Point-Based Prediction Model for Bladder Cancer Risk in Diabetes: A Random Survival Forest-Guided Approach
Abstract
1. Introduction
2. Methods
2.1. Study Design and Study Population
2.2. Patients
2.3. Outcome
2.4. Input Variables
2.5. Data Analysis
3. Results
3.1. Final Scoring System
3.2. Bladder Cancer-Free Survival During Follow-Up
3.3. Model Performance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Larsson, S.C.; Orsini, N.; Brismar, K.; Wolk, A. Diabetes mellitus and risk of bladder cancer: A meta-analysis. Diabetologia 2006, 49, 2819–2823. [Google Scholar] [CrossRef] [PubMed]
- Jubber, I.; Ong, S.; Bukavina, L.; Black, P.C.; Compérat, E.; Kamat, A.M.; Kiemeney, L.; Lawrentschuk, N.; Lerner, S.P.; Meeks, J.J.; et al. Epidemiology of bladder cancer in 2023: A systematic review of risk factors. Eur. Urol. 2023, 84, 176–190. [Google Scholar] [CrossRef] [PubMed]
- Harrison, H.; Usher-Smith, J.A.; Li, L.; Roberts, L.; Lin, Z.; Thompson, R.E.; Rossi, S.H.; Stewart, G.D.; Walter, F.M.; Griffin, S.; et al. Risk prediction models for symptomatic patients with bladder and kidney cancer: A systematic review. Br. J. Gen. Pract. 2021, 72, e11–e18. [Google Scholar] [CrossRef]
- Hippisley-Cox, J.; Coupland, C. Symptoms and risk factors to identify men with suspected cancer in primary care: Derivation and validation of an algorithm. Br. J. Gen. Pract. 2013, 63, e1–e10. [Google Scholar] [CrossRef]
- Hippisley-Cox, J.; Coupland, C. Symptoms and risk factors to identify women with suspected cancer in primary care: Derivation and validation of an algorithm. Br. J. Gen. Pract. 2013, 63, e11–e21. [Google Scholar] [CrossRef] [PubMed]
- Hippisley-Cox, J.; Coupland, C. Identifying patients with suspected renal tract cancer in primary care: Derivation and validation of an algorithm. Br. J. Gen. Pract. 2012, 62, e251–e260. [Google Scholar] [CrossRef] [PubMed]
- Tan, G.H.; Shah, S.A.; Ann, H.S.; Hemdan, S.N.; Lim, C.S.; Al-Fahmi Abdul Galib, N.; Singam, P.; Kong, C.H.C.; Goh, E.H.; Bahadzor, B.; et al. Stratifying patients with haematuria into high or low risk groups for bladder cancer: A novel clinical scoring system. Asian Pac. J. Cancer Prev. 2013, 14, 6327–6330. [Google Scholar] [CrossRef]
- Tan, W.S.; Ahmad, A.; Feber, A.; Mostafid, H.; Cresswell, J.; Fankhauser, C.D.; Waisbrod, S.; Hermanns, T.; Sasieni, P.; Kelly, J.D.; et al. Development and validation of a haematuria cancer risk score to identify patients at risk of harbouring cancer. J. Intern. Med. 2019, 285, 436–445. [Google Scholar] [CrossRef]
- Tsai, I.J.; Shen, W.C.; Lee, C.L.; Wang, H.D.; Lin, C.Y. Machine learning in prediction of bladder cancer on clinical laboratory data. Diagnostics 2022, 12, 203. [Google Scholar] [CrossRef] [PubMed]
- Shakhssalim, N.; Talebi, A.; Pahlevan-Fallahy, M.T.; Sotoodeh, K.; Alavimajd, H.; Borumandnia, N.; Taheri, M. Lifestyle and occupational risks assessment of bladder cancer using machine learning-based prediction models. Cancer Rep. 2023, 6, e1860. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Ning, Y.; Yuan, H.; Goldstein, B.A.; Ong, M.E.H.; Liu, N.; Chakraborty, B. AutoScore-Survival: Developing interpretable machine learning-based time-to-event scores with right-censored survival data. J. Biomed. Inform. 2022, 125, 103959. [Google Scholar] [CrossRef]
- Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression, 2nd ed.; John Wiley and Sons: New York, NY, USA, 2000; Chapter 5, Assessing the fit of the model; pp. 160–164. ISBN 9780471722144. [Google Scholar]
- Udy, A.A.; Scheinkestel, C.; Pilcher, D.; Bailey, M.; Australian and New Zealand Intensive Care Society Centre for Outcomes and Resource Evaluation. The association between low admission peak plasma creatinine concentration and in-hospital mortality in patients admitted to intensive care in Australia and New Zealand. Crit. Care Med. 2016, 44, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Cartin-Ceba, R.; Afessa, B.; Gajic, O. Low baseline serum creatinine concentration predicts mortality in critically ill patients independent of body mass index. Crit. Care Med. 2007, 35, 2420–2423. [Google Scholar] [CrossRef]
- Thongprayoon, C.; Cheungpasitporn, W.; Kashani, K. Serum creatinine level, a surrogate of muscle mass, predicts mortality in critically ill patients. J. Thorac. Dis. 2016, 8, E305–E311. [Google Scholar] [CrossRef] [PubMed]
- Lees, J.S.; Ho, F.; Parra-Soto, S.; Celis-Morales, C.; Welsh, P.; Sullivan, M.K.; Jani, B.D.; Sattar, N.; Lang, N.N.; Pell, J.P.; et al. Kidney function and cancer risk: An analysis using creatinine and cystatin C in a cohort study. EClinicalMedicine. 2021, 38, 101030. [Google Scholar] [CrossRef]
- Xu, H.; Matsushita, K.; Su, G.; Trevisan, M.; Ärnlöv, J.; Barany, P.; Lindholm, B.; Elinder, C.G.; Lambe, M.; Carrero, J.J. Estimated glomerular filtration rate and the risk of cancer. Clin. J. Am. Soc. Nephrol. 2019, 14, 530–539. [Google Scholar] [CrossRef]
- Wong, G.; Staplin, N.; Emberson, J.; Baigent, C.; Turner, R.; Chalmers, J.; Zoungas, S.; Pollock, C.; Cooper, B.; Harris, D.; et al. Chronic kidney disease and the risk of cancer: An individual patient data meta-analysis of 32,057 participants from six prospective studies. BMC Cancer 2016, 16, 488. [Google Scholar] [CrossRef]
- Lees, J.S.; Elyan, B.M.P.; Herrmann, S.M.; Lang, N.N.; Jones, R.J.; Mark, P.B. The ’other’ big complication: How chronic kidney disease impacts on cancer risks and outcomes. Nephrol. Dial. Transplant. 2023, 38, 1071–1079. [Google Scholar] [CrossRef] [PubMed]
- Stengel, B. Chronic kidney disease and cancer: A troubling connection. J. Nephrol. 2010, 23, 253–262. [Google Scholar]
- Lim, Y.J.; Sidor, N.A.; Tonial, N.C.; Che, A.; Urquhart, B.L. Uremic toxins in the progression of chronic kidney disease and cardiovascular disease: Mechanisms and therapeutic targets. Toxins 2021, 13, 142. [Google Scholar] [CrossRef]
- Russo, P.; Marino, F.; Rossi, F.; Bizzarri, F.P.; Ragonese, M.; Dibitetto, F.; Filomena, G.B.; Marafon, D.P.; Ciccarese, C.; Iacovelli, R.; et al. Is systemic immune-inflammation index a real non-invasive biomarker to predict oncological outcomes in patients eligible for radical cystectomy? Medicina 2023, 59, 2063. [Google Scholar] [CrossRef] [PubMed]
Bladder Cancer | No Cancer random subset | |||||
---|---|---|---|---|---|---|
Characteristics | (n = 644) | (n = 19,320) | χ2/t | p | ||
Demographics | ||||||
Male, n (%) | 499 | (77.48%) | 9783 | (50.64%) | 179.85 | <0.001 |
Age at assessment in year, mean ± SD | 71.21 | ±9.56 | 62.33 | ±11.65 | 23.01 | <0.001 |
Duration of diabetes in year, median (IQR) | 6 | (2–12) | 3 | (1–9) | ||
Behaviors | ||||||
Current or former smoker, n (%) | 346 | (53.73%) | 5741 | (29.72%) | 169.54 | <0.001 |
Current or former drinker, n (%) | 252 | (39.13%) | 5658 | (29.29%) | 28.98 | <0.001 |
Medical history | ||||||
Cardiovascular diseases | ||||||
Ischemic heart disease, n (%) | 88 | (13.66%) | 1340 | (6.94%) | 42.49 | <0.001 |
Cerebrovascular disease, n (%) | 58 | (9.01%) | 1185 | (6.13%) | 8.81 | 0.003 |
Heart failure, n (%) | 26 | (4.04%) | 352 | (1.82%) | 16.47 | <0.001 |
Hypertension, n (%) | 588 | (91.30%) | 16,489 | (85.35%) | 17.88 | <0.001 |
Respiratory diseases | ||||||
Chronic obstructive pulmonary disease, n (%) | 13 | (2.02%) | 120 | (0.62%) | 18.39 | <0.001 |
Pneumonia, n (%) | 38 | (5.90%) | 580 | (3.00%) | 17.46 | <0.001 |
Chronic kidney disease, n (%) | 76 | (11.80%) | 3026 | (15.66%) | 7.08 | 0.008 |
Liver cirrhosis, n (%) | 9 | (1.40%) | 376 | (1.95%) | 0.99 | 0.319 |
Family history of diabetes, n (%) | 249 | (38.66%) | 9098 | (47.09%) | 17.77 | <0.001 |
Medication use | ||||||
Anti-diabetic drugs | ||||||
Metformin, n (%) | 362 | (56.21%) | 7812 | (40.43%) | 64.15 | <0.001 |
Sulfonylurea, n (%) | 263 | (40.84%) | 5274 | (27.30%) | 57.01 | <0.001 |
Insulin, n (%) | 55 | (8.54%) | 1244 | (6.44%) | 4.52 | 0.033 |
Dipeptidyl peptidase-4 inhibitors, n (%) | 21 | (3.26%) | 786 | (4.07%) | 1.05 | 0.306 |
Sodium-glucose cotransporter-2 inhibitors, n (%) | 0 | (0%) | 59 | (0.31%) | ||
Glucagon-like peptide-1 receptor agonists, n (%) | 0 | (0%) | 8 | (0.04%) | ||
Glucosidase inhibitor, n (%) | 4 | (0.62%) | 83 | (0.43%) | ||
Glitazone, n (%) | 3 | (0.47%) | 71 | (0.37%) | ||
Meglitinide, n (%) | 0 | (0%) | 5 | (0.03%) | ||
Any of the above, n (%) | 467 | (72.52%) | 10,203 | (52.81%) | 97.26 | <0.001 |
Aspirin, n (%) | 207 | (32.14%) | 4016 | (20.79%) | 48.19 | <0.001 |
Non-steroidal anti-inflammatory drugs, n (%) | 325 | (50.47%) | 10,522 | (54.46%) | 4.01 | 0.045 |
Anti-coagulants, n (%) | 48 | (7.45%) | 923 | (4.78%) | 9.64 | 0.002 |
Anti-platelets, n (%) | 37 | (5.75%) | 1404 | (7.27%) | 2.16 | 0.142 |
Anti-hypertensive drugs, n (%) | 496 | (77.02%) | 13,293 | (68.80%) | 19.68 | <0.001 |
Statins, n (%) | 327 | (50.78%) | 9524 | (49.30%) | 0.55 | 0.460 |
Anthropometric measurements | ||||||
Body mass index in kg/m 2, mean ± SD | 25.34 | ±3.49 | 26.07 | ±4.23 | 5.18 | <0.001 |
Waist-to-hip ratio, mean ± SD | 0.96 | ±0.06 | 0.94 | ±0.06 | 8.32 | <0.001 |
Laboratory measurements | ||||||
Serum creatinine in µmol/L, mean ± SD | 98.10 | ±48.47 | 81.53 | ±40.40 | 8.58 | <0.001 |
HbA1c in %, mean ± SD | 7.30 | ±1.33 | 7.37 | ±1.46 | 1.31 | 0.190 |
Fasting glucose in mmol/L, mean ± SD | 7.33 | ±1.92 | 7.62 | ±2.25 | 3.75 | <0.001 |
Low-density lipoprotein cholesterol in mmol/L, mean ± SD | 2.61 | ±0.75 | 2.67 | ±0.82 | 1.99 | 0.047 |
High-density lipoprotein cholesterol in mmol/L, mean ± SD | 1.23 | ±0.33 | 1.27 | ±0.33 | 3.03 | 0.002 |
Triglycerides in mmol/L, mean ± SD | 1.49 | ±0.92 | 1.63 | ±1.26 | 3.75 | <0.001 |
Variable | Value | Point |
---|---|---|
Age, years | Less than 43 | 0 |
43 to 52 | 3 | |
53 to 72 | 38 | |
73 to 81 | 56 | |
82 or above | 62 | |
Serum creatinine, µmol/L | Less than 51 | 3 |
51 to 60 | 0 | |
61 to 93 | 3 | |
94 to 125 | 9 | |
126 or above | 12 | |
Sex | Female | 0 |
Male | 16 | |
Smoking | Never smoker | 0 |
Ever smoker | 9 |
Score Interval | ||||
---|---|---|---|---|
Time | 0 to 49 | 50 to 69 | 70 to 89 | 90 to 99 |
t = 2 years | 0.999 | 0.993 | 0.977 | 0.922 |
t = 5 years | 0.997 | 0.979 | 0.948 | 0.802 |
t = 7 years | 0.996 | 0.955 | 0.908 | 0.734 |
Score Interval | Total Number of Patients, n | Number of Patients Who Developed Bladder Cancer During Follow-Up, n (%) | |
---|---|---|---|
0 to 9 | 27,211 | 2 | (0.01%) |
10 to 19 | 9094 | 2 | (0.02%) |
20 to 29 | 19,639 | 5 | (0.03%) |
30 to 39 | 45,798 | 15 | (0.03%) |
40 to 49 | 72,284 | 34 | (0.05%) |
50 to 59 | 72,993 | 90 | (0.12%) |
60 to 69 | 77,467 | 191 | (0.25%) |
70 to 79 | 30,761 | 103 | (0.33%) |
80 to 89 | 15,136 | 105 | (0.69%) |
90 to 99 | 12,387 | 97 | (0.78%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yau, S.T.Y.; Hung, C.T.; Leung, E.Y.M.; Chong, K.C.; Lee, A.; Yeoh, E.K. Point-Based Prediction Model for Bladder Cancer Risk in Diabetes: A Random Survival Forest-Guided Approach. J. Clin. Med. 2025, 14, 4. https://doi.org/10.3390/jcm14010004
Yau STY, Hung CT, Leung EYM, Chong KC, Lee A, Yeoh EK. Point-Based Prediction Model for Bladder Cancer Risk in Diabetes: A Random Survival Forest-Guided Approach. Journal of Clinical Medicine. 2025; 14(1):4. https://doi.org/10.3390/jcm14010004
Chicago/Turabian StyleYau, Sarah Tsz Yui, Chi Tim Hung, Eman Yee Man Leung, Ka Chun Chong, Albert Lee, and Eng Kiong Yeoh. 2025. "Point-Based Prediction Model for Bladder Cancer Risk in Diabetes: A Random Survival Forest-Guided Approach" Journal of Clinical Medicine 14, no. 1: 4. https://doi.org/10.3390/jcm14010004
APA StyleYau, S. T. Y., Hung, C. T., Leung, E. Y. M., Chong, K. C., Lee, A., & Yeoh, E. K. (2025). Point-Based Prediction Model for Bladder Cancer Risk in Diabetes: A Random Survival Forest-Guided Approach. Journal of Clinical Medicine, 14(1), 4. https://doi.org/10.3390/jcm14010004