Impact of Self-Reported Loss of Balance and Gait Disturbance on Outcomes following Adult Spinal Deformity Surgery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Variables
2.3. Statistical Analysis
3. Results
3.1. Demographics
3.2. Baseline Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Safaee, M.M.; Ames, C.P.; Smith, J.S. Epidemiology and Socioeconomic Trends in Adult Spinal Deformity Care. Neurosurgery 2020, 87, 25–32. [Google Scholar] [CrossRef]
- Diebo, B.G.; Shah, N.V.; Boachie-Adjei, O.; Zhu, F.; Rothenfluh, D.A.; Paulino, C.B.; Schwab, F.J.; Lafage, V. Adult Spinal Deformity. Lancet 2019, 394, 160–172. [Google Scholar] [CrossRef] [PubMed]
- Diebo, B.G.; Lavian, J.D.; Murray, D.P.; Liu, S.; Shah, N.V.; Beyer, G.A.; Segreto, F.A.; Bloom, L.; Vasquez-Montes, D.; Day, L.M.; et al. The Impact of Comorbid Mental Health Disorders on Complications Following Adult Spinal Deformity Surgery with Minimum 2-Year Surveillance. Spine 2018, 43, 1176–1183. [Google Scholar] [CrossRef]
- Schwab, F.; Dubey, A.; Pagala, M.; Gamez, L.; Farcy, J.P. Adult Scoliosis: A Health Assessment Analysis by SF-36. Spine 2003, 28, 602–606. [Google Scholar] [CrossRef] [PubMed]
- Terran, J.; Schwab, F.; Shaffrey, C.I.; Smith, J.S.; Devos, P.; Ames, C.P.; Fu, K.-M.G.; Burton, D.; Hostin, R.; Klineberg, E.; et al. The SRS-Schwab Adult Spinal Deformity Classification: Assessment and Clinical Correlations Based on a Prospective Operative and Nonoperative Cohort. Neurosurgery 2013, 73, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.S.; Shaffrey, C.I.; Fu, K.-M.G.; Scheer, J.K.; Bess, S.; Lafage, V.; Schwab, F.; Ames, C.P. Clinical and Radiographic Evaluation of the Adult Spinal Deformity Patient. Neurosurg. Clin. N. Am. 2013, 24, 143–156. [Google Scholar] [CrossRef] [PubMed]
- Schwab, F.; Lafage, V.; Patel, A.; Farcy, J.-P. Sagittal Plane Considerations and the Pelvis in the Adult Patient. Spine 2009, 34, 1828–1833. [Google Scholar] [CrossRef] [PubMed]
- Schwab, F.; Patel, A.; Ungar, B.; Farcy, J.-P.; Lafage, V. Adult Spinal Deformity-Postoperative Standing Imbalance: How Much Can You Tolerate? An Overview of Key Parameters in Assessing Alignment and Planning Corrective Surgery. Spine 2010, 35, 2224–2231. [Google Scholar] [CrossRef] [PubMed]
- Bess, S.; Line, B.; Fu, K.-M.; McCarthy, I.; Lafage, V.; Schwab, F.; Shaffrey, C.; Ames, C.; Akbarnia, B.; Jo, H.; et al. The Health Impact of Symptomatic Adult Spinal Deformity: Comparison of Deformity Types to United States Population Norms and Chronic Diseases. Spine 2016, 41, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.S.; Klineberg, E.; Schwab, F.; Shaffrey, C.I.; Moal, B.; Ames, C.P.; Hostin, R.; Fu, K.-M.G.; Burton, D.; Akbarnia, B.; et al. Change in Classification Grade by the SRS-Schwab Adult Spinal Deformity Classification Predicts Impact on Health-Related Quality of Life Measures: Prospective Analysis of Operative and Nonoperative Treatment. Spine 2013, 38, 1663–1671. [Google Scholar] [CrossRef] [PubMed]
- Schwab, F.J.; Blondel, B.; Bess, S.; Hostin, R.; Shaffrey, C.I.; Smith, J.S.; Boachie-Adjei, O.; Burton, D.C.; Akbarnia, B.A.; Mundis, G.M.; et al. Radiographical Spinopelvic Parameters and Disability in the Setting of Adult Spinal Deformity: A Prospective Multicenter Analysis. Spine 2013, 38, E803–E812. [Google Scholar] [CrossRef] [PubMed]
- Bess, S.; Boachie-Adjei, O.; Burton, D.; Cunningham, M.; Shaffrey, C.; Shelokov, A.; Hostin, R.; Schwab, F.; Wood, K.; Akbarnia, B.; et al. Pain and Disability Determine Treatment Modality for Older Patients with Adult Scoliosis, While Deformity Guides Treatment for Younger Patients. Spine 2009, 34, 2186–2190. [Google Scholar] [CrossRef]
- Glassman, S.D.; Bridwell, K.; Dimar, J.R.; Horton, W.; Berven, S.; Schwab, F. The Impact of Positive Sagittal Balance in Adult Spinal Deformity. Spine 2005, 30, 2024–2029. [Google Scholar] [CrossRef] [PubMed]
- Glassman, S.D.; Schwab, F.J.; Bridwell, K.H.; Ondra, S.L.; Berven, S.; Lenke, L.G. The Selection of Operative versus Nonoperative Treatment in Patients with Adult Scoliosis. Spine 2007, 32, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Lafage, V.; Schwab, F.; Patel, A.; Hawkinson, N.; Farcy, J.P. Pelvic Tilt and Truncal Inclination: Two Key Radiographic Parameters in the Setting of Adults with Spinal Deformity. Spine 2009, 34, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Lafage, V.; Schwab, F.; Skalli, W.; Hawkinson, N.; Gagey, P.-M.; Ondra, S.; Farcy, J.-P. Standing Balance and Sagittal Plane Spinal Deformity. Spine 2008, 33, 1572–1578. [Google Scholar] [CrossRef]
- Schwab, F.; Lafage, V.; Boyce, R.; Skalli, W.; Farcy, J.-P. Gravity Line Analysis in Adult Volunteers: Age-Related Correlation with Spinal Parameters, Pelvic Parameters, and Foot Position. Spine 2006, 31, E959–E967. [Google Scholar] [CrossRef] [PubMed]
- Schwab, F.; Ungar, B.; Blondel, B.; Buchowski, J.; Coe, J.; Deinlein, D.; DeWald, C.; Mehdian, H.; Shaffrey, C.; Tribus, C.; et al. Scoliosis Research Society-Schwab Adult Spinal Deformity Classification: A Validation Study. Spine 2012, 37, 1077–1082. [Google Scholar] [CrossRef]
- Smith, J.S.; Lafage, V.; Shaffrey, C.I.; Schwab, F.; Lafage, R.; Hostin, R.; O’Brien, M.; Boachie-Adjei, O.; Akbarnia, B.A.; Mundis, G.M.; et al. Outcomes of Operative and Nonoperative Treatment for Adult Spinal Deformity. Neurosurgery 2016, 78, 851–861. [Google Scholar] [CrossRef]
- Lafage, V.; Smith, J.S.; Bess, S.; Schwab, F.J.; Ames, C.P.; Klineberg, E.; Arlet, V.; Hostin, R.; Burton, D.C.; Shaffrey, C.I.; et al. Sagittal Spino-Pelvic Alignment Failures Following Three Column Thoracic Osteotomy for Adult Spinal Deformity. Eur. Spine J. 2012, 21, 698–704. [Google Scholar] [CrossRef]
- Schwab, F.J.; Patel, A.; Shaffrey, C.I.; Smith, J.S.; Farcy, J.-P.; Boachie-Adjei, O.; Hostin, R.A.; Hart, R.A.; Akbarnia, B.A.; Burton, D.C.; et al. Sagittal Realignment Failures Following Pedicle Subtraction Osteotomy Surgery: Are We Doing Enough? Clinical Article. J. Neurosurg. Spine 2012, 16, 539–546. [Google Scholar] [CrossRef]
- Daher, M.; Balmaceno-Criss, M.; Lafage, V.; Diebo, B.; Kelly, M.P.; Eastlack, R.K. Evolution of Distributional Alignment Goals. Semin. Spine Surg. 2023, 35, 101063. [Google Scholar] [CrossRef]
- Daher, M.; Assi, A.; Balmaceno-Criss, M.; Mohamed, A.; Lafage, R.; Diebo, B.G.; Daniels, A.H.; Schwab, F.; Lafage, V. Functional Assessment of Patients with Adult Spinal Deformity: Too Complicated or a Must-Have? Semin. Spine Surg. 2023, 35, 101057. [Google Scholar] [CrossRef]
- Kawkabani, G.; Saliby, R.M.; Mekhael, M.; Rachkidi, R.; Massaad, A.; Ghanem, I.; Kharrat, K.; Kreichati, G.; Saad, E.; Lafage, V.; et al. Gait Kinematic Alterations in Subjects with Adult Spinal Deformity and Their Radiological Determinants. Gait Posture 2021, 88, 203–209. [Google Scholar] [CrossRef]
- Moustafa, I.M.; Shousha, T.M.; Walton, L.M.; Raigangar, V.; Harrison, D.E. Reduction of Thoracic Hyper-Kyphosis Improves Short and Long Term Outcomes in Patients with Chronic Nonspecific Neck Pain: A Randomized Controlled Trial. J. Clin. Med. 2022, 11, 6028. [Google Scholar] [CrossRef] [PubMed]
- Moustafa, I.M.; Shousha, T.; Arumugam, A.; Harrison, D.E. Is Thoracic Kyphosis Relevant to Pain, Autonomic Nervous System Function, Disability, and Cervical Sensorimotor Control in Patients with Chronic Nonspecific Neck Pain? J. Clin. Med. 2023, 12, 3707. [Google Scholar] [CrossRef] [PubMed]
- Rolfson, D.B.; Majumdar, S.R.; Tsuyuki, R.T.; Tahir, A.; Rockwood, K. Validity and Reliability of the Edmonton Frail Scale. Age Ageing 2006, 35, 526–529. [Google Scholar] [CrossRef]
- Zuckerman, S.L.; Cerpa, M.; Lai, C.S.; Lenke, L.G. Coronal Alignment in Adult Spinal Deformity Surgery: Definitions, Measurements, Treatment Algorithms, and Impact on Clinical Outcomes. Clin. Spine Surg. 2022, 35, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Jo, D.J.; Hyun, S.-J.; Park, J.H.; Yang, N.R. From the Spinopelvic Parameters to Global Alignment and Proportion Scores in Adult Spinal Deformity. Neurospine 2023, 20, 467–477. [Google Scholar] [CrossRef]
- Yoshida, G.; Hasegawa, T.; Yamato, Y.; Kobayashi, S.; Shin, O.; Banno, T.; Mihara, Y.; Arima, H.; Ushirozako, H.; Yasuda, T.; et al. Minimum Clinically Important Differences in Oswestry Disability Index Domains and Their Impact on Adult Spinal Deformity Surgery. Asian Spine J. 2019, 13, 35–44. [Google Scholar] [CrossRef]
- Copay, A.G.; Glassman, S.D.; Subach, B.R.; Berven, S.; Schuler, T.C.; Carreon, L.Y. Minimum Clinically Important Difference in Lumbar Spine Surgery Patients: A Choice of Methods Using the Oswestry Disability Index, Medical Outcomes Study Questionnaire Short Form 36, and Pain Scales. Spine J. 2008, 8, 968–974. [Google Scholar] [CrossRef]
- Crawford, C.H.; Glassman, S.D.; Bridwell, K.H.; Berven, S.H.; Carreon, L.Y. The Minimum Clinically Important Difference in SRS-22R Total Score, Appearance, Activity and Pain Domains after Surgical Treatment of Adult Spinal Deformity. Spine 2015, 40, 377–381. [Google Scholar] [CrossRef]
- Pyykkö, I.; Tuunanainen; Rasku; Jäntti; Moisio-Vilenius, P.; Kinen, M.; Toppila, E. Toppila Postural Stability and Quality of Life after Guided and Self-Training among Older Adults Residing in an Institutional Setting. Clin. Interv. Aging 2013, 8, 1237–1246. [Google Scholar] [CrossRef]
- Godzik, J.; Frames, C.W.; Smith Hussain, V.; Olson, M.C.; Kakarla, U.K.; Uribe, J.S.; Lockhart, T.E.; Turner, J.D. Postural Stability and Dynamic Balance in Adult Spinal Deformity: Prospective Pilot Study. World Neurosurg. 2020, 141, e783–e791. [Google Scholar] [CrossRef]
- Ensrud, K.E.; Ewing, S.K.; Taylor, B.C.; Fink, H.A.; Stone, K.L.; Cauley, J.A.; Tracy, J.K.; Hochberg, M.C.; Rodondi, N.; Cawthon, P.M. Frailty and Risk of Falls, Fracture, and Mortality in Older Women: The Study of Osteoporotic Fractures. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2007, 62, 744–751. [Google Scholar] [CrossRef]
- Laverdière, C.; Georgiopoulos, M.; Ames, C.P.; Corban, J.; Ahangar, P.; Awadhi, K.; Weber, M.H. Adult Spinal Deformity Surgery and Frailty: A Systematic Review. Glob. Spine J. 2022, 12, 689–699. [Google Scholar] [CrossRef] [PubMed]
- Sarwahi, V.; Boachie-Adjei, O.; Backus, S.I.; Taira, G. Characterization of Gait Function in Patients with Postsurgical Sagittal (Flatback) Deformity. Spine 2002, 27, 2328–2337. [Google Scholar] [CrossRef]
- Yagi, M.; Ohne, H.; Konomi, T.; Fujiyoshi, K.; Kaneko, S.; Takemitsu, M.; Machida, M.; Yato, Y.; Asazuma, T. Walking Balance and Compensatory Gait Mechanisms in Surgically Treated Patients with Adult Spinal Deformity. Spine J. 2017, 17, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Engsberg, J.R.; Bridwell, K.H.; Reitenbach, A.K.; Uhrich, M.L.; Baldus, C.; Blanke, K.; Lenke, L.G. Preoperative Gait Comparisons Between Adults Undergoing Long Spinal Deformity Fusion Surgery (Thoracic to L4, L5, or Sacrum) and Controls. Spine 2001, 26, 2020–2028. [Google Scholar] [CrossRef] [PubMed]
- Engsberg, J.R.; Bridwell, K.H.; Wagner, J.M.; Uhrich, M.L.; Blanke, K.; Lenke, L.G. Gait Changes as the Result of Deformity Reconstruction Surgery in a Group of Adults with Lumbar Scoliosis. Spine 2003, 28, 1836–1843. [Google Scholar] [CrossRef]
- Glassman, S.D.; Coseo, M.P.; Carreon, L.Y. Sagittal Balance Is More than Just Alignment: Why PJK Remains an Unresolved Problem. Scoliosis Spinal Disord. 2016, 11, 1. [Google Scholar] [CrossRef] [PubMed]
- Daubs, M.D.; Lenke, L.G.; Cheh, G.; Stobbs, G.; Bridwell, K.H. Adult Spinal Deformity Surgery. Spine 2007, 32, 2238–2244. [Google Scholar] [CrossRef]
- Dinizo, M.; Dolgalev, I.; Passias, P.G.; Errico, T.J.; Raman, T. Complications After Adult Spinal Deformity Surgeries: All Are Not Created Equal. Int. J. Spine Surg. 2021, 15, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Iyer, S. Proximal Junctional Kyphosis. J. Am. Acad. Orthop. Surg. 2016, 24, 318–326. [Google Scholar] [CrossRef]
- Lafage, R.; Beyer, G.; Schwab, F.; Klineberg, E.; Burton, D.; Bess, S.; Kim, H.J.; Smith, J.; Ames, C.; Hostin, R.; et al. Risk Factor Analysis for Proximal Junctional Kyphosis After Adult Spinal Deformity Surgery: A New Simple Scoring System to Identify High-Risk Patients. Glob. Spine J. 2020, 10, 863–870. [Google Scholar] [CrossRef] [PubMed]
- Miller, E.K.; Neuman, B.J.; Jain, A.; Daniels, A.H.; Ailon, T.; Sciubba, D.M.; Kebaish, K.M.; Lafage, V.; Scheer, J.K.; Smith, J.S.; et al. An Assessment of Frailty as a Tool for Risk Stratification in Adult Spinal Deformity Surgery. Neurosurg. Focus 2017, 43, E3. [Google Scholar] [CrossRef]
- Lafage, R.; Bess, S.; Glassman, S.; Ames, C.; Burton, D.; Hart, R.; Kim, H.J.; Klineberg, E.; Henry, J.; Line, B.; et al. Virtual Modeling of Postoperative Alignment After Adult Spinal Deformity Surgery Helps Predict Associations Between Compensatory Spinopelvic Alignment Changes, Overcorrection, and Proximal Junctional Kyphosis. Spine 2017, 42, E1119–E1125. [Google Scholar] [CrossRef] [PubMed]
- Scheer, J.K.; Smith, J.S.; Schwab, F.; Lafage, V.; Shaffrey, C.I.; Bess, S.; Daniels, A.H.; Hart, R.A.; Protopsaltis, T.S.; Mundis, G.M.; et al. Development of a Preoperative Predictive Model for Major Complications Following Adult Spinal Deformity Surgery. J. Neurosurg. Spine 2017, 26, 736–743. [Google Scholar] [CrossRef] [PubMed]
- Csuka, M.; McCarty, D.J. Simple Method for Measurement of Lower Extremity Muscle Strength. Am. J. Med. 1985, 78, 77–81. [Google Scholar] [CrossRef]
- Podsiadlo, D.; Richardson, S. The Timed “Up & Go”: A Test of Basic Functional Mobility for Frail Elderly Persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Berg, K. Measuring Balance in the Elderly: Preliminary Development of an Instrument. Physiother. Canada 1989, 41, 304–311. [Google Scholar] [CrossRef]
- Tiedemann, A.; Shimada, H.; Sherrington, C.; Murray, S.; Lord, S. The Comparative Ability of Eight Functional Mobility Tests for Predicting Falls in Community-Dwelling Older People. Age Ageing 2008, 37, 430–435. [Google Scholar] [CrossRef] [PubMed]
- Fritz, S.; Lusardi, M. White Paper: “Walking Speed: The Sixth Vital Sign”. J. Geriatr. Phys. Ther. 2009, 32, 46–49. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.R.; Park, J.; Ham, D.-W.; Kwon, B.-T.; Go, S.J.; Kim, H.-J. Functional Mobility Tests for Evaluation of Functionalities in Patients with Adult Spinal Deformity. BMC Musculoskelet. Disord. 2022, 23, 391. [Google Scholar] [CrossRef]
- Severijns, P.; Overbergh, T.; Thauvoye, A.; Baudewijns, J.; Monari, D.; Moke, L.; Desloovere, K.; Scheys, L. A Subject-Specific Method to Measure Dynamic Spinal Alignment in Adult Spinal Deformity. Spine J. 2020, 20, 934–946. [Google Scholar] [CrossRef] [PubMed]
- Diebo, B.G.; Challier, V.; Shah, N.V.; Kim, D.; Murray, D.P.; Kelly, J.J.; Lafage, R.; Paulino, C.B.; Passias, P.G.; Schwab, F.J.; et al. The Dubousset Functional Test Is a Novel Assessment of Physical Function and Balance. Clin. Orthop. Relat. Res. 2019, 477, 2307–2315. [Google Scholar] [CrossRef]
- Diebo, B.G.; Shah, N.V.; Kim, D.; Krol, O.; Kim, D.J.; Dubner, M.G.; Patel, N.; Axman, R.; Kaur, H.; Wolfert, A.J.; et al. First Application of the Dubousset Functional Test in Patients with Spinal Pathologies: The Future of Objective Clinical Outcomes Is Now. In Proceedings of the 26th International Meeting on Advanced Spine Techniques, IMAST 2019, Amsterdam, The Netherlands, 17–20 July 2019. [Google Scholar]
- Diebo, B.G.; Kim, D.J.; Dubner, M.G.; Patel, N.; Kaur, H.; Wolfert, A.J.; Eldib, H.; Mai, D.; Shah, N.V.; Alsoof, D.; et al. 132. Utilizing the Dubousset Functional Test to Bridge the Gap between Functional Testing and Postural Radiographic Sagittal Alignment. Spine J. 2022, 22, S69–S70. [Google Scholar] [CrossRef]
- Severijns, P.; Overbergh, T.; Ackermans, T.; Beaucage-Gauvreau, E.; Brumagne, S.; Desloovere, K.; Scheys, L.; Moke, L. The Function Assessment Scale for Spinal Deformity: Validity and Reliability of a New Clinical Scale. Spine 2022, 47, E64–E72. [Google Scholar] [CrossRef] [PubMed]
- Mekhael, E.; El Rachkidi, R.; Saliby, R.M.; Nassim, N.; Semaan, K.; Massaad, A.; Karam, M.; Saade, M.; Ayoub, E.; Rteil, A.; et al. Functional Assessment Using 3D Movement Analysis Can Better Predict Health-Related Quality of Life Outcomes in Patients with Adult Spinal Deformity: A Machine Learning Approach. Front. Surg. 2023, 10, 1166734. [Google Scholar] [CrossRef] [PubMed]
Mean (+/−SD) | Imbalance (n = 106) | Balance (n = 106) | p-Value |
---|---|---|---|
Age | 64.21 (±9.80) | 63.03 (±9.07) | 0.36 |
Gender (% Female) | 76% | 87% | 0.052 |
BMI | 27.22 (±4.89) | 26.99 (±4.60) | 0.73 |
Frailty Index | 3.74 (±1.33) | 2.33 (±1.22) | <0.001 |
Median UIV | T9 | T8 | 0.55 |
Median LIV | Ilium | Ilium | 0.73 |
Mean (+/−SD) | Imbalance | Balance | p-Value (Cohen’s d) |
---|---|---|---|
Sagittal Profile | |||
pelvic tilt | 24.16° (±9.23) | 24.66° (±9.20) | 0.69 (0.05) |
Sagittal Vertical Alignment | 53.18 mm (±58.11) | 51.71 mm (±53.23) | 0.85 (0.03) |
PI-LL | 13.60° (±16.38) | 15.10° (±16.75) | 0.51 (0.09) |
T4-T12 kyphosis | 34.76° (±15.78) | 32.17° (±17.60) | 0.26 (0.15) |
T1-PA | 21.78° (±11.25) | 21.74° (±9.94) | 0.97 (0.003) |
Coronal Profile | |||
Upper Thoracic Cobb Angle | 16.02° (±9.21) | 18.51° (±10.09) | 0.17 (0.26) |
thoracic cobb angle | 25.27° (±16.54) | 37.45° (±22.01) | <0.001 (0.64) |
Thoracolumbar Cobb Angle | 39.77° (±23.30) | 39.64° (±26.26) | 0.98 (0.005) |
Lumbar Cobb Angle | 37.03° (±16.74) | 45.53° (±18.37) | 0.004 (0.46) |
C7 PLA (Global Coronal Balance) | 41.51 mm (±43.68) | 34.25 mm (±28.93) | 0.15 (0.20) |
Mean (+/−SD) | Imbalance | Balance | p-Value (Cohen’s d) |
---|---|---|---|
ODI | 45.15 (±16.56) | 36.62 (±14.19) | <0.001 (0.6) |
SF-36—physical component score | 30.17 (±8.73) | 35.10 (±9.95) | <0.001 (0.5) |
SF-36—mental component score | 44.04 (±12.65) | 51.76 (±10.32) | <0.001 (0.6) |
SRS—activity | 2.75 (±0.78) | 3.29 (±0.80) | <0.001 (0.8) |
SRS—pain | 2.26 (±0.80) | 2.73 (±0.78) | <0.001 (0.6) |
SRS—appearance | 2.41 (±0.68) | 2.71 (±0.70) | 0.02 (0.4) |
SRS—mental | 3.28 (±0.85) | 3.80 (±0.80) | <0.001 (0.6) |
SRS—satisfaction | 2.71 (±1.04) | 2.83 (±1.00) | 0.40 (0.1) |
total SRS score | 2.68 (±0.56) | 3.11 (±0.54) | <0.001 (0.9) |
Mean (+/−SD) | Imbalance | Balance | p-Value (Cohen’s d) |
---|---|---|---|
Sagittal Profile | |||
pelvic tilt | −1.45° (±7.91) | −3.60° (±7.16) | 0.04 (0.3) |
Sagittal Vertical Alignment | −29.23 mm (±56.32) | −35.67 mm (±53.52) | 0.39 (0.1) |
PI-LL | −11.93° (±15.79) | −15.08° (±15.47) | 0.14 (0.2) |
T1PA | −3.22° (9.33) | −5.77° (9.28) | 0.047 (0.3) |
Coronal Profile | |||
Maximum Cobb Angle Correction | −26.51° (14.89) | −29.36° (14.90) | 0.167 (0.2) |
Upper Thoracic Cobb Angle | −3.57° (±7.54) | −4.31° (±7.66) | 0.62 (0.1) |
thoracic cobb angle | −11.41° (±10.65) | −16.68° (±13.75) | 0.01 (0.4) |
Thoracolumbar Cobb Angle | −21.99° (±16.89) | −20.52° (±16.51) | 0.62 (0.1) |
Lumbar Cobb Angle | −22.53° (±12.66) | −26.41° (±14.86) | 0.09 (0.3) |
C7 PLA (Global Coronal Balance) | −11.24 mm (±42.18) | −7.66 mm (±30.51) | 0.48 (0.1) |
Mean (+/−SD) | Imbalance | Balance | p-Value |
---|---|---|---|
re-operation | 29.2% | 30.2% | 0.88 |
major complication | 23.6% | 30.2% | 0.28 |
fusion achieved after 2 years | 60.4% | 64.2% | 0.57 |
PJK * | 26.4% | 14.2% | 0.03 |
PJF | 34.00% | 17.92% | 0.01 |
implant-related complications | 47.2% | 34.0% | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diebo, B.G.; Alsoof, D.; Lafage, R.; Daher, M.; Balmaceno-Criss, M.; Passias, P.G.; Ames, C.P.; Shaffrey, C.I.; Burton, D.C.; Deviren, V.; et al. Impact of Self-Reported Loss of Balance and Gait Disturbance on Outcomes following Adult Spinal Deformity Surgery. J. Clin. Med. 2024, 13, 2202. https://doi.org/10.3390/jcm13082202
Diebo BG, Alsoof D, Lafage R, Daher M, Balmaceno-Criss M, Passias PG, Ames CP, Shaffrey CI, Burton DC, Deviren V, et al. Impact of Self-Reported Loss of Balance and Gait Disturbance on Outcomes following Adult Spinal Deformity Surgery. Journal of Clinical Medicine. 2024; 13(8):2202. https://doi.org/10.3390/jcm13082202
Chicago/Turabian StyleDiebo, Bassel G., Daniel Alsoof, Renaud Lafage, Mohammad Daher, Mariah Balmaceno-Criss, Peter G. Passias, Christopher P. Ames, Christopher I. Shaffrey, Douglas C. Burton, Vedat Deviren, and et al. 2024. "Impact of Self-Reported Loss of Balance and Gait Disturbance on Outcomes following Adult Spinal Deformity Surgery" Journal of Clinical Medicine 13, no. 8: 2202. https://doi.org/10.3390/jcm13082202
APA StyleDiebo, B. G., Alsoof, D., Lafage, R., Daher, M., Balmaceno-Criss, M., Passias, P. G., Ames, C. P., Shaffrey, C. I., Burton, D. C., Deviren, V., Line, B. G., Soroceanu, A., Hamilton, D. K., Klineberg, E. O., Mundis, G. M., Kim, H. J., Gum, J. L., Smith, J. S., Uribe, J. S., ... Daniels, A. H., on behalf of the ISSG. (2024). Impact of Self-Reported Loss of Balance and Gait Disturbance on Outcomes following Adult Spinal Deformity Surgery. Journal of Clinical Medicine, 13(8), 2202. https://doi.org/10.3390/jcm13082202