Improving Folic Acid Supplementation Through Electronic Medical Record Interface Modifications—A Retrospective Study
Abstract
1. Introduction
2. Methods
Study Design and Sampling Strategy: A Cross-Sectional Study That Was Conducted Using Data Extracted from the Electronic Medical Records of Individuals Registered with LHS
3. Results
4. Discussion
4.1. Strengths and Limitations
4.2. Implications and Future Directions
4.3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nittas, V.; Lun, P.; Ehrler, F.; Puhan, M.A.; Mütsch, M. Electronic patient-generated health data to facilitate disease prevention and health promotion: Scoping review. J. Med. Internet Res. 2019, 21, e13320. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.B.; Neuss, M.J.; Detmer, D.E. Electronic health records and clinician burnout: A story of three eras. J. Am. Med. Inform. Assoc. 2021, 28, 967–973. [Google Scholar] [CrossRef] [PubMed]
- Alanazi, M.A.A. Optimizing healthcare delivery: The role of electronic medical records (EMRS) in streamlining processes. ActaBiomed 2022, 93, 1–15. [Google Scholar]
- Weir, D.G.; Scott, J.M. Colonic mucosal folate concentrations and their association with colorectal cancer. Am. J. Clin. Nutr. 1998, 68, 763–764. [Google Scholar] [CrossRef]
- Koletzko, B.; Aggett, P.J.; Bindels, J.G.; Bung, P.; Ferré, P.; Gil, A.; Lentze, M.J.; Roberfroid, M.; Strobel, S. Growth, development and differentiation: A functional food science approach. Br. J. Nutr. 1998, 80, S5–S45. [Google Scholar] [CrossRef]
- Selhub, J.; Jacques, P.F.; Bostom, A.G.; Wilson, P.W.; Rosenberg, I.H. Relationship between plasma homocysteine and vitamin status in the Framingham study population. Impact of folic acid fortification. Public Health Rev. 2000, 28, 117–145. [Google Scholar]
- Shulpekova, Y.; Nechaev, V.; Kardasheva, S.; Sedova, A.; Kurbatova, A.; Bueverova, E.; Kopylov, A.; Malsagova, K.; Dlamini, J.C.; Ivashkin, V. The concept of folic acid in health and disease. Molecules 2021, 26, 3731. [Google Scholar] [CrossRef]
- Crider, K.S.; Qi, Y.P.; Yeung, L.F.; Mai, C.T.; Zauche, L.H.; Wang, A.; Daniels, K.; Williams, J.L. Folic acid and the prevention of birth defects: 30 years of opportunity and controversies. Annu. Rev. Nutr. 2022, 42, 423–452. [Google Scholar] [CrossRef]
- Endevelt, R.; Tulchinsky, T.H.; Stahl, Z.; Mor, Z.; Davidovitch, N.; Levine, H.; Troen, A.M. Challenges and obstacles implementing evidence-based food fortification policy in a high-income country. Front. Public Health 2023, 11, 1052314. [Google Scholar] [CrossRef]
- Vinker, S.; Krantman, E.; Shani, M.; Nakar, S. Low clinical utility of folate determinations in primary care setting. Am. J. Manag. Care 2013, 19, e100-5. [Google Scholar]
- Gurugubelli, K.R.; Ballambattu, V.B. Perspectives on folate with special reference to epigenetics and neural tube defects. Reprod. Toxicol. 2024, 125, 108576. [Google Scholar] [CrossRef] [PubMed]
- Rossignol, D.A.; Frye, R.E. Cerebral folate deficiency, folate receptor alpha autoantibodies and leucovorin (folinic acid) treatment in autism spectrum disorders: A systematic review and meta-analysis. J. Pers. Med. 2021, 11, 1141. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, U.; Grant, F.; Goldenberg, T.; Zongrone, A.; Martorell, R. Effect of women’s nutrition before and during early pregnancy on maternal and infant outcomes: A systematic review. Paediatr. Perinat. Epidemiol. 2012, 26, 285–301. [Google Scholar] [CrossRef]
- Sampaio, A.C.; de Matos, F.F.; Lopes, L.d.L.; Marques, Í.M.M.; Tavares, R.M.; Fernandes, M.V.d.M.; Teixeira, M.R.V.d.S.; de Brito, A.B.; Feitosa, A.C.; Guedes, T.O.; et al. Association of the maternal folic acid supplementation with the autism spectrum disorder: A systematic review. Rev. Bras. Ginecol. Obs./RBGO Gynecol. Obstet. 2021, 43, 775–781. [Google Scholar] [CrossRef]
- US Preventive Services Task Force; Bibbins-Domingo, K.; Grossman, D.C.; Curry, S.J.; Davidson, K.W.; Epling, J.W., Jr.; García, F.A.; Kemper, A.R.; Krist, A.H.; Kurth, A.E.; et al. Folic acid supplementation for the prevention of neural tube defects: US preventive services task force recommendation statement. JAMA 2017, 317, 183–189. [Google Scholar]
- World Health Organization. Congenital Disorders; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Israeli Ministry of Health. Folic Acid Treatment to Reduce the Risk of Neural Tube Defects; Guideline No.: 01/2018; Correction of a Clerical Error; Israeli Ministry of Health: Jerusalem, Israel, 2018; p. 11. [Google Scholar]
- Israeli Ministry of Health. Folic Acid for Each Woman, Every Day; Israeli Ministry of Health: Jerusalem, Israel, 2021. [Google Scholar]
- Joelson, D.W.; Fiebig, E.W.; Wu, A.H.B. Diminished need for folate measurements among indigent populations in the post folic acid supplementation era. Arch. Pathol. Lab. Med. 2007, 131, 477–480. [Google Scholar] [CrossRef]
- Adams, J.B.; Kirby, J.K.; Sorensen, J.C.; Pollard, E.L.; Audhya, T. Evidence based recommendations for an optimal prenatal supplement for women in the US: Vitamins and related nutrients. Matern. Health Neonatol. Perinatol. 2022, 8, 4. [Google Scholar] [CrossRef]
- Mei, Z.; Addo, O.Y.; Jefferds, M.E.D.; Sharma, A.J.; Flores-Ayala, R.C.; Pfeiffer, C.M.; Brittenham, G.M. Comparison of current World Health Organization guidelines with physiologically based serum ferritin thresholds for iron deficiency in healthy young children and nonpregnant women using data from the third National Health and Nutrition Examination Survey. J. Nutr. 2023, 153, 771–780. [Google Scholar] [CrossRef]
- Martinez, H.; Benavides-Lara, A.; Arynchyna-Smith, A.; Ghotme, K.A.; Arabi, M.; Arynchyn, A. Global strategies for the prevention of neural tube defects through the improvement of folate status in women of reproductive age. Child’s Nerv. Syst. 2023, 39, 1719–1736. [Google Scholar] [CrossRef]
- Rogers, L.M.; Cordero, A.M.; Pfeiffer, C.M.; Hausman, D.B.; Tsang, B.L.; De-Regil, L.M.; Rosenthal, J.; Razzaghi, H.; Wong, E.C.; Weakland, A.P.; et al. Global folate status in women of reproductive age: A systematic review with emphasis on methodological issues. Ann. N. Y. Acad. Sci. 2018, 1431, 35–57. [Google Scholar] [CrossRef]
- Tola, F.M.S. The concept of folic acid supplementation and its role in prevention of neural tube defect among pregnant women: PRISMA. Medicine 2024, 103, e38154. [Google Scholar] [CrossRef] [PubMed]
- King, S.E.; Yeh, P.T.; Rhee, D.K.; Tuncalp, Ö.; Rogers, L.M.; Narasimhan, M. Self-management of iron and folic acid supplementation during pre-pregnancy, pregnancy and postnatal periods: A systematic review. BMJ Glob. Health 2021, 6, e005531. [Google Scholar] [CrossRef] [PubMed]
- Prakot, S.M.; Fink, A.M.; Culbert, G.; Visudtibhan, P.J. An Analysis and Evaluation of the Information-Motivation-Behavioral Skills (IMB) Model for Antiretroviral Therapy. Adv. Nurs. Sci. 2024, 47, 73–88. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- John, S.A.; Walsh, J.L.; Weinhardt, L.S. The Information–Motivation–Behavioral Skills Model Revisited: A Network-Perspective Structural Equation Model Within a Public Sexually Transmitted Infection Clinic Sample of Hazardous Alcohol Users. AIDS Behav. 2017, 21, 1208–1218. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fisher, J.D.; Fisher, W.A. An Information-Motivation-Behavioral Skills (IMB) model of pandemic risk and prevention. Adv. Psychol. 2023, 1, 1–26. [Google Scholar] [CrossRef]
Characteristic | Before | After | p-Value |
---|---|---|---|
Sample Size | 20,154 | 23,798 | |
Age (mean ± SD) | 29.45 ± 6.75 | 29.14 ± 6.89 | p < 0.01 |
Socioeconomic Status | 8.24 ± 3.65 | 7.63 ± 3.53 | p < 0.01 |
Folic Acid Level (ng/mL) | 7.25 ± 3.75 | 7.06 ± 3.81 | p = 0.099 |
Outcome | Before (n = 20,154) | After (n = 23,798) | OR [95% CI] | p-Value |
---|---|---|---|---|
Folic Acid Testing Rate | 14.74% | 17.35% | 1.21 [1.19–1.24] | <0.0001 |
Folic Acid Deficiency (<3 ng/mL) | 6.30% | 7.38% | 1.19 [1.10–1.28] | <0.0001 |
Folic Acid Supplement Use | 5.45% | 15.98% | 3.01 [2.86–3.17] | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Litvak, D.; Merzon, E.; Shenhar, Y.; Green, I.; Vinker, S.; Israel, A.; Golan Cohen, A. Improving Folic Acid Supplementation Through Electronic Medical Record Interface Modifications—A Retrospective Study. J. Clin. Med. 2025, 14, 4939. https://doi.org/10.3390/jcm14144939
Litvak D, Merzon E, Shenhar Y, Green I, Vinker S, Israel A, Golan Cohen A. Improving Folic Acid Supplementation Through Electronic Medical Record Interface Modifications—A Retrospective Study. Journal of Clinical Medicine. 2025; 14(14):4939. https://doi.org/10.3390/jcm14144939
Chicago/Turabian StyleLitvak, Dina, Eugene Merzon, Yotam Shenhar, Ilan Green, Shlomo Vinker, Ariel Israel, and Avivit Golan Cohen. 2025. "Improving Folic Acid Supplementation Through Electronic Medical Record Interface Modifications—A Retrospective Study" Journal of Clinical Medicine 14, no. 14: 4939. https://doi.org/10.3390/jcm14144939
APA StyleLitvak, D., Merzon, E., Shenhar, Y., Green, I., Vinker, S., Israel, A., & Golan Cohen, A. (2025). Improving Folic Acid Supplementation Through Electronic Medical Record Interface Modifications—A Retrospective Study. Journal of Clinical Medicine, 14(14), 4939. https://doi.org/10.3390/jcm14144939