Assessment of Selected Biochemical Parameters of the Renin–Angiotensin–Aldosterone System in Repeat Convalescent Plasma Donors in the Context of Long-Term Changes Following SARS-CoV-2 Infection
Abstract
1. Introduction
2. Materials and Methods
2.1. Blood Sample Collection
- -
- A confirmed past SARS-CoV-2 infection (positive result of RT-PCR test);
- -
- Good health at the time of each donation (no symptoms of COVID-19 or any other disease and not a carrier);
- -
- Fulfillment of standard eligibility criteria for blood donation, including age, body weight, blood pressure, heart rate, and hemoglobin level, as defined by the regulation of the Minister of Health.
2.2. RAAS Parameter Determination
2.3. Statistical Analysis
3. Results
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jackson, C.B.; Farzan, M.; Chen, B.; Choe, H. Mechanisms of SARS-CoV-2 Entry into Cells. Nat. Rev. Mol. Cell Biol. 2021, 23, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Shatizadeh Malekshahi, S.; Yavarian, J.; Shafiei-Jandaghi, N.Z. Usage of Peptidases by SARS-CoV-2 and Several Human Coronaviruses as Receptors: A Mysterious Story. Biotechnol. Appl. Biochem. 2022, 69, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Fountain, J.H.; Kaur, J.; Lappin, S.L. Physiology, Renin Angiotensin System. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Patel, S.; Rauf, A.; Khan, H.; Abu-Izneid, T. Renin-Angiotensin-Aldosterone (RAAS): The Ubiquitous System for Homeostasis and Pathologies. Biomed. Pharmacother. 2017, 94, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Roche, J.A.; Roche, R. A Hypothesized Role for Dysregulated Bradykinin Signaling in COVID-19 Respiratory Complications. FASEB J. 2020, 34, 7265–7269. [Google Scholar] [CrossRef]
- Augustine, R.; Abhilash, S.; Nayeem, A.; Salam, S.A.; Augustine, P.; Dan, P.; Maureira, P.; Mraiche, F.; Gentile, C.; Hansbro, P.M.; et al. Increased Complications of COVID-19 in People with Cardiovascular Disease: Role of the Renin–Angiotensin-Aldosterone System (RAAS) Dysregulation. Chem. Biol. Interact. 2022, 351, 109738. [Google Scholar] [CrossRef]
- Jasiczek, J.; Doroszko, A.; Trocha, T.; Trocha, M. Role of the RAAS in Mediating the Pathophysiology of COVID-19. Pharmacol. Rep. 2024, 76, 475–486. [Google Scholar] [CrossRef]
- Angeli, F.; Zappa, M.; Verdecchia, P. Rethinking the Role of the Renin-Angiotensin System in the Pandemic Era of SARS-CoV-2. J. Cardiovasc. Dev. Dis. 2023, 10, 14. [Google Scholar] [CrossRef]
- Bani Hani, A.; Abu Tarboush, N.; Bani Ali, M.; Alabhoul, F.; Alansari, F.; Abuhani, A.; Al-Kawak, M.; Shamoun, B.; Albdour, S.; Abu Abeeleh, M.; et al. Serum ACE2 Level Is Associated With Severe SARS-CoV-2 Infection: A Cross-Sectional Observational Study. Biomark. Insights 2022, 17, 1–6. [Google Scholar] [CrossRef]
- Patel, V.B.; Clarke, N.; Wang, Z.; Fan, D.; Parajuli, N.; Basu, R.; Putko, B.; Kassiri, Z.; Turner, A.J.; Oudit, G.Y. Angiotensin II Induced Proteolytic Cleavage of Myocardial ACE2 Is Mediated by TACE/ADAM-17: A Positive Feedback Mechanism in the RAS. J. Mol. Cell. Cardiol. 2014, 66, 167–176. [Google Scholar] [CrossRef]
- Osman, I.O.; Melenotte, C.; Brouqui, P.; Million, M.; Lagier, J.C.; Parola, P.; Stein, A.; La Scola, B.; Meddeb, L.; Mege, J.L.; et al. Expression of ACE2, Soluble ACE2, Angiotensin I, Angiotensin II and Angiotensin-(1-7) Is Modulated in COVID-19 Patients. Front. Immunol. 2021, 12, 625732. [Google Scholar] [CrossRef]
- Reindl-Schwaighofer, R.; Hödlmoser, S.; Domenig, O.; Krenn, K.; Eskandary, F.; Krenn, S.; Schörgenhofer, C.; Rumpf, B.; Karolyi, M.; Traugott, M.T.; et al. The Systemic Renin-Angiotensin System in COVID-19. Sci. Rep. 2022, 12, 20117. [Google Scholar] [CrossRef] [PubMed]
- Krenn, K.; Kraft, F.; Mandroiu, L.; Tretter, V.; Reindl-Schwaighofer, R.; Clement, T.; Domenig, O.; Vossen, M.G.; Riemann, G.; Poglitsch, M.; et al. Renin–Angiotensin–Aldosterone System Activation in Plasma as Marker for Prognosis in Critically Ill Patients with COVID-19: A Prospective Exploratory Study. Ann. Intensive Care 2025, 15, 10. [Google Scholar] [CrossRef] [PubMed]
- Rojas, M.; Rodríguez, Y.; Acosta-Ampudia, Y.; Monsalve, D.M.; Zhu, C.; Li, Q.Z.; Ramírez-Santana, C.; Anaya, J.M. Autoimmunity Is a Hallmark of Post-COVID Syndrome. J. Transl. Med. 2022, 20, 129. [Google Scholar] [CrossRef] [PubMed]
- Cervia-Hasler, C.; Brüningk, S.C.; Hoch, T.; Fan, B.; Muzio, G.; Thompson, R.C.; Ceglarek, L.; Meledin, R.; Westermann, P.; Emmenegger, M.; et al. Persistent Complement Dysregulation with Signs of Thromboinflammation in Active Long Covid. Science 2024, 383, 7942. [Google Scholar] [CrossRef]
- Taquet, M.; Skorniewska, Z.; Hampshire, A.; Chalmers, J.D.; Ho, L.P.; Horsley, A.; Marks, M.; Poinasamy, K.; Raman, B.; Leavy, O.C.; et al. Acute Blood Biomarker Profiles Predict Cognitive Deficits 6 and 12 Months after COVID-19 Hospitalization. Nat. Med. 2023, 29, 2498–2508. [Google Scholar] [CrossRef]
- Su, Q.; Lau, R.I.; Liu, Q.; Chan, F.K.L.; Ng, S.C. Post-Acute COVID-19 Syndrome and Gut Dysbiosis Linger beyond 1 Year After SARS-CoV-2 Clearance. Gut 2023, 72, 1230–1232. [Google Scholar] [CrossRef]
- Swank, Z.; Senussi, Y.; Manickas-Hill, Z.; Yu, X.G.; Li, J.Z.; Alter, G.; Walt, D.R. Persistent Circulating Severe Acute Respiratory Syndrome Coronavirus 2 Spike Is Associated With Post-Acute Coronavirus Disease 2019 Sequelae. Clin. Infect. Dis. 2023, 76, E487–E490. [Google Scholar] [CrossRef]
- Rozporządzenie Ministra Zdrowia w Sprawie Warunków Pobierania Krwi Od Kandydatów Na Dawców Krwi i Dawców Krwi; Dziennik Ustaw Rzeczypospolitej Polskiej poz. 1741; Sejm: Warsaw, Polska, 2017.
- Stanek, M.; Leśków, A.; Diakowska, D. Effect of SARS-CoV-2 Infection on Selected Parameters of the Apelinergic System in Repeat Blood Donors. Biomedicines 2024, 12, 2583. [Google Scholar] [CrossRef]
- Bharadwaj, A.; Kaur, R.; Gupta, S. Emerging Treatment Approaches for COVID-19 Infection: A Critical. Curr. Mol. Med. 2023, 24, 435–448. [Google Scholar] [CrossRef]
- Zuo, W.; He, D.; Liang, C.; Du, S.; Hua, Z.; Nie, Q.; Zhou, X.; Yang, M.; Tan, H.; Xu, J.; et al. The Persistence of SARS-CoV-2 in Tissues and Its Association with Long COVID Symptoms: A Cross-Sectional Cohort Study in China. Lancet Infect. Dis. 2024, 24, 845–855. [Google Scholar] [CrossRef]
- Kozłowski, P.; Leszczyńska, A.; Ciepiela, O. Long COVID Definition, Symptoms, Risk Factors, Epidemiology and Autoimmunity: A Narrative Review. Am. J. Med. Open 2024, 11, 100068. [Google Scholar] [CrossRef] [PubMed]
- Szabo, S.; Muzyka, I.; Muller, V.; Szabo, A.J.; Szijártó, A.; Gyires, K.; Doczi, T.; Janszky, J.; Stengel, A.; Göpel, S.; et al. Long COVID Has Variable Incidence and Clinical Presentations: Our 6-Country Collaborative Study. Inflammopharmacology 2025, 33, 1531–1535. [Google Scholar] [CrossRef] [PubMed]
- Medina-Enríquez, M.M.; Lopez-León, S.; Carlos-Escalante, J.A.; Aponte-Torres, Z.; Cuapio, A.; Wegman-Ostrosky, T. ACE2: The Molecular Doorway to SARS-CoV-2. Cell Biosci. 2020, 10, 148. [Google Scholar] [CrossRef] [PubMed]
- Beyerstedt, S.; Casaro, E.B.; Rangel, É.B. COVID-19: Angiotensin-Converting Enzyme 2 (ACE2) Expression and Tissue Susceptibility to SARS-CoV-2 Infection. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 905–919. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, H.; An, Y. ACE2 Shedding and the Role in COVID-19. Front. Cell. Infect. Microbiol. 2022, 11, 789180. [Google Scholar] [CrossRef]
- Durand, M.J.; Zinkevich, N.S.; Riedel, M.; Gutterman, D.D.; Nasci, V.L.; Salato, V.K.; Hijjawi, J.B.; Reuben, C.F.; North, P.E.; Beyer, A.M. Vascular Actions of Angiotensin 1-7 in the Human Microcirculation. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 1254–1262. [Google Scholar] [CrossRef]
- Sahu, S.; Patil, C.R.; Kumar, S.; Apparsundaram, S.; Goyal, R.K. Role of ACE2-Ang (1–7)-Mas Axis in Post-COVID-19 Complications and Its Dietary Modulation. Mol. Cell. Biochem. 2021, 477, 225–240. [Google Scholar] [CrossRef]
- Sampaio, W.O.; De Castro, C.H.; Santos, R.A.S.; Schiffrin, E.L.; Touyz, R.M. Angiotensin-(1-7) Counterregulates Angiotensin II Signaling in Human Endothelial Cells. Hypertension 2007, 50, 1093–1098. [Google Scholar] [CrossRef]
- Stanek, M.; Leśków, A.; Szymczyk-Nużka, M.; Wojciechowska-Chorębała, A.; Diakowska, D. Evaluation of Serological and Hematological Parameters in Donors of SARS-CoV-2 Convalescent Plasma of Respect to Time Periods of Donation. Acta Haematol. Pol. 2024, 55, 157–167. [Google Scholar] [CrossRef]
- Zipeto, D.; Palmeira, J.d.F.; Argañaraz, G.A.; Argañaraz, E.R. ACE2/ADAM17/TMPRSS2 Interplay May Be the Main Risk Factor for COVID-19. Front. Immunol. 2020, 11, 576745. [Google Scholar] [CrossRef]
- Jocher, G.; Grass, V.; Tschirner, S.K.; Riepler, L.; Breimann, S.; Kaya, T.; Oelsner, M.; Hamad, M.S.; Hofmann, L.I.; Blobel, C.P.; et al. ADAM10 and ADAM17 Promote SARS-CoV-2 Cell Entry and Spike Protein-Mediated Lung Cell Fusion. EMBO Rep. 2022, 23, e54305. [Google Scholar] [CrossRef] [PubMed]
- Lartey, N.L.; Valle-Reyes, S.; Vargas-Robles, H.; Jiménez-Camacho, K.E.; Guerrero-Fonseca, I.M.; Castellanos-Martínez, R.; Montoya-García, A.; García-Cordero, J.; Cedillo-Barrón, L.; Nava, P.; et al. ADAM17/MMP Inhibition Prevents Neutrophilia and Lung Injury in a Mouse Model of COVID-19. J. Leukoc. Biol. 2022, 111, 1147–1158. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Edsfeldt, A.; Svensson, J.; Ruge, T.; Goncalves, I.; Swärd, P. ADAM-17 Activity and Its Relation to ACE2: Implications for Severe COVID-19. Int. J. Mol. Sci. 2024, 25, 5911. [Google Scholar] [CrossRef] [PubMed]
- Hedges, J.F.; Snyder, D.T.; Robison, A.; Grifka-Walk, H.M.; Blackwell, K.; Shepardson, K.; Kominsky, D.; Rynda-Apple, A.; Walcheck, B.; Jutila, M.A. An ADAM17-Neutralizing Antibody Reduces Inflammation and Mortality While Increasing Viral Burden in a COVID-19 Mouse Model. Front. Immunol. 2022, 13, 918881. [Google Scholar] [CrossRef]
- de Queiroz, T.M.; Lakkappa, N.; Lazartigues, E. ADAM17-Mediated Shedding of Inflammatory Cytokines in Hypertension. Front. Pharmacol. 2020, 11, 1154. [Google Scholar] [CrossRef]
- Cojocaru, E.; Cojocaru, C.; Vlad, C.E.; Eva, L. Role of the Renin-Angiotensin System in Long COVID’s Cardiovascular Injuries. Biomedicines 2023, 11, 2004. [Google Scholar] [CrossRef]
- Panimathi, R.; Gurusamy, E.; Mahalakshmi, S.; Ramadevi, K.; Kaarthikeyan, G.; Anil, S. Impact of COVID-19 on Renal Function: A Multivariate Analysis of Biochemical and Immunological Markers in Patients. Cureus 2022, 14, e22076. [Google Scholar] [CrossRef]
- O’Reilly, S. Pulmonary Fibrosis in COVID-19: Mechanisms, Consequences and Targets. QJM 2023, 116, 750–754. [Google Scholar] [CrossRef]
Control Group (n = 30) | Period 1 (n = 30) | Period 2 (n = 30) | Period 3 (n = 30) | Period 4 (n = 30) | |
---|---|---|---|---|---|
ADAM 10 (ng/mL) | 6.14 [4.00–9.11] | 7.36 [3.53–11.91] | 6.37 [2.47–10.82] | 5.94 [4.03–8.63] | 5.71 [2.84–7.49] |
ADAM 17 (ng/mL) | 87.50 [54.53–136.38] | 101.21 [42.35–240.38] | 80.44 [30.11–190.51] | 85.77 [36.80–135.25] | 57.61 [37.35–133.80] |
ACE (ng/mL) | 20.25 [12.65–48.50] | 34.96 [18.72–41.25] | 25.57 [14.31–59.22] | 25.11 [14.90–47.40] | 20.36 [15.87–48.40] |
ACE 2 (ng/mL) | 28.36 [14.15–54.61] | 48.16 [27.20–63.97] * | 49.44 [18.16–86.17] | 39.01 [17.61–58.10] | 34.70 [17.35–54.41] |
Ang I (ng/mL) | 335.76 [210.38–696.53] | 577.35 [312.64–895.58] | 494.71 [230.88–923.23] | 481.38 [263.82–661.47] | 452.05 [288.52–660.47] |
Ang II (pg/mL) | 100.78 [51.05–228.94] | 188.41 [95.54–235.83] | 178.04 [98.19–240.98] | 156.04 [84.04–223.70] | 157.35 [83.04–224.51] |
Ang 1–9 (ng/L) | 701.31 [435.53–970.15] | 1150.54 [507.81–1795.09] ** | 813.27 [420.54–1519.63] | 980.50 [483.27–1601.50] | 997.81 [475.09–1442.27] |
Ang 1–7 (ng/L) | 397.00 [238.78–528.07] | 488.00 [409.33–1111.33] *** | 586.00 [265.33–928.00] **** | 555.00 [259.33–732.80] | 554.00 [258.34–716.67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanek, M.; Diakowska, D.; Kaliszewski, K.; Leśków, A. Assessment of Selected Biochemical Parameters of the Renin–Angiotensin–Aldosterone System in Repeat Convalescent Plasma Donors in the Context of Long-Term Changes Following SARS-CoV-2 Infection. J. Clin. Med. 2025, 14, 4910. https://doi.org/10.3390/jcm14144910
Stanek M, Diakowska D, Kaliszewski K, Leśków A. Assessment of Selected Biochemical Parameters of the Renin–Angiotensin–Aldosterone System in Repeat Convalescent Plasma Donors in the Context of Long-Term Changes Following SARS-CoV-2 Infection. Journal of Clinical Medicine. 2025; 14(14):4910. https://doi.org/10.3390/jcm14144910
Chicago/Turabian StyleStanek, Marta, Dorota Diakowska, Krzysztof Kaliszewski, and Anna Leśków. 2025. "Assessment of Selected Biochemical Parameters of the Renin–Angiotensin–Aldosterone System in Repeat Convalescent Plasma Donors in the Context of Long-Term Changes Following SARS-CoV-2 Infection" Journal of Clinical Medicine 14, no. 14: 4910. https://doi.org/10.3390/jcm14144910
APA StyleStanek, M., Diakowska, D., Kaliszewski, K., & Leśków, A. (2025). Assessment of Selected Biochemical Parameters of the Renin–Angiotensin–Aldosterone System in Repeat Convalescent Plasma Donors in the Context of Long-Term Changes Following SARS-CoV-2 Infection. Journal of Clinical Medicine, 14(14), 4910. https://doi.org/10.3390/jcm14144910