasis in Colorectal Cancer (CRC)
Abstract
1. Introduction
2. Patients and Methods
Statistical Analysis
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clinton, S.K.; Giovannucci, E.L.; Hursting, S.D. The World Cancer Research Fund/American Institute for Cancer Research Third Expert Report on Diet, Nutrition, Physical Activity, and Cancer: Impact and Future Directions. J. Nutr. 2020, 150, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Mármol, I.; Sánchez-De-Diego, C.; Pradilla Dieste, A.; Cerrada, E.; Rodriguez Yoldi, M. Colorectal Carcinoma: A General Overview and Future Perspectives in Colorectal Cancer. Int. J. Mol. Sci. 2017, 18, 197. [Google Scholar] [CrossRef] [PubMed]
- Heras, S.C.-D.L.; Martínez-Balibrea, E. CXC family of chemokines as prognostic or predictive biomarkers and possible drug targets in colorectal cancer. World J. Gastroenterol. 2018, 24, 4738–4749. [Google Scholar] [CrossRef] [PubMed]
- Puig-Blasco, L.; Piotrowski, K.B.; Michaelsen, S.R.; Bager, N.S.; Areškevičiūtė, A.; Thorseth, M.; Sun, X.; Keller, U.A.D.; Kristensen, B.W.; Madsen, D.H.; et al. Loss of cancer cell-derived ADAM15 alters the tumor microenvironment in colorectal tumors. Int. J. Cancer 2023, 153, 2068–2081. [Google Scholar] [CrossRef] [PubMed]
- Lei, X.; Lei, Y.; Li, J.-K.; Du, W.-X.; Li, R.-G.; Yang, J.; Li, J.; Li, F.; Tan, H.-B. Immune cells within the tumor microenvironment: Biological functions and roles in cancer immunotherapy. Cancer Lett. 2020, 470, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Edwards, D.M.R.; Handsley, M.M.; Pennington, C.J. The ADAM metalloproteinases. Mol. Asp. Med. 2008, 29, 258–289. [Google Scholar] [CrossRef] [PubMed]
- Murphy, G. The ADAMs: Signalling scissors in the tumour microenvironment. Nat. Rev. Cancer 2008, 8, 929–941. [Google Scholar] [CrossRef] [PubMed]
- Gavert, N.; Sheffer, M.; Raveh, S.; Spaderna, S.; Shtutman, M.; Brabletz, T.; Barany, F.; Paty, P.; Notterman, D.; Domany, E.; et al. Expression of L1-CAM and ADAM10 in Human Colon Cancer Cells Induces Metastasis. Cancer Res. 2007, 67, 7703–7712. [Google Scholar] [CrossRef] [PubMed]
- Kveiborg, M.; Fröhlich, C.; Albrechtsen, R.; Tischler, V.; Dietrich, N.; Holck, P.; Kronqvist, P.; Rank, F.; Mercurio, A.M.; Wewer, U.M. A Role for ADAM12 in Breast Tumor Progression and Stromal Cell Apoptosis. Cancer Res. 2005, 65, 4754–4761. [Google Scholar] [CrossRef] [PubMed]
- Najy, A.J.; Day, K.C.; Day, M.L. ADAM15 Supports Prostate Cancer Metastasis by Modulating Tumor Cell–Endothelial Cell Interaction. Cancer Res. 2008, 68, 1092–1099. [Google Scholar] [CrossRef] [PubMed]
- Carl-McGrath, S.; Lendeckel, U.; Ebert, M.; Roessner, A.; Röcken, C. The disintegrin-metalloproteinases ADAM9, ADAM12, and ADAM15 are upregulated in gastric cancer. Int. J. Oncol. 2005, 26, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Lendeckel, U.; Kohl, J.; Arndt, M.; Carl-McGrath, S.; Donat, H.; Röcken, C. Increased expression of ADAM family members in human breast cancer and breast cancer cell lines. J. Cancer Res. Clin. Oncol. 2004, 131, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Charrier, L.; Yan, Y.; Nguyen, H.T.T.; Dalmasso, G.; Laboisse, C.L.; Gewirtz, A.T.; Sitaraman, S.V.; Merlin, D. ADAM-15/metargidin mediates homotypic aggregation of human T lymphocytes and heterotypic interactions of T lymphocytes with intestinal epithelial cells. J. Biol. Chem. 2007, 282, 16948–16958. [Google Scholar] [CrossRef] [PubMed]
- Hiles, G.L.; Bucheit, A.; Rubin, J.R.; Hayward, A.; Cates, A.L.; Day, K.C.; El-Sawy, L.; Kunju, L.P.; Daignault, S.; Lee, C.T.; et al. ADAM15 Is Functionally Associated with the Metastatic Progression of Human Bladder Cancer. PLoS ONE 2006, 11, 0150138. [Google Scholar]
- Toquet, C.; Colson, A.; Jarry, A.; Bezieau, S.; Volteau, C.; Boisseau, P.; Merlin, D.; Laboisse, C.L.; Mosnier, J. ADAM15 to α5β1 integrin switch in colon carcinoma cells: A late event in cancer progression associated with tumor dedifferentiation and poor prognosis. Int. J. Cancer 2012, 130, 278–287. [Google Scholar] [CrossRef] [PubMed]
- Roy, R.; Moses, M.A. ADAM12 induces estrogen-independence in breast cancer cells. Breast Cancer Res. Treat. 2012, 131, 731–741. [Google Scholar] [CrossRef] [PubMed]
- Iba, K.; Albrechtsen, R.; Gilpin, B.; Fröhlich, C.; Loechel, F.; Zolkiewska, A.; Ishiguro, K.; Kojima, T.; Liu, W.; Langford, J.K.; et al. The Cysteine-Rich Domain of Human Adam 12 Supports Cell Adhesion through Syndecans and Triggers Signaling Events That Lead to β1 Integrin–Dependent Cell Spreading. J. Cell Biol. 2000, 149, 1143–1156. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, S.; Schumacher, N.; Schwarz, J.; Tangermann, S.; Kenner, L.; Schlederer, M.; Sibilia, M.; Linder, M.; Altendorf-Hofmann, A.; Knösel, T.; et al. ADAM17 is required for EGF-R–induced intestinal tumors via IL-6 trans-signaling. J. Exp. Med. 2018, 215, 1205–1225. [Google Scholar] [CrossRef] [PubMed]
- Mroczko, B.; Groblewska, M.; Okulczyk, B.; Kedra, B.; Szmitkowski, M. The diagnostic value of matrix metalloproteinase 9 (MMP-9) and tissue inhibitor of matrix metalloproteinases 1 (TIMP-1) determination in the sera of colorectal adenoma and cancer patients. Int. J. Color. Dis. 2010, 25, 1177–1184. [Google Scholar] [CrossRef] [PubMed]
- Groblewska, M.; Mroczko, B.; Gryko, M.; Pryczynicz, A.; Guzińska-Ustymowicz, K.; Kędra, B.; Kemona, A.; Szmitkowski, M. Serum levels and tissue expression of matrix metalloproteinase 2 (MMP-2) and tissue inhibitor of metalloproteinases 2 (TIMP-2) in colorectal cancer patients. Tumour Biol. 2014, 35, 3793–3802. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, B.; Gschwind, A.; Ullrich, A. Multiple G-protein-coupled receptor signals converge on the epidermal growth factor receptor to promote migration and invasion. Oncogene 2004, 23, 991–999. [Google Scholar] [CrossRef] [PubMed]
- Najy, A.J.; Day, K.C.; Day, M.L. The Ectodomain Shedding of E-cadherin by ADAM15 Supports ErbB Receptor Activation. J. Biol. Chem. 2008, 283, 18393–18401. [Google Scholar] [CrossRef] [PubMed]
- Dong, D.-D.; Zhou, H.; Li, G. ADAM15 targets MMP9 activity to promote lung cancer cell invasion. Oncol. Rep. 2015, 34, 2451–2460. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Kang, B.; Li, C.; Chen, T.; Zhang, Z. GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019, 47, 556–560. [Google Scholar] [CrossRef] [PubMed]
- Yamada, D.; Ohuchida, K.; Mizumoto, K.; Ohhashi, S.; Yu, J.; Egami, T.; Fujita, H.; Nagai, E.; Tanaka, M. Increased expression of ADAM 9 and ADAM 15 mRNA in pancreatic cancer. Anticancer Res. 2007, 27, 793–799. [Google Scholar] [PubMed]
- Xu, J.H.; Guan, Y.J.; Zhang, Y.C.; Qiu, Z.D.; Zhou, Y.; Chen, C.; Yu, J.; Wang, W.X. ADAM15 correlates with prognosis, immune infiltration and apoptosis in hepatocellular carcinoma. Aging 2021, 13, 20395–20417. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.; Eynstone, L.V.; Davies, M.; Williams, J.D.; Steadman, R. The Role of ADAM 15 in Glomerular Mesangial Cell Migration. J. Biol. Chem. 2002, 277, 33683–33689. [Google Scholar] [CrossRef] [PubMed]
- Fourie, A.M.; Coles, F.; Moreno, V.; Karlsson, L. Catalytic Activity of ADAM8, ADAM15, and MDC-L (ADAM28) on Synthetic Peptide Substrates and in Ectodomain Cleavage of CD23. J. Biol. Chem. 2003, 278, 30469–30477. [Google Scholar] [CrossRef] [PubMed]
- Lucas, N.; Day, M.L. The role of the disintegrin metalloproteinase ADAM15 in prostate cancer progression. J. Cell. Biochem. 2009, 106, 967–974. [Google Scholar] [CrossRef] [PubMed]
- Kuefer, R.; Day, K.C.; Kleer, C.G.; Sabel, M.S.; Hofert, M.D.; Varambally, S.; Zorn, C.S.; Chinnaiyan, A.M.; Rubin, M.A.; Day, M.L. ADAM15 Disintegrin Is Associated with Aggressive Prostate and Breast Cancer Disease. Neoplasia 2016, 8, 319–329. [Google Scholar] [CrossRef] [PubMed]
Variable Tested | Number of Patients | |
---|---|---|
Group | Colorectal cancer | 110 |
Control (healthy patients) | 54 | |
Gender | Male | 82 |
Female | 28 | |
TNM (tumor–nodulus–metastasis) stage | I | 20 |
II | 36 | |
III | 30 | |
IV | 24 | |
Depth of tumor invasion (T factor) | T1 + 2 | 26 |
T3 | 67 | |
T4 | 17 | |
Nodal involvement (N factor) | N0 | 62 |
N1 | 46 | |
unknown | 2 | |
Distant metastases (M factor) | M0 | 86 |
M1 | 24 |
ADAM15 (pg/mL) | CEA (ng/mL) | CA19.9 (U/mL) | CRP (mg/L) | ||
---|---|---|---|---|---|
Colorectal cancer patients | Mean | 756.724 | 43.272 | 135.410 | 20.595 |
Std. Deviation | 491.555 | 204.536 | 878.717 | 40.128 | |
Minimum | 33.769 | 1.730 | 2.060 | 1.000 | |
Median | 774.760 | 2.455 | 4.460 | 6.100 | |
Maximum | 2244.990 | 1500.000 | 9035.000 | 298.000 | |
Healthy group | Mean | 725.968 | 2.022 | 7.050 | 2.091 |
Std. Deviation | 394.160 | 1.664 | 7.938 | 2.653 | |
Minimum | 50.925 | 0.500 | 2.000 | 0.200 | |
Median | 686.493 | 1.730 | 4.090 | 1.200 | |
Maximum | 1798.070 | 11.490 | 40.970 | 18.400 | |
p (Mann–Whitney test) | 0.885 | <0.001 | 0.196 | <0.001 |
TNM | ADAM15 (pg/mL) | CEA (ng/mL) | CA19.9 (U/mL) | CRP (mg/L) | |
---|---|---|---|---|---|
I | Mean | 532.864 | 5.408 | 6.926 | 14.125 |
SV | 419.384 | 8.339 | 8.930 | 31.658 | |
Minimum | 82.235 | 1.730 | 2.060 | 1.000 | |
Median | 335.056 | 1.730 | 4.000 | 2.250 | |
Maximum | 1545.128 | 37.900 | 41.370 | 141.300 | |
II | Mean | 789.707 | 47.498 | 47.021 | 17.411 |
S.D. | 450.424 | 249.162 | 200.816 | 49.828 | |
Minimum | 128.659 | 1.730 | 2.060 | 1.000 | |
Median | 859.782 | 2.275 | 4.115 | 4.800 | |
Maximum | 1947.119 | 1500.000 | 1200.000 | 298.000 | |
III | Mean | 695.508 | 66.052 | 80.716 | 15.577 |
S.D. | 473.989 | 273.573 | 277.064 | 20.864 | |
Minimum | 117.303 | 1.730 | 2.060 | 1.000 | |
Median | 708.289 | 2.675 | 5.635 | 7.450 | |
Maximum | 1493.624 | 1500.000 | 1200.000 | 99.900 | |
IV | Mean | 970.319 | 40.013 | 443.433 | 37.038 |
S.D. | 556.798 | 86.042 | 1836.186 | 45.923 | |
Minimum | 33.769 | 1.730 | 2.060 | 1.000 | |
Median | 1005.632 | 6.845 | 5.480 | 13.700 | |
Maximum | 2244.990 | 362.540 | 9035.000 | 149.000 | |
p (Kruskal–Wallis) | 0.081 | 0.049 | 0.387 | 0.013 | |
p (test post hoc wg Dwass–Steele–Critch–ow–Fligner) | I vs. II | 0.633 | 0.616 | ||
I vs. III | 0.388 | 0.349 | |||
I vs. IV | 0.051 | 0.024 | |||
II vs. III | 0.904 | 0.833 | |||
II vs. IV | 0.166 | 0.048 | |||
III vs. IV | 0.603 | 0.289 |
ADAM15 (pg/mL) | CEA (ng/mL) | CA19.9 (U/mL) | CRP (mg/L) | ||
---|---|---|---|---|---|
T1 + 2 | Mean | 588.485 | 76.194 | 15.954 | 17.377 |
Std. Deviation | 423.360 | 298.826 | 37.474 | 38.727 | |
Minimum | 82.235 | 1.730 | 2.060 | 1.000 | |
Median | 418.729 | 1.730 | 5.600 | 3.200 | |
Maximum | 1545.128 | 1500.000 | 194.310 | 149.000 | |
T3 | Mean | 777.039 | 38.173 | 207.298 | 19.761 |
Std. Deviation | 491.589 | 185.787 | 1121.442 | 40.531 | |
Minimum | 33.769 | 1.730 | 2.060 | 1.000 | |
Median | 847.174 | 2.350 | 4.550 | 6.200 | |
Maximum | 2244.990 | 1500.000 | 9035.000 | 298.000 | |
T4 | Mean | 881.598 | 13.281 | 36.832 | 29.825 |
Std. Deviation | 507.496 | 16.310 | 124.999 | 43.093 | |
Minimum | 150.498 | 1.730 | 2.060 | 1.000 | |
Median | 1003.568 | 5.365 | 4.035 | 9.700 | |
Maximum | 1853.037 | 56.190 | 505.280 | 141.300 | |
p (Kruskal–Wallis test) | 0.214 | 0.075 | 0.736 | 0.061 | |
N0 | Mean | 722.540 | 29.748 | 39.417 | 15.263 |
Std. Deviation | 442.955 | 189.967 | 167.523 | 41.830 | |
Minimum | 82.235 | 1.730 | 2.060 | 1.000 | |
Median | 768.762 | 1.900 | 4.225 | 4.550 | |
Maximum | 1947.119 | 1500.000 | 1200.000 | 298.000 | |
N1 | Mean | 791.937 | 61.709 | 270.581 | 27.002 |
Std. Deviation | 558.891 | 227.598 | 1341.679 | 37.318 | |
Minimum | 33.769 | 1.730 | 2.060 | 1.000 | |
Median | 797.480 | 3.585 | 5.895 | 8.400 | |
Maximum | 2244.990 | 1500.000 | 9035.000 | 149.000 | |
p (Mann–Whitney test) | 0.804 | 0.012 | 0.170 | 0.006 | |
M0 | Mean | 697.116 | 44.182 | 49.451 | 16.007 |
Std. Deviation | 457.695 | 227.245 | 208.774 | 37.371 | |
Minimum | 82.235 | 1.730 | 2.060 | 1.000 | |
Median | 681.053 | 2.155 | 4.355 | 4.800 | |
Maximum | 1947.119 | 1500.000 | 1200.000 | 298.000 | |
M1 | Mean | 970.319 | 40.013 | 443.433 | 37.038 |
Std. Deviation | 556.798 | 86.042 | 1836.186 | 45.923 | |
Minimum | 33.769 | 1.730 | 2.060 | 1.000 | |
Median | 1005.632 | 6.845 | 5.480 | 13.700 | |
Maximum | 2244.990 | 362.540 | 9035.000 | 149.000 | |
p (Mann–Whitney test) | 0.043 | 0.021 | 0.162 | 0.004 |
ADAM15 (pg/mL) | CEA (ng/mL) | CA19.9 (U/mL) | CRP (mg/L) | ||
---|---|---|---|---|---|
TNM stage I | p | 0.016 | 0.039 | 0.975 | 0.022 |
TNM stage II | p | 0.400 | <0.001 | 0.656 | <0.001 |
TNM stage III | p | 0.650 | <0.001 | 0.180 | <0.001 |
TNM stage IV | p | 0.044 | <0.001 | 0.180 | <0.001 |
T1 + 2 | p | 0.070 | 0.007 | 0.183 | 0.003 |
T3 | p | 0.584 | <0.001 | 0.199 | <0.001 |
T4 | p | 0.395 | <0.001 | 0.583 | <0.001 |
N0 | p | 0.894 | <0.001 | 0.537 | <0.001 |
N1 | p | 0.806 | 0.001 | 0.049 | <0.001 |
M0 | p | 0.534 | <0.001 | 0.403 | <0.001 |
M1 | p | 0.043 | <0.001 | 0.063 | <0.001 |
Sensitivity | Specificity | PPV | NPV | ACC | |
---|---|---|---|---|---|
ADAM15 | 38 | 81 | 81 | 39 | 52 |
CEA | 58 | 81 | 85 | 46 | 62 |
CA 19-9 | 52 | 96 | 92 | 37 | 45 |
CRP | 65 | 91 | 93 | 56 | 73 |
Univariate Logistic Regression Results | ||||
p | OR (odds ratio) | 95% C.I. (confidence intervals) | ||
ADAM15 | 0.687 | 1.000 | 0.999 | 1.001 |
CEA | 0.004 | 1.428 | 1.124 | 1.814 |
CA19.9 | 0.204 | 1.018 | 0.990 | 1.048 |
CRP | 0.000 | 1.392 | 1.176 | 1.647 |
Multivariate logistic regression results | ||||
p | OR (odds ratio) | 95% C.I. (confidence intervals) | ||
ADAM15 | 0.279 | 0.999 | 0.998 | 1.000 |
CEA | 0.018 | 1.352 | 1.052 | 1.737 |
CA19.9 | 0.614 | 1.012 | 0.966 | 1.060 |
CRP | 0.001 | 1.341 | 1.120 | 1.605 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romanowicz, A.; Łukaszewicz-Zając, M.; Choromańska, B.; Pączek, S.; Razak Hady, H.; Myśliwiec, P.; Jamiołkowski, J.; Stępniewski, P.; Kozłowski, L.; Mroczko, B. A Disintegrin and Metalloprotease 15 (ADAM15) as a Potential Predictor of Distant Metastasis in Colorectal Cancer (CRC). J. Clin. Med. 2025, 14, 5082. https://doi.org/10.3390/jcm14145082
Romanowicz A, Łukaszewicz-Zając M, Choromańska B, Pączek S, Razak Hady H, Myśliwiec P, Jamiołkowski J, Stępniewski P, Kozłowski L, Mroczko B. A Disintegrin and Metalloprotease 15 (ADAM15) as a Potential Predictor of Distant Metastasis in Colorectal Cancer (CRC). Journal of Clinical Medicine. 2025; 14(14):5082. https://doi.org/10.3390/jcm14145082
Chicago/Turabian StyleRomanowicz, Adrianna, Marta Łukaszewicz-Zając, Barbara Choromańska, Sara Pączek, Hady Razak Hady, Piotr Myśliwiec, Jacek Jamiołkowski, Piotr Stępniewski, Leszek Kozłowski, and Barbara Mroczko. 2025. "A Disintegrin and Metalloprotease 15 (ADAM15) as a Potential Predictor of Distant Metastasis in Colorectal Cancer (CRC)" Journal of Clinical Medicine 14, no. 14: 5082. https://doi.org/10.3390/jcm14145082
APA StyleRomanowicz, A., Łukaszewicz-Zając, M., Choromańska, B., Pączek, S., Razak Hady, H., Myśliwiec, P., Jamiołkowski, J., Stępniewski, P., Kozłowski, L., & Mroczko, B. (2025). A Disintegrin and Metalloprotease 15 (ADAM15) as a Potential Predictor of Distant Metastasis in Colorectal Cancer (CRC). Journal of Clinical Medicine, 14(14), 5082. https://doi.org/10.3390/jcm14145082