Ultrawide-Field Optical Coherence Tomography Angiography-Guided Navigated Laser Therapy of Non-Perfused Areas in Branch Retinal Vein Occlusion
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Image Acquisition Protocol
2.3. Laser Therapy
2.4. Statistical Analysis
3. Results
3.1. Image Registration and Transfer
3.2. Therapy of NPAs
3.3. Protecting Collateral Circulation or Normal Vessels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
UWF-OCTA | ultrawide-field optical coherence tomography angiography |
NPAs | non-perfused areas |
BRVO | branch retinal vein occlusion |
ME | macular edema |
VEGF | anti-vascular endothelial growth factor |
FA | fluorescein angiography |
FOV | field of view |
References
- Jonas, J.; Paques, M.; Monés, J.; Glacet-Bernard, A. Retinal vein occlusions. Dev. Ophthalmol. 2010, 47, 111–135. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.Y.; Scott, I.U. Retinal-Vein Occlusion. N. Engl. J. Med. 2010, 363, 2135–2144. [Google Scholar] [CrossRef] [PubMed]
- Campochiaro, P.A.; Hafiz, G.; Shah, S.M.; Nguyen, Q.D.; Ying, H.; Do, D.V.; Quinlan, E.; Zimmer-Galler, I.; Haller, J.A.; Solomon, S.D.; et al. Ranibizumab for Macular Edema Due to Retinal Vein Occlusions: Implication of VEGF as a Critical Stimulator. Mol. Ther. 2008, 16, 791–799. [Google Scholar] [CrossRef] [PubMed]
- Campochiaro, P.A.; Sophie, R.; Pearlman, J.; Brown, D.M.; Boyer, D.S.; Heier, J.S.; Marcus, D.M.; Feiner, L.; Patel, A. Long-term Outcomes in Patients with Retinal Vein Occlusion Treated with Ranibizumab. Ophthalmology 2014, 121, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Hayreh, S.S.; Rubenstein, L.; Podhajsky, P. Argon Laser Scatter Photocoagulation in Treatment of Branch Retinal Vein Occlusion. Ophthalmologica 1993, 206, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Branch Vein Occlusion Study Group. Argon laser scatter photocoagulation for prevention of neovascularization and vitreous hemorrhage in branch vein occlusion. Arch Ophthalmol. 1986, 104, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Tomomatsu, Y.; Tomomatsu, T.; Takamura, Y.; Gozawa, M.; Arimura, S.; Takihara, Y.; Inatani, M. Comparative study of combined bevacizumab/targeted photocoagulation vs bevacizumab alone for macular oedema in ischaemic branch retinal vein occlusions. Acta Ophthalmol. 2015, 94, e225–e230. [Google Scholar] [CrossRef] [PubMed]
- Ravani, R.D.; Goel, S.; Kumar, A.; Chandra, P.; Chandra, M.; Kumar, V. Comparison of ranibizumab alone versus ranibizumab with targeted retinal laser for branch retinal vein occlusion with macular edema. Indian J. Ophthalmol. 2019, 67, 1105–1108. [Google Scholar] [CrossRef] [PubMed]
- An, S.H.; Jeong, W.J. Early-scatter laser photocoagulation promotes the formation of collateral vessels in branch retinal vein occlusion. Eur. J. Ophthalmol. 2019, 30, 370–375. [Google Scholar] [CrossRef] [PubMed]
- Terashima, H.; Okamoto, F.; Hasebe, H.; Ueda, E.; Yoshida, H.; Fukuchi, T. Optical coherence tomography angiography and Humphrey field analyser for macular capillary non-perfusion evaluation in branch retinal vein occlusion. Sci. Rep. 2021, 11, 4583. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P.; Lee, T.J.; Yau, L.; Rubio, R.G. Collateral vessel presence in branch and central retinal vein occlusions and their impact on visual acuity and anatomical gains. Retina 2014, 34, 2242–2249. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, N.; Hirano, Y.; Tomiyasu, T.; Kurobe, R.; Yasuda, Y.; Esaki, Y.; Yasukawa, T.; Yoshida, M.; Ogura, Y. Collateral vessels on optical coherence tomography angiography in eyes with branch retinal vein occlusion. Br. J. Ophthalmol. 2019, 103, 1373–1379. [Google Scholar] [CrossRef] [PubMed]
- Silva, P.S.; Cavallerano, J.D.; Sun, J.K.; Soliman, A.Z.; Aiello, L.M.; Aiello, L.P. Peripheral Lesions Identified by Mydriatic Ultrawide Field Imaging: Distribution and Potential Impact on Diabetic Retinopathy Severity. Ophthalmology 2013, 120, 2587–2595. [Google Scholar] [CrossRef] [PubMed]
- Kuehlewein, L.; An, L.; Durbin, M.K.; Sadda, S.R. Imaging Areas of Retinal Nonperfusion in Ischemic Branch Retinal Vein Occlusion With Swept-Source OCT Microangiography. Ophthalmic Surg. Lasers Imaging Retin. 2015, 46, 249–252. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, N.; Hirano, Y.; Yoshida, M.; Tomiyasu, T.; Uemura, A.; Yasukawa, T.; Ogura, Y. Microvascular Abnormalities on Optical Coherence Tomography Angiography in Macular Edema Associated With Branch Retinal Vein Occlusion. Arch. Ophthalmol. 2016, 161, 126–132.e1. [Google Scholar] [CrossRef] [PubMed]
- Salz, D.A.; de Carlo, T.E.; Adhi, M.; Moult, E.; Choi, W.; Baumal, C.R.; Witkin, A.J.; Duker, J.S.; Fujimoto, J.G.; Waheed, N.K. Select Features of Diabetic Retinopathy on Swept-Source Optical Coherence Tomographic Angiography Compared With Fluorescein Angiography and Normal Eyes. JAMA Ophthalmol 2016, 134, 644–650. [Google Scholar] [CrossRef] [PubMed]
- Schaal, K.B.; Munk, M.R.; Wyssmueller, I.; Berger, L.E.; Zinkernagel, M.S.; Wolf, S. Vascular Abnormalities in Diabetic Retinopathy Assessed with Swept-Source Optical Coherence Tomography Angiography Widefield Imaging. Retina 2019, 39, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Soecknick, F.; Breher, K.; Nafar, Z.; Kubach, S.; Straub, J.; Wahl, S.; Ziemssen, F. The clinical evaluation of a widefield lens to expand the field of view in optical coherence tomography (OCT-A). Sci. Rep. 2024, 14, 6936. [Google Scholar] [CrossRef] [PubMed]
- Gawęcki, M.; Kiciński, K. Advantages of the Utilization of Wide-Field OCT and Wide-Field OCT Angiography in Clinical Practice. Diagnostics 2024, 14, 321. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.Y.; Zhao, Q.; Wang, C.T.; Meng, L.H.; Cheng, S.Y.; Gu, X.W.; Sadda, S.R.; Chen, Y.X. Central and Peripheral Changes in Retinal Vein Occlusion and Fellow Eyes in Ultra-Widefield Optical Coherence Tomography Angiography. Investig. Ophthalmol. Vis. Sci. 2024, 65, 6. [Google Scholar] [CrossRef] [PubMed]
- Karapapak, M.; Ozal, E.; Ermis, S.; Guler, S.; Ozal, S.A. Comparative Analysis of Pain and Duration in Panretinal Photocoagulation: Navilas Laser versus Conventional Laser in Proliferative Diabetic Retinopathy. Med Bull. Sisli Hosp. 2024, 58, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Amoroso, F.; Pedinielli, A.; Cohen, S.Y.; Jung, C.; Chhablani, J.; Astroz, P.; Colantuono, D.; Semoun, O.; Capuano, V.; Souied, E.H.; et al. Navigated micropulse laser for central serous chorioretinopathy: Efficacy, safety, and predictive factors of treatment response. Eur. J. Ophthalmol. 2021, 32, 2810–2818. [Google Scholar] [CrossRef] [PubMed]
- Laich, Y.; Farassat, N.; Grewing, V.; Boehringer, D.; Bucher, F.; Maloca, P.M.; Reinhard, T.; Lang, S.J.; Agostini, H.; Reich, M. Optical Coherence Tomography Angiography–Navigated Laser Photocoagulation of Retinal Hemangioblastomas in Patients With von Hippel–Lindau Disease. Transl. Vis. Sci. Technol. 2024, 13, 8. [Google Scholar] [CrossRef] [PubMed]
- Amoroso, F.; Souied, E.H.; Cohen, S.Y.; Pedinielli, A.; Astroz, P.; Garavito, R.B.; Capuano, V.; Querques, G.; Miere, A. OCTA-guided navigated laser therapy for advanced macula neovascularization secondary to age related macular degeneration. Eur. J. Ophthalmol. 2020, 31, 3182–3189. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Erfurth, U.; Garcia-Arumi, J.; Gerendas, B.S.; Midena, E.; Sivaprasad, S.; Tadayoni, R.; Wolf, S.; Loewenstein, A. Guidelines for the Management of Retinal Vein Occlusion by the European Society of Retina Specialists (EURETINA). Ophthalmologica 2019, 242, 123–162. [Google Scholar] [CrossRef] [PubMed]
- Kernt, M.; Cheuteu, R.; Vounotrypidis, E.; Haritoglou, C.; Kampik, A.; Ulbig, M.W.; Neubauer, A.S. Focal and panretinal photocoagulation with a navigated laser (NAVILAS®). Acta Ophthalmol. 2010, 89, e662–e664. [Google Scholar] [CrossRef] [PubMed]
- Kalra, G.; Pichi, F.; Menia, N.K.; Shroff, D.; Phasukkijwatana, N.; Aggarwal, K.; Agarwal, A. Recent advances in wide field and ultrawide field optical coherence tomography angiography in retinochoroidal pathologies. Expert Rev. Med Devices 2021, 18, 375–386. [Google Scholar] [CrossRef] [PubMed]
- Sakimoto, S.; Kawasaki, R.; Nishida, K. Retinal Neovascularization–Simulating Retinal Capillary Reperfusion in Branch Retinal Vein Occlusion, Imaged by Wide-Field Optical Coherence Tomography Angiography. JAMA Ophthalmol. 2020, 138, 216–218. [Google Scholar] [CrossRef] [PubMed]
- Liberski, S.; Wichrowska, M.; Kocięcki, J. Aflibercept versus Faricimab in the Treatment of Neovascular Age-Related Macular Degeneration and Diabetic Macular Edema: A Review. Int. J. Mol. Sci. 2022, 23, 9424. [Google Scholar] [CrossRef] [PubMed]
- Im, C.Y.; Lee, S.Y.; Kwon, O.W. Collateral vessels in branch retinal vein occlusion. Korean J. Ophthalmol. 2002, 16, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Genevois, O.; Paques, M.; Simonutti, M.; Sercombe, R.; Seylaz, J.; Gaudric, A.; Brouland, J.-P.; Sahel, J.; Vicaut, E. Microvascular Remodeling after Occlusion-Recanalization of a Branch Retinal Vein in Rats. Investig. Opthalmol. Vis. Sci. 2004, 45, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Klein, R.; Klein, B.; Henkind, P.; Bellhorn, R. Retinal collateral vessel formation. Investig. Ophthalmol. 1971, 10, 471–480. [Google Scholar]
- Henkind, P.; Wise, G.N. Retinal neovascularization, collaterals, and vascular shunts. Br. J. Ophthalmol. 1974, 58, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Christoffersen, N.L.; Larsen, M. Pathophysiology and hemodynamics of branch retinal vein occlusion. Ophthalmology 1999, 106, 2054–2062. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, D.V.; Wahle, A.E.; Ip, M.S.; Scott, I.U.; VanVeldhuisen, P.C.; Blodi, B.A. Score Study Report 12: Development of venous col-laterals in the Score Study. Retina 2013, 33, 287–295. [Google Scholar] [CrossRef] [PubMed]
VG200 | Xephilio OCT-S1 | Bmizar | p * | |
---|---|---|---|---|
No. of Patients | 10 | 10 | 8 | N/A |
No. of Successful Treatments | 10 | 8 | 8 | N/A |
Success Rate | 100% | 100% | 100% | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Peng, P.; Wei, J.; Yu, J.; Wang, M. Ultrawide-Field Optical Coherence Tomography Angiography-Guided Navigated Laser Therapy of Non-Perfused Areas in Branch Retinal Vein Occlusion. J. Clin. Med. 2025, 14, 5014. https://doi.org/10.3390/jcm14145014
Zhou Y, Peng P, Wei J, Yu J, Wang M. Ultrawide-Field Optical Coherence Tomography Angiography-Guided Navigated Laser Therapy of Non-Perfused Areas in Branch Retinal Vein Occlusion. Journal of Clinical Medicine. 2025; 14(14):5014. https://doi.org/10.3390/jcm14145014
Chicago/Turabian StyleZhou, Yao, Peng Peng, Jiaojiao Wei, Jian Yu, and Min Wang. 2025. "Ultrawide-Field Optical Coherence Tomography Angiography-Guided Navigated Laser Therapy of Non-Perfused Areas in Branch Retinal Vein Occlusion" Journal of Clinical Medicine 14, no. 14: 5014. https://doi.org/10.3390/jcm14145014
APA StyleZhou, Y., Peng, P., Wei, J., Yu, J., & Wang, M. (2025). Ultrawide-Field Optical Coherence Tomography Angiography-Guided Navigated Laser Therapy of Non-Perfused Areas in Branch Retinal Vein Occlusion. Journal of Clinical Medicine, 14(14), 5014. https://doi.org/10.3390/jcm14145014