Preoperative Home-Based Multimodal Physiotherapy in Patients Scheduled for a Knee Arthroplasty Who Catastrophize About Their Pain: A Randomized Controlled Trial
Abstract
1. Introduction
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. Sample Size Calculation
2.4. Randomization and Blinding
2.5. Interventions
2.6. Outcome Measures
2.7. Statistical Analysis
3. Results
3.1. Between-Group Comparisons (Table 2)
Variables | Groups | Baseline (T0) | Post-Treatment (T1) | 1 Month Post-Surgery (T2) | 3 Months Post-Surgery (T3) | 6 Months Post-Surgery (T4) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Median (IQR) | Dunn’s Test | Median (IQR) | Dunn’s Test | Median (IQR) | Dunn’s Test | Median (IQR) | Dunn’s Test | Median (IQR) | Dunn’s Test | |||
PCS (0–52) | Con | 36 (13) | - | 37 (16) | 0.024 * 0.002 † 1.000 ‡ | 23 (22) | 0.018 * 0.046 † 1.000 ‡ | 8 (20) | - | 12 (20) | 0.007 * 0.194 † 0.688 ‡ | 0.121; 0.108 T0 0.001; 0.357 T1 0.010; 0.287 T2 0.173; 0.103 T3 0.008; 0.291 T4 |
TPE | 28 (13) | 19 (8) | 6 (23) | 2 (7) | 0.5 (2) | |||||||
MPT | 28.5 (14) | 13.5 (18) | 11 (16) | 3 (7) | 2 (6) | |||||||
VAS Rest (0–10) | Con | 6 (4) | - | 5 (3.8) | - | 5 (3.5) | 0.038 * 0.672 † 0.729 ‡ | 2.5 (3.9) | - | 1 (3.9) | 0.032 * 0.060 † 1.000 ‡ | 0.485; 0.037 T0 0.065; 0.148 T1 0.044; 0.189 T2 0.260; 0.077 T3 0.015; 0.247 T6 |
TPE | 5 (2.8) | 4 (3.8) | 3 (4) | 0 (2) | 0 (0) | |||||||
MPT | 5.5 (3.1) | 3.75 (3.3) | 4 (3) | 2 (4) | 0 (0) | |||||||
VAS Walk (0–10) | Con | 8 (3) | - | 8 (2) | 0.046 * 0.357 † 1.000 ‡ | 6 (3.3) | 0.067 * 0.049 † 1.000 ‡ | 3.5 (4.3) | - | 2 (5.3) | - | 0.128; 0.105 T0 0.048; 0.164 T1 0.022; 0.230 T2 0.228; 0.084 T3 0.388; 0.056 T4 |
TPE | 9 (2) | 6 (2) | 3 (3) | 1 (5) | 1.5 (4.1) | |||||||
MPT | 8 (2.6) | 7 (4.9) | 3.5 (3.1) | 2 (5) | 1 (3) | |||||||
WOMAC Pain (0–20) | Con | 11 (6) | - | 11 (6) | - | 7 (4) | - | 5 (4) | - | 4 (3) | - | 0.601; 0.026 T0 0.128; 0.111 T1 0.347; 0.064 T2 0.588; 0.030 T3 0.173; 0.103 T4 |
TPE | 12 (5) | 8 (3) | 7 (4) | 4 (5) | 2 (4) | |||||||
MPT | 10 (5) | 8 (3) | 6 (3) | 3 (5) | 2 (4) | |||||||
WOMAC total score (0–96) | Con | 54 (25) | - | 55 (24) | 0.442 * 0.017 † 0.535 ‡ | 40 (21) | - | 21 (15) | - | 16.5 (20) | - | 0.867; 0.007 T0 0.022; 0.207 T1 0.059; 0.172 T2 0.433; 0.048 T3 0.059; 0.167 T4 |
TPE | 57 (25) | 47 (10) | 28 (22) | 21 (19) | 8 (10) | |||||||
MPT | 51 (22) | 37 (18) | 29 (18) | 16 (23) | 4 (14) | |||||||
TSK-11 (11–44) | Con | 33 (8) | - | 37 (8) | 0.002 * 0.006 † 1.000 ‡ | 33 (5.25) | 0.050 * 0.007 † 1.000 ‡ | 31 (5) | 0.001 * 0.001 † 1.000 ‡ | 33 (7) | 0.003 * 0.001 † 1.000 ‡ | 0.213; 0.079 T0 <0.001; 0.390 T1 0.006; 0.325 T2 <0.001; 0.505 T3 <0.001; 0.496 T4 |
TPE | 31 (8) | 25 (8) | 25 (17) | 24 (9) | 23 (10) | |||||||
MPT | 30 (18) | 27.5 (12) | 22.5 (8) | 22 (10) | 22 (13) | |||||||
CPSES (0–190) | Con | 78 (60) | - | 78 (47) | 0.067 * 0.001 † 0.181 ‡ | 89 (59) | 0.042 * 0.027 † 1.000 ‡ | 119 (78) | 0.139 * 0.001 † 0.307 ‡ | 125 (28) | 0.065 * 0.011 † 1.000 ‡ | 0.186; 0.086 T0 <0.001; 0.461 T1 0.012; 0.275 T2 0.001; 0.405 T3 0.008; 0.293 T4 |
TPE | 94 (37) | 112 (31) | 147 (68) | 157 (30) | 160.5 (23) | |||||||
MPT | 111 (41) | 148 (45) | 145 (53) | 167 (21) | 176 (39) | |||||||
4 m Walking Test (m/s) | Con | 0.571 (0.321) | - | 0.560 (0.336) | - | 0.502 (0.498) | - | 0.771 (0.173) | - | 0.754 (0.255) | 1.000 * 0.033 † 0.412 ‡ | 0.114; 0.111 T0 0.172; 0.095 T1 0.161; 0.118 T2 0.334; 0.073 T3 0.039; 0.197 T4 |
TPE | 0.774 (0.381) | 0.735 (0.352) | 0.722 (0.506) | 0.818 (0.517) | 0.755 (0.415) | |||||||
MPT | 0.688 (0.283) | 0.703 (0.323) | 0.751 (0.386) | 0.812 (0.398) | 0.913 (0.435) | |||||||
YBT-A (cm) | Con | 0 (24) | - | 0 (10.9) | 0.001 * 0.010 † 1.000 ‡ | - | 12.17 (28.3) | 0.044 * 0.042 † 1.000 ‡ | 27 (30.9) | 0.210 * 0.062 † 1.000 ‡ | 0.449; 0.041 T0 <0.001; 0.421 T1 -T2 0.016; 0.278 T3 0.043; 0.185 T4 | |
TPE | 22.2 (32.8) | 31.2 (13.7) | 34 (19.8) | 30.1 (22) | ||||||||
MPT | 0 (26.8) | 28.5 (9.9) | 34 (10.8) | 31.8 (20.3) | ||||||||
YBT-M (cm) | Con | 0 (0) | - | 0 (20.7) | 0.290 * 0.044 † 1.000 ‡ | - | 0 (47.5) | 0.084 * 0.090 † 1.000 ‡ | 0 (48.4) | 0.024 * 0.103 † 1.000 ‡ | 0.810; 0.011 T0 0.044; 0.169 T1 -T2 0.037; 0.221 T3 0.017; 0.246 T4 | |
TPE | 0 (24.6) | 0 (56.6) | 48.6 (31.1) | 54.4(15.1) | ||||||||
MPT | 0 (0) | 42 (43.25) | 53.7 (24.9) | 50.5 (9) | ||||||||
YBT-L (cm) | Con | 0 (45) | - | 0 (23.3) | 0.131 * 0.025 † 1.000 ‡ | - | 19.8 (56.9) | - | 0 (58.8) | 0.097 * 0.015 † 1.000 ‡ | 0.907; 0.005 T0 0.022; 0.207 T1 -T2 0.154; 125 T3 0.012; 0.269 T4 | |
TPE | 0 (48.8) | 44.3 (59.4) | 54.8 (38.7) | 58.1 (19.1) | ||||||||
MPT | 0 (38.8) | 52 (10.3) | 54.7 (23) | 64.7 (13.2) |
3.2. Intragroup Comparison of Different Operative Periods (Table 3)
Variables | Groups | Preoperative Period | Perioperative Period | Postoperative Period | Friedmann’s Anova (p-Value) | Effect Size (r) | |
---|---|---|---|---|---|---|---|
Baseline vs. Post-Treatment * | Post-Treatment vs. 1 Month Post-Surgery † | 1 Month Post-Surgery vs. 3 Months Post-Surgery ‡ | 3 Months Post-Surgery vs. 6 Months Post-Surgery § | ||||
PCS Total | Con | 0.916 | 0.028 | 0.010 | 0.965 | <0.001 | 0.029 *, 0.693 †, 0.777 ‡, 0.013 § |
TPE | 0.002 | 0.068 | 0.066 | 0.236 | <0.001 | 0.850 *, 0.550 †, 0.554 ‡, 0.375 § | |
MPT | 0.003 | 0.575 | 0.035 | 0.864 | <0.001 | 0.848 *, 0.177 †, 0.667 ‡, 0.052 § | |
VAS Rest | Con | 0.813 | 0.219 | 0.049 | 0.593 | 0.001 | 0.065 *, 0.370 †, 0.545 ‡, 0.143 § |
TPE | 0.042 | 0.034 | 0.042 | 0.109 | <0.001 | 0.564 *, 0.638 †, 0.613 ‡, 0.507 § | |
MPT | 0.004 | 0.779 | 0.046 | 0.027 | <0.001 | 0.839 *, 0.089 †, 0.632 ‡, 0.665 § | |
VAS Walk | Con | 0.752 | 0.075 | 0.171 | 0.430 | <0.001 | 0.088 *, 0.537 †, 0.379 ‡, 0.211 § |
TPE | 0.002 | 0.008 | 0.067 | 0.581 | 0.007 | 0.850 *, 0.804 †, 0.551 ‡, 0.175 § | |
MPT | 0.037 | 0.011 | 0.609 | 0.105 | 0.003 | 0.604 *, 0.807 †, 0.162 ‡, 0.489 § | |
WOMAC Pain | Con | 0.937 | 0.033 | 0.015 | 0.630 | <0.001 | 0.022 *, 0.643 †, 0.673 ‡, 0.129 § |
TPE | 0.002 | 0.018 | 0.011 | 0.014 | <0.001 | 0.839 *, 0.715 †, 0.770 ‡, 0.778 § | |
MPT | 0.009 | 0.026 | 0.011 | 0.440 | <0.001 | 0.753 *, 0.703 †, 0.802 ‡, 0.233 § | |
WOMAC Total Score | Con | 0.441 | 0.033 | 0.002 | 0.401 | <0.001 | 0.214 *, 0.644 †, 0.853 ‡, 0.224 § |
TPE | 0.021 | 0.008 | 0.003 | 0.013 | <0.001 | 0.640 *, 0.805 †, 0.888 ‡, 0.787 § | |
MPT | 0.005 | 0.012 | 0.009 | 0.069 | <0.001 | 0.805 *, 0.793 †, 0.822 ‡, 0.549 § | |
TSK-11 | Con | 0.624 | 0.153 | 0.533 | 0.754 | 0.046 | 0.136 *, 0.452 †, 0.188 ‡, 0.091§ |
TPE | 0.004 | 0.798 | 0.284 | 10.000 | 0.005 | 0.801 *, 0.077†, 0.323‡, 0.000 § | |
MPT | 0.004 | 0.260 | 0.609 | 0.502 | 0.001 | 0.840 *, 0.356 †, 0.162 ‡, 0.203 § | |
CPSES | Con | 0.529 | 0.575 | 0.066 | 0.054 | 0.088 | 0.174 *, 0.177 †, 0.554 ‡, 0.555§ |
TPE | 0.009 | 0.213 | 0.119 | 0.192 | <0.001 | 0.727 *, 0.375 †, 0.469 ‡, 0.413 § | |
MPT | 0.007 | 0.445 | 0.007 | 0.539 | <0.001 | 0.782 *, 0.242 †, 0.855 ‡, 0.185 § | |
4 m Walking Test | Con | 0.650 | 0.114 | 0.007 | 0.424 | 0.019 | 0.126 *, 0.500 †, 0.854 ‡, 0.241 § |
TPE | 0.861 | 0.203 | 0.008 | 0.508 | 0.009 | 0.049 *, 0.403 †, 0.888 ‡, 0.210 § | |
MPT | 0.530 | 0.445 | 0.012 | 0.214 | 0.018 | 0.181 *, 0.242 †, 0.891 ‡, 0.415 § | |
YBT-A | Con | 0.043 | - | - | 0.116 | 0.008 | 0.561 *, 0.474 § |
TPE | 0.005 | 1.000 | 0.008 | 0.783 *, 0.000 § | |||
MPT | 0.022 | 0.869 | 0.005 | 0.662 *, 0.059 § | |||
YBT-M | Con | 0.593 | - | - | 0.273 | 0.021 | 0.148 *, 0.330 § |
TPE | 0.046 | 0.066 | <0.001 | 0.552 *, 0.581 § | |||
MPT | 0.008 | 0.401 | <0.001 | 0.770 *, 0.280 § | |||
YBT-L | Con | 0.223 | - | - | 0.138 | 0.004 | 0.338 *, 0.447 § |
TPE | 0.083 | 0.445 | <0.001 | 0.481 *, 0.242 § | |||
MPT | 0.007 | 0.036 | 0.004 | 0.780 *, 0.700 § |
4. Discussion
Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schug, S.A.; Lavand’Homme, P.; Barke, A.; Korwisi, B.; Rief, W.; Treede, R.D. The IASP classification of chronic pain for ICD-11: Chronic postsurgical or posttraumatic pain. Pain 2019, 160, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Beswick, A.D.; Wylde, V.; Gooberman-Hill, R.; Blom, A.; Dieppe, P. What proportion of patients report long-term pain after total hip or knee replacement for osteoarthritis? A systematic review of Prospective studies in unselected patients [Internet]. BMJ Open 2012, 2, e000435. [Google Scholar] [CrossRef] [PubMed]
- Riddle, D.L.; Wade, J.B.; Jiranek, W.A.; Kong, X. Preoperative pain catastrophizing predicts pain outcome after knee arthroplasty. Clin. Orthop. Relat. Res. 2010, 468, 798–806. [Google Scholar] [CrossRef] [PubMed]
- Sorel, J.C.; Veltman, E.S.; Honig, A.; Poolman, R.W. The influence of preoperative psychological distress on pain and function after total knee arthroplasty: A systematic review and meta-analysis. Bone Joint J. 2019, 101-B, 7–14. [Google Scholar]
- Terradas-Monllor, M.; Navarro-Fernández, G.; Ruiz, M.A.; Beltran-Alacreu, H.; Fernández-Carnero, J.; Salinas-Chesa, J.; Ochandorena-Acha, M. Postoperative psychosocial factors in health functioning and health-related quality of life after knee arthroplasty: A 6-month follow up prospective observational study. Pain. Med. 2021, 22, 1905–1915. [Google Scholar] [CrossRef]
- Burns, L.C.; Ritvo, S.E.; Ferguson, M.K.; Clarke, H.; Seltzer, Z.; Katz, J. Pain catastrophizing as a risk factor for chronic pain after total knee arthroplasty: A systematic review. J. Pain. Res. 2015, 8, 21–32. [Google Scholar]
- Larsen, D.B.; Laursen, M.; Edwards, R.R.; Simonsen, O.; Arendt-Nielsen, L.; Petersen, K.K. The Combination of Preoperative Pain, Conditioned Pain Modulation, and Pain Catastrophizing Predicts Postoperative Pain 12 Months After Total Knee Arthroplasty. Pain. Med. 2021, 22, 1583–1590. [Google Scholar] [CrossRef] [PubMed]
- Lewis, G.N.; Rice, D.A.; McNair, P.J.; Kluger, M. Predictors of persistent pain after total knee arthroplasty: A systematic review and meta-analysis. Br. J. Anaesth. 2015, 114, 551–561. [Google Scholar] [CrossRef]
- Ashoorion, V.; Sadeghirad, B.; Wang, L.; Noori, A.; Abdar, M.; Kim, Y.; Chang, Y.; Rehman, N.; Lopes, L.C.; Couban, R.J.; et al. Predictors of Persistent Post-Surgical Pain Following Total Knee Arthroplasty: A Systematic Review and Meta-Analysis of Observational Studies. Pain. Med. 2023, 24, 369–381. [Google Scholar] [CrossRef]
- Quartana, P.J.; Campbell, C.M.; Edwards, R.R. Pain catastrophizing: A critical review. Expert. Rev. Neurother. 2009, 9, 745–758. [Google Scholar] [CrossRef] [PubMed]
- Petrini, L.; Arendt-Nielsen, L. Understanding Pain Catastrophizing: Putting Pieces Together. Front. Psychol. 2020, 11, 603420. [Google Scholar] [CrossRef] [PubMed]
- Edwards, R.R.; Haythornthwaite, J.A.; Smith, M.T.; Klick, B.; Katz, J.N. Catastrophizing and depressive symptoms as prospective predictors of outcomes following total knee replacement. Pain. Res. Manag. 2009, 14, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Forsythe, M.E.; Dunbar, M.J.; Hennigar, A.W.; Sullivan, M.J.L.; Gross, M. Prospective relation between catastrophizing and residual pain following knee arthroplasty: Two-year follow-up. Pain. Res. Manag. 2008, 13, 335–341. [Google Scholar] [CrossRef]
- Bossmann, T.; Brauner, T.; Wearing, S.; Horstmann, T. Predictors of chronic pain following total knee replacement in females and males: An exploratory study. Pain. Manag. 2017, 7, 391–403. [Google Scholar] [CrossRef] [PubMed]
- Birch, S.; Stilling, M.; Mechlenburg, I.; Hansen, T.B. No effect of cognitive behavioral patient education for patients with pain catastrophizing before total knee arthroplasty: A randomized controlled trial. Acta Orthop. 2020, 91, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Buvanendran, A.; Sremac, A.C.; Merriman, P.A.; Della Valle, C.J.; Burns, J.W.; McCarthy, R.J. Preoperative cognitive-behavioral therapy for reducing pain catastrophizing and improving pain outcomes after total knee replacement: A randomized clinical trial. Reg. Anesth. Pain. Med. 2021, 46, 313–321. [Google Scholar] [CrossRef]
- Riddle, D.L.; Keefe, F.J.; Ang, D.C.; Slover, J.; Jensen, M.P.; Bair, M.J.; Kroenke, K.; Perera, R.A.; Reed, S.D.; McKee, D.; et al. Pain coping skills training for patients who catastrophize about pain prior to knee arthroplasty: A multisite randomized clinical trial. J. Bone Jt. Surg. Am. 2019, 101, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Schütze, R.; Rees, C.; Smith, A.; Slater, H.; Campbell, J.M.; O’Sullivan, P. How Can We Best Reduce Pain Catastrophizing in Adults With Chronic Noncancer Pain? A Systematic Review and Meta-Analysis. J. Pain. 2018, 19, 233–256. [Google Scholar] [CrossRef]
- Terradas-Monllor, M.; Ochandorena-Acha, M.; Beltran-Alacreu, H.; Garcia Oltra, E.; Collado Saenz, F.; Hernandez Hermoso, J. A feasibility study of home-based preoperative multimodal physiotherapy for patients scheduled for a total knee arthroplasty who catastrophize about their pain. Physiother. Theory Pract. 2022, 39, 1606–1625. [Google Scholar] [CrossRef]
- Barbour, V.; Bhui, K.; Chescheir, N.; Clavien, P.A.; Diener, M.K.; Glasziou, P.; Golub, R.M.; Grimshaw, J.M.; Groves, T.; Hopewell, S.; et al. CONSORT Statement for randomized Trials of nonpharmacologic treatments: A 2017 update and a CONSORT extension for nonpharmacologic Trial Abstracts. Ann. Intern. Med. 2017, 167, 40–47. [Google Scholar]
- Dihle, A.; Helseth, S.; Paul, S.M.; Miaskowski, C. The exploration of the establishment of cutpoints to categorize the severity of acute postoperative pain. Clin. J. Pain. 2006, 22, 617–624. [Google Scholar] [CrossRef]
- García Campayo, J.; Rodero, B.; Alda, M.; Sobradiel, N.; Montero, J.; Moreno, S. Validation of the Spanish version of the Pain Catastrophizing Scale in fibromyalgia. Med. Clin. 2008, 131, 487–492. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Doig, G.S.; Simpson, F. Randomization and allocation concealment: A practical guide for researchers. J. Crit. Care 2005, 20, 187–191. [Google Scholar] [CrossRef]
- Carlsson, A. Assessment of chronic pain. I. Aspects of the reliability and validity of the visual analogue scale. Pain 1983, 16, 87–101. [Google Scholar] [CrossRef] [PubMed]
- Escobar, A.; Quintana, J.M.; Bilbao, A.; Azkárate, J.; Güenaga, J.I. Validation of the Spanish version of the WOMAC questionnaire for patients with hip or knee osteoarthritis. Western Ontario and McMaster Universities Osteoarthritis Index. Clin. Rheumatol. 2002, 21, 466–471. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Pérez, L.; López-Martínez, A.E.; Ruiz-Párraga, G.T. Psychometric properties of the spanish version of the Tampa Scale for Kinesiophobia (TSK). J. Pain 2011, 12, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Martín-Aragón, M.; Pastor, J.; Rodríguez, M.J.; March, A.; Lledó, S.; López-Roig, M.T. Self-Efficacy Perception in Chronic Pain. Adaptation y validation of the Chronic Pain Self-Efficacy Scale. J. Health Psychol. 1999, 11, 53–75. [Google Scholar]
- Unver, B.; Baris, R.H.; Yuksel, E.; Cekmece, S.; Kalkan, S.; Karatosun, V. Reliability of 4-meter and 10-meter walk tests after lower extremity surgery. Disabil. Rehabil. 2017, 39, 2572–2576. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, S.W.; Teyhen, D.S.; Lorenson, C.L.; Warren, R.L.; Koreerat, C.M.; Straseske, C.A.; Childs, J.D. Y-Balance Test: A Reliability Study Involving Multiple Raters. Mil. Med. 2013, 178, 1264–1270. [Google Scholar] [CrossRef] [PubMed]
- Tomczak, M.; Tomczak, E. The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trends Sport. Sci. 2014, 1, 19–25. [Google Scholar]
- Field, A.P. Discovering Statistics 4th Edition Summary [Internet]; Choice Reviews Online; SAGE: London, UK, 2013. [Google Scholar]
- Patel, R.M.; Anderson, B.L.; Bartholomew, J.B. Interventions to Manage Pain Catastrophizing Following Total Knee Replacement: A Systematic Review. J. Pain. Res. 2022, 15, 1679. [Google Scholar] [CrossRef] [PubMed]
- Saracoglu, I.; Akin, E.; Aydin Dincer, G.B. Efficacy of adding pain neuroscience education to a multimodal treatment in fibromyalgia: A systematic review and meta-analysis. Int. J. Rheum. Dis. 2022, 25, 394–404. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.S.; An, J.; Kim, J.O.; Lee, M.Y.; Lee, B.H. Effects of Pain Neuroscience Education Combined with Lumbar Stabilization Exercise on Strength and Pain in Patients with Chronic Low Back Pain: Randomized Controlled Trial. J. Pers. Med. 2022, 12, 303. [Google Scholar] [CrossRef] [PubMed]
- Javdaneh, N.; Saeterbakken, A.H.; Shams, A.; Barati, A.H. Pain Neuroscience Education Combined with Therapeutic Exercises Provides Added Benefit in the Treatment of Chronic Neck Pain. Int. J. Environ. Res. Public. Health 2021, 18, 8848. [Google Scholar] [CrossRef] [PubMed]
- Zimney, K.; Van Bogaert, W.; Louw, A. The Biology of Chronic Pain and Its Implications for Pain Neuroscience Education: State of the Art. J. Clin. Med. 2023, 12, 4199. [Google Scholar] [CrossRef] [PubMed]
- Louw, A.; Puentedura, E.J.; Reed, J.; Zimney, K.; Grimm, D.; Landers, M.R. A controlled clinical trial of preoperative pain neuroscience education for patients about to undergo total knee arthroplasty. Clin. Rehabil. 2019, 33, 1722–1731. [Google Scholar] [CrossRef]
- Moyer, R.; Ikert, K.; Long, K.; Marsh, J. The Value of Preoperative Exercise and Education for Patients Undergoing Total Hip and Knee Arthroplasty: A Systematic Review and Meta-Analysis. JBJS Rev. 2017, 5, E2. [Google Scholar] [CrossRef]
- Su, W.; Zhou, Y.; Qiu, H.; Wu, H. The effects of preoperative rehabilitation on pain and functional outcome after total knee arthroplasty: A meta-analysis of randomized controlled trials. J. Orthop. Surg. Res. 2022, 17, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Gränicher, P.; Mulder, L.; Lenssen, T.; Scherr, J.; Swanenburg, J.; De Bie, R. Prehabilitation Improves Knee Functioning Before and Within the First Year After Total Knee Arthroplasty: A Systematic Review With Meta-analysis. J. Orthop. Sports Phys. Ther. 2022, 52, 709–725. [Google Scholar] [CrossRef] [PubMed]
- Alonso, W.W.; Kupzyk, K.; Norman, J.; Bills, S.E.; Bosak, K.; Dunn, S.L.; Deka, P.; Pozehl, B. Negative Attitudes, Self-efficacy, and Relapse Management Mediate Long-Term Adherence to Exercise in Patients With Heart Failure. Ann. Behav. Med. 2021, 55, 1031–1041. [Google Scholar] [CrossRef]
- Somers, T.J.; Keefe, F.J.; Pells, J.J.; Dixon, K.E.; Waters, S.J.; Riordan, P.A.; Blumenthal, J.A.; McKee, D.C.; LaCaille, L.; Tucker, J.M.; et al. Pain Catastrophizing and Pain-Related Fear in Osteoarthritis Patients: Relationships to Pain and Disability. J. Pain. 2009, 37, 863–872. [Google Scholar] [CrossRef]
- Skou, S.T.; Roos, E.M. Physical therapy for patients with knee and hip osteoarthritis: Supervised, active treatment is current best practice. Clin. Exp. Rheumatol. 2019, 37, 112–117. [Google Scholar] [PubMed]
- Nguyen, C.; Boutron, I.; Roren, A.; Anract, P.; Beaudreuil, J.; Biau, D.; Boisgard, S.; Daste, C.; Durand-Zaleski, I.; Eschalier, B.; et al. Effect of Prehabilitation Before Total Knee Replacement for Knee Osteoarthritis on Functional Outcomes: A Randomized Clinical Trial. JAMA Netw. Open 2022, 5, e221462. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, Y.; Ye, T.; Hu, Y.; Wang, S.; Qian, T.; Wu, C.; Yue, S.; Sun, X.; Zhang, Y. Quality of clinical practice guidelines relevant to rehabilitation of knee osteoarthritis: A systematic review. Clin. Rehabil. 2023, 37, 986–1008. [Google Scholar] [CrossRef]
- Terradas-Monllor, M.; Rierola-Fochs, S.; Merchan-Baeza, J.A.; Parés-Martinez, C.; Font-Jutglà, C.; Hernández-Hermoso, J.A.; Ochandorena-Acha, M. Comparison of pain, functional and psychological trajectories between total and unicompartmental knee arthroplasties: Secondary analysis of a 6-month prospective observational study. Arch. Orthop. Trauma. Surg. 2024, 145, 32. [Google Scholar] [CrossRef] [PubMed]
Population Description | Control (n = 15) | TPE (n = 13) | MPT (n = 12) | p-Value |
---|---|---|---|---|
Age (SD) | 59.4 (6.16) | 66.7 (5.18) | 60.6 (5.80) | 0.378 * |
Sex | 0.537 † | |||
Male, n (%) | 3 (20) | 5 (38.5) | 3 (25) | |
Female, n (%) | 12 (80) | 8 (61.5) | 9 (75) | |
Body mass index | 0.910 ‡ | |||
Normal [18.5–24.9], n (%) | 1 (6.7) | - | - | |
Overweight [25–29.9], n (%) | 3 (20) | 4 (30.8) | 4 (33.3) | |
Type I obesity [30–34.9], n (%) | 7 (46.7) | 9 (69.2) | 6 (50) | |
Type II obesity [35–39.9], n (%) | 4 (26.7) | - | 1 (8.3) | |
Type III obesity [>40], n (%) | - | - | 1 (8.3) | |
Charlson comorbidity index | 0.109 ‡ | |||
1, n (%) | - | - | - | |
2, n (%) | 3 (20) | 3 (23.1) | 5 (41.7) | |
3, n (%) | 4 (26.7) | 7 (53.8) | 7 (58.3) | |
4, n (%) | 4 (26.7) | 2 (15.4) | - | |
5, n (%) | 4 (26.7) | 1 (7.7) | - | |
Smoking | 0.269 ‡ | |||
Never smoked, n (%) | 13 (86.7) | 7 (53.8) | 7 (58.3) | |
Quit smoking, n (%) | 1 (6.7) | 6 (46.2) | 5 (41.7) | |
Smoker, n (%) | 1 (6.7) | - | - | |
Alcohol | 0.757 ‡ | |||
Never, n (%) | 7 (46.7) | 6 (46.2) | 4 (33.3) | |
Minimal consumption, n (%) | 6 (40) | 5 (38.5) | 7 (58.3) | |
Usual consumption, n (%) | 2 (13.3) | 2 (15.4) | 1 (8.3) | |
Education level | 0.133 ‡ | |||
Read and write, n (%) | 7 (46.7) | 4 (30.8) | 1 (8.3) | |
Elementary intermediate, n (%) | 7 (46.7) | 5 (38.5) | 10 (83.3) | |
Secondary vocational, n (%) | 1 (6.7) | 3 (23.1) | 1 (8.3) | |
University, n (%) | - | 1 (7.7) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terradas-Monllor, M.; Beltran-Alacreu, H.; Ochandorena-Acha, M.; Garcia-Oltra, E.; Aliaga-Orduña, F.; Hernández-Hermoso, J. Preoperative Home-Based Multimodal Physiotherapy in Patients Scheduled for a Knee Arthroplasty Who Catastrophize About Their Pain: A Randomized Controlled Trial. J. Clin. Med. 2025, 14, 268. https://doi.org/10.3390/jcm14010268
Terradas-Monllor M, Beltran-Alacreu H, Ochandorena-Acha M, Garcia-Oltra E, Aliaga-Orduña F, Hernández-Hermoso J. Preoperative Home-Based Multimodal Physiotherapy in Patients Scheduled for a Knee Arthroplasty Who Catastrophize About Their Pain: A Randomized Controlled Trial. Journal of Clinical Medicine. 2025; 14(1):268. https://doi.org/10.3390/jcm14010268
Chicago/Turabian StyleTerradas-Monllor, Marc, Hector Beltran-Alacreu, Mirari Ochandorena-Acha, Ester Garcia-Oltra, Francisco Aliaga-Orduña, and José Hernández-Hermoso. 2025. "Preoperative Home-Based Multimodal Physiotherapy in Patients Scheduled for a Knee Arthroplasty Who Catastrophize About Their Pain: A Randomized Controlled Trial" Journal of Clinical Medicine 14, no. 1: 268. https://doi.org/10.3390/jcm14010268
APA StyleTerradas-Monllor, M., Beltran-Alacreu, H., Ochandorena-Acha, M., Garcia-Oltra, E., Aliaga-Orduña, F., & Hernández-Hermoso, J. (2025). Preoperative Home-Based Multimodal Physiotherapy in Patients Scheduled for a Knee Arthroplasty Who Catastrophize About Their Pain: A Randomized Controlled Trial. Journal of Clinical Medicine, 14(1), 268. https://doi.org/10.3390/jcm14010268