Analysis of Factors Affecting the Astigmatic Correction Outcomes of Keratorefractive Lenticule Extraction Surgery
Abstract
1. Introduction
2. Patients and Methods
2.1. Patients
2.2. Surgical Methods
2.3. Data Collection
2.4. Data Analysis
3. Results
3.1. Basic Data
3.2. Bivariate Analyses
3.3. Multivariate Linear Regression
3.4. Multivariate Logistic Regression
4. Discussions
5. Limitation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brunner, B.S.; Feldhaus, L.; Mayer, W.J.; Siedlecki, J.; Dirisamer, M.; Priglinger, S.G.; Kassumeh, S.; Luft, N. Epithelial Remodeling and Epithelial Wavefront Aberrometry after Spherical vs. Cylindrical Myopic Small Incision Lenticule Extraction (SMILE). J. Clin. Med. 2024, 13, 3970. [Google Scholar] [CrossRef]
- Lau, Y.T.; Shih, K.C.; Tse, R.H.; Chan, T.C.; Jhanji, V. Comparison of Visual, Refractive and Ocular Surface Outcomes Between Small Incision Lenticule Extraction and Laser-Assisted In Situ Keratomileusis for Myopia and Myopic Astigmatism. Ophthalmol. Ther. 2019, 8, 373–386. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Alió del Barrio, J.L.; Wilkins, M.; Cochener, B.; Ang, M. Refractive surgery. Lancet 2019, 393, 2085–2098. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Zhao, Y.; Fu, D.; Zhou, X.; Gao, Y.; Yu, Z. Posterior corneal stability after small incision lenticule extraction with different optical zones. Eye 2024, 38, 3087–3092. [Google Scholar] [CrossRef]
- Pedersen, I.B.; Ivarsen, A.; Hjortdal, J. Changes in Astigmatism, Densitometry, and Aberrations After SMILE for Low to High Myopic Astigmatism: A 12-Month Prospective Study. J. Refract. Surg. 2017, 33, 11–17. [Google Scholar] [CrossRef]
- Han, X.; Li, M.; Zhao, J.; Sun, B.; Zhang, X.; Xu, H.; Zhou, X. Hydroxyproline Concentration and Associated Factors of Preserved Small Incision Lenticule Extraction-Derived Corneal Stromal Lenticules. Cornea 2024, 43, 1285–1290. [Google Scholar] [CrossRef]
- Lee, C.Y.; Jeng, Y.T.; Yang, S.F.; Huang, C.T.; Chao, C.C.; Lian, I.B.; Huang, J.Y.; Chang, C.K. Topographic and Surgical Risk Factors for Early Myopic Regression between Small Incision Lenticule Extraction and Laser In Situ Keratomileusis. Diagnostics 2024, 14, 1275. [Google Scholar] [CrossRef]
- Zheng, G.Y.; Du, J.; Zhang, J.S.; Liu, S.B.; Nie, X.L.; Zhu, X.H.; Tang, X.X.; Xin, B.L.; Mai, Z.B.; Zhang, W.X. Contrast sensitivity and higher-order aberrations in patients with astigmatism. Chin. Med. J. 2007, 120, 882–885. [Google Scholar] [CrossRef]
- Pietila, J.; Huhtala, A.; Makinen, P.; Nattinen, J.; Rajala, T.; Salmenhaara, K.; Uusitalo, H. Uncorrected visual acuity, postoperative astigmatism, and dry eye symptoms are major determinants of patient satisfaction: A comparative, real-life study of femtosecond laser in situ keratomileusis and small incision lenticule extraction for myopia. Clin. Ophthalmol. 2018, 12, 1741–1755. [Google Scholar] [CrossRef]
- Yang, S.; Wang, H.; Chen, Z.; Li, Y.; Chen, Y.; Long, Q. Possible risk factors of opaque bubble layer and its effect on high-order aberrations after small incision Lenticule extraction. Front. Med. 2023, 10, 1156677. [Google Scholar] [CrossRef]
- Gao, W.; Zhao, X.; Wang, Y. Change in the corneal material mechanical property for small incision lenticule extraction surgery. Front. Bioeng. Biotechnol. 2023, 11, 1034961. [Google Scholar] [CrossRef] [PubMed]
- Yoo, T.K.; Kim, D.; Kim, J.S.; Kim, H.S.; Ryu, I.H.; Lee, I.S.; Kim, J.K.; Na, K.H. Comparison of early visual outcomes after SMILE using VISUMAX 800 and VISUMAX 500 for myopia: A retrospective matched case-control study. Sci. Rep. 2024, 14, 11989. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Ye, Y.; Yu, N.; Zhang, X.; He, J.; Zheng, H.; Wei, H.; Zhuang, J.; Yu, K. Comparison of Small Incision Lenticule Extraction Surgery with and Without Cyclotorsion Error Correction for Patients with Astigmatism. Cornea 2019, 38, 723–729. [Google Scholar] [CrossRef]
- Xu, J.; Liu, F.; Liu, M.; Yang, X.; Weng, S.; Lin, L.; Lin, H.; Xie, Y.; Liu, Q. Effect of Cyclotorsion Compensation with a Novel Technique in Small Incision Lenticule Extraction Surgery for the Correction of Myopic Astigmatism. J. Refract. Surg. 2019, 35, 301–308. [Google Scholar] [CrossRef]
- Chen, P.; Ye, Y.; Yu, N.; Zhang, X.; Zhuang, J.; Yu, K. Correction of Astigmatism with SMILE with Axis Alignment: 6-Month Results From 622 Eyes. J. Refract. Surg. 2019, 35, 138–145. [Google Scholar] [CrossRef]
- Yang, X.; Liu, Y.; Xiao, K.; Song, Q.; Xu, Y.; Li, J.; Zhou, Y. Effect of Cyclotorsion Compensation in Small Incision Lenticule Extraction Surgery for the Correction of Myopic Astigmatism: A Systematic Review and Meta-Analysis. Ophthalmol. Ther. 2024, 13, 1271–1288. [Google Scholar] [CrossRef]
- Sachdev, G.S.; Patekar, K.B.; Ramamurthy, S. Comparative analysis of visual outcomes following small-incision lenticule extraction with or without cyclotorsion compensation in eyes with high astigmatism: Contralateral eye study. Indian. J. Ophthalmol. 2023, 71, 2469–2473. [Google Scholar] [CrossRef]
- Chow, S.S.W.; Chow, L.L.W.; Lee, C.Z.; Chan, T.C.Y. Astigmatism Correction Using SMILE. Asia Pac. J. Ophthalmol. 2019, 8, 391–396. [Google Scholar] [CrossRef]
- Huang, J.; Zhou, X.; Qian, Y. Decentration following femtosecond laser small incision lenticule extraction (SMILE) in eyes with high astigmatism and its impact on visual quality. BMC Ophthalmol. 2019, 19, 151. [Google Scholar] [CrossRef]
- Kang, D.S.Y.; Lee, H.; Reinstein, D.Z.; Roberts, C.J.; Arba-Mosquera, S.; Archer, T.J.; Kim, E.K.; Seo, K.Y.; Kim, T.I. Comparison of the Distribution of Lenticule Decentration Following SMILE by Subjective Patient Fixation or Triple Marking Centration. J. Refract. Surg. 2018, 34, 446–452. [Google Scholar] [CrossRef]
- Alpins, N. Astigmatism analysis by the Alpins method. J. Cataract Refract. Surg. 2001, 27, 31–49. [Google Scholar] [CrossRef] [PubMed]
- Alpins, N.A. Vector analysis of astigmatism changes by flattening, steepening, and torque. J. Cataract Refract. Surg. 1997, 23, 1503–1514. [Google Scholar] [CrossRef]
- Reinstein, D.Z.; Archer, T.J.; Srinivasan, S.; Mamalis, N.; Kohnen, T.; Dupps, W.J., Jr.; Randleman, J.B. Standard for reporting refrac-tive outcomes of intraocular lens-based refractive surgery. J. Cataract Refract. Surg. 2017, 43, 435–439. [Google Scholar] [CrossRef]
- Chan, T.C.; Ng, A.L.; Cheng, G.P.; Wang, Z.; Ye, C.; Woo, V.C.; Tham, C.C.; Jhanji, V. Vector analysis of astigmatic correction after small-incision lenticule extraction and femtosecond-assisted LASIK for low to moderate myopic astigmatism. Br. J. Ophthalmol. 2016, 100, 553–559. [Google Scholar] [CrossRef]
- Chan, T.C.Y.; Wang, Y.; Ng, A.L.K.; Zhang, J.; Yu, M.C.Y.; Jhanji, V.; Cheng, G.P.M. Vector analysis of high (>/=3 diopters) astigmatism correction using small-incision lenticule extraction and laser in situ keratomileusis. J. Cataract Refract. Surg. 2018, 44, 802–810. [Google Scholar] [CrossRef]
- Jun, I.; Kang, D.S.Y.; Arba-Mosquera, S.; Reinstein, D.Z.; Archer, T.J.; Jean, S.K.; Kim, E.K.; Seo, K.Y.; Lee, H.K.; Kim, T.I. Comparison of clinical outcomes between vector planning and manifest refraction planning in SMILE for myopic astigmatism. J. Cataract Refract. Surg. 2020, 46, 1149–1158. [Google Scholar] [CrossRef]
- Ivarsen, A.; Gyldenkerne, A.; Hjortdal, J. Correction of astigmatism with small-incision lenticule extraction: Impact of against-the-rule and with-the-rule astigmatism. J. Cataract Refract. Surg. 2018, 44, 1066–1072. [Google Scholar] [CrossRef]
- Berthaut, A.; Mirshahi, P.; Benabbou, N.; Azzazene, D.; Bordu, C.; Therwath, A.; Legeais, J.M.; Mirshahi, M. Vascular endothelial growth factor receptor-1 (VEGFR-1) expression in human corneal fibroblast decreased with age. Mol. Vis. 2009, 15, 1997–2007. [Google Scholar]
- Gley, P. C R Seances. Soc. Biol. Fil. 1961, 155, 252. [Google Scholar]
- Read, S.A.; Vincent, S.J.; Collins, M.J. The visual and functional impacts of astigmatism and its clinical management. Ophthalmic Physiol. Opt. 2014, 34, 267–294. [Google Scholar] [CrossRef]
- Yildiz, B.K.; Urdem, U.; Goksel Ulas, M.; Yildirim, Y.; Agca, A.; Fazil, K.; Aygit, E.D.; Taskapili, M.; Demirok, A. Correction of myopic astigmatism by small incision lenticule extraction: Does laterality matter? Lasers Med. Sci. 2019, 34, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Perez-Izquierdo, R.; Rodriguez-Vallejo, M.; Matamoros, A.; Martinez, J.; Garzon, N.; Poyales, F.; Fernandez, J. Influence of Preoperative Astigmatism Type and Magnitude on the Effectiveness of SMILE Correction. J. Refract. Surg. 2019, 35, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Sawusch, M.R.; Guyton, D.L. Optimal astigmatism to enhance depth of focus after cataract surgery. Ophthalmology 1991, 98, 1025–1029. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Zhou, X.; Wu, J.; Zhang, Z.; Li, T.; Zhou, Z.; Zhang, S.; Li, G. Small incision lenticule extraction (SMILE) and femtosecond laser LASIK: Comparison of corneal wound healing and inflammation. Br. J. Ophthalmol. 2014, 98, 263–269. [Google Scholar] [CrossRef]
- Hjortdal, J.O.; Vestergaard, A.H.; Ivarsen, A.; Ragunathan, S.; Asp, S. Predictors for the outcome of small-incision lenticule extraction for Myopia. J. Refract. Surg. 2012, 28, 865–871. [Google Scholar] [CrossRef]
- Alpins Noel, A. FRACO, FRCOphth, FACSa. New method of targeting vectors to treat astigmatism. J. Cataract Refract. Surg. 1997, 23, 65–75. [Google Scholar] [CrossRef]
- Alio Del Barrio, J.L.; Vargas, V.; Al-Shymali, O.; Alio, J.L. Small incision lenticule extraction (SMILE) in the correction of myopic astigmatism: Outcomes and limitations—An update. Eye Vis. 2017, 4, 26. [Google Scholar] [CrossRef]
Variable | Mean ± SD/N(%) | Range |
---|---|---|
Female | 65 (66.3%) | |
Male | 33 (33.7%) | |
Left Eye | 50 (51.0%) | |
Right Eye | 48 (49.0%) | |
Age (years) | 26.11 ± 4.44 | 19–39 |
Cylinder (D) | −1.52 ± 0.85 | −4.25~−0.25 |
Spherical equivalent (D) | −5.88 ± 1.82 | −11.00~−2.00 |
Sphere-to-cylinder ratio | 4.77 ± 3.66 | 0.30~24.00 |
Axis deviation between K1 and cylinder (°) | 9.07 ± 12.25 | 0.20~65.40 |
Corneal astigmatism (D) | −1.83 ± 0.72 | −3.70~−0.40 |
Keratometry (D) | 43.54 ± 1.22 | 39.70~46.90 |
Posterior corneal astigmatism (D) | 0.46 ± 0.14 | 0.00~0.80 |
Central corneal thickness (µm) | 544.43 ± 25.34 | 494.00~604.00 |
Tear film quality | 0.75 ± 0.73 | 0.05~4.04 |
Spherical correction amount (D) | −0.51 ± 0.10 | −0.75~−0.25 |
Optical zone diameter (mm) | 6.63 ± 0.30 | 6.00~7.30 |
Parameters | Mean ± SD | Range |
---|---|---|
Post cylinder (D) | −0.38 ± 0.30 | −1.00 to 0.00 |
Post SE (D) | −0.12 ± 0.37 | −1.00 to 0.88 |
Difference vector (D) | 0.39 ± 0.30 | 0.00 to 1.01 |
Magnitude of error (D) | 0.00 ± 0.34 | −0.86 to 0.74 |
Angle of error (degrees) | −3.13 ± 13.39 | −68.00 to 51.43 |
|Angle of error| (degrees) | 7.84 ± 11.30 | 0.00 to 68.00 |
Correction index | 1.03 ± 0.41 | 0.19 to 2.44 |
Index of success | 0.41 ± 0.43 | 0.00 to 1.76 |
Predictors | Post Cylinder | Post SE | Post Astigmatism Classification | Difference Vector | Magnitude of Error | Angle of Error | |Angle of Error| | Correction Index | Index of Success |
---|---|---|---|---|---|---|---|---|---|
Age | −0.205 * | 0.034 | −0.158 | 0.206 * | −0.048 | −0.024 | 0.303 ** | 0.073 | 0.250 * |
Gender | 0.090 | −0.074 | 0.021 | −0.069 | −0.007 | 0.017 | −0.040 | −0.030 | −0.018 |
Eye (right/left) | −0.041 | 0.082 | −0.012 | 0.066 | 0.222 * | 0.146 | −0.040 | −0.258 * | 0.037 |
Eye (dominant/non-dominant) | 0.019 | −0.152 | −0.074 | −0.065 | 0.049 | −0.107 | −0.058 | −0.068 | 0.003 |
Pre Cylinder | 0.075 | −0.083 | −0.054 | −0.087 | −0.046 | −0.002 | 0.271 ** | −0.016 | 0.403 ** |
Pre SE | 0.099 | −0.049 | −0.020 | −0.085 | 0.059 | 0.107 | −0.025 | −0.062 | −0.003 |
The ratio of sphere to cylinder | 0.006 | −0.045 | −0.057 | −0.042 | −0.061 | −0.056 | 0.333 ** | 0.003 | 0.404 ** |
Axial deviation between K1 and cylinder | 0.148 | −0.016 | 0.000 | −0.125 | −0.046 | 0.103 | 0.003 | 0.045 | 0.093 |
Corneal astigmatism | 0.177 | 0.029 | −0.030 | −0.134 | −0.100 | −0.033 | 0.146 | 0.048 | 0.283 ** |
Anterior corneal curvature | −0.004 | −0.146 | −0.150 | −0.051 | 0.073 | 0.132 | 0.034 | −0.063 | 0.013 |
Back-surface astigmatism | −0.011 | −0.125 | 0.039 | −0.047 | 0.070 | 0.101 | −0.150 | −0.023 | −0.322 ** |
Central corneal thickness | −0.033 | −0.150 | 0.013 | 0.046 | 0.036 | 0.075 | 0.066 | −0.002 | 0.052 |
Tear film quality | −0.123 | 0.068 | 0.067 | 0.114 | −0.193 | −0.065 | 0.002 | 0.167 | 0.043 |
Spherical plus amount in surgery | 0.022 | 0.020 | −0.181 | 0.015 | 0.180 | 0.169 | −0.061 | −0.161 | −0.029 |
Optical diameter | 0.074 | 0.047 | −0.036 | −0.089 | 0.014 | 0.075 | −0.081 | −0.037 | −0.027 |
Preoperative Characteristics | With the Rule (Post) (n = 35) | Against the Rule (Post) (n = 15) | Oblique (Post) (n = 25) | No Residual Cylinder (n = 23) | p Value |
---|---|---|---|---|---|
With the rule (n = 85) | 31 | 13 | 22 | 19 | |
Against the rule (n = 6) | 2 | 0 | 2 | 2 | |
Oblique (n = 7) | 2 | 2 | 1 | 2 | 0.977 a |
Tear film quality (Mean ± SD) | 0.58 ± 0.45 | 1.27 ± 0.67 | 0.69 ± 0.69 | 0.79 ± 0.92 | 0.041 b |
Correction Index | Magnitude of Error (D) | |
---|---|---|
Eye (right/left) | −0.221 ** | 0.133 * |
The ratio of sphere to cylinder | 0.024 ** | |
Tear film quality | 0.208 ** | −0.167 ** |
Spherical plus amount in surgery (D) | 0.678 * |
Characteristics | Odds Ratio | 95% CI |
---|---|---|
Characteristics associated with index of success > 0.27 | ||
Pre Cylinder | 2.803 ** | 1.560~5.036 |
Characteristics associated with |angle of error| > 4° | ||
Age | 1.154 * | 1.035~1.288 |
Pre Cylinder | 2.010 * | 1.142~3.540 |
Characteristics | Odds Ratio | 95% CI |
---|---|---|
Different eye side | ||
Right eye | 1.00 | |
Left eye | 0.334 * | 0.138~0.810 |
Preoperative astigmatism classification | ||
With the rule | 1.00 | |
Against the rule | 0.056 * | 0.005~0.685 |
Oblique | 0.123 | 0.010~1.443 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Liu, M.; Liu, Q. Analysis of Factors Affecting the Astigmatic Correction Outcomes of Keratorefractive Lenticule Extraction Surgery. J. Clin. Med. 2025, 14, 4850. https://doi.org/10.3390/jcm14144850
Xu J, Liu M, Liu Q. Analysis of Factors Affecting the Astigmatic Correction Outcomes of Keratorefractive Lenticule Extraction Surgery. Journal of Clinical Medicine. 2025; 14(14):4850. https://doi.org/10.3390/jcm14144850
Chicago/Turabian StyleXu, Jiping, Manli Liu, and Quan Liu. 2025. "Analysis of Factors Affecting the Astigmatic Correction Outcomes of Keratorefractive Lenticule Extraction Surgery" Journal of Clinical Medicine 14, no. 14: 4850. https://doi.org/10.3390/jcm14144850
APA StyleXu, J., Liu, M., & Liu, Q. (2025). Analysis of Factors Affecting the Astigmatic Correction Outcomes of Keratorefractive Lenticule Extraction Surgery. Journal of Clinical Medicine, 14(14), 4850. https://doi.org/10.3390/jcm14144850