Blood Pressure Variability in Acute Stroke: A Narrative Review
Abstract
:1. Introduction
2. Methods
3. Blood Pressure Variability in the Prehospital Setting of Acute Stroke
4. Blood Pressure Variability among Patients with Acute Ischaemic Stroke That Are Ineligible for Reperfusion Treatment
5. Blood Pressure Variability among Patients with Acute Ischaemic Stroke Receiving Intravenous Thrombolysis
6. Blood Pressure Variability among Patients with Acute Ischaemic Stroke Receiving Endovascular Treatment
7. Blood Pressure Variability in Patients with Intracerebral Haemorrhage
8. Blood Pressure Variability in Patients with Subarachnoid Haemorrhage
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, R.C.; Xu, W.D.; Lei, Y.L.; Bao, T.; Yang, H.W.; Huang, W.X.; Tang, H.R. The risk of stroke and associated risk factors in a health examination population: A cross-sectional study. Medicine 2019, 98, e17218. [Google Scholar] [CrossRef]
- Wallace, J.D.; Levy, L.L. Blood pressure after stroke. JAMA 1981, 246, 2177–2180. [Google Scholar] [CrossRef]
- Carlberg, B.; Asplund, K.; Hägg, E. Factors influencing admission blood pressure levels in patients with acute stroke. Stroke 1991, 22, 527–530. [Google Scholar] [CrossRef]
- Willmot, M.; Leonardi-Bee, J.; Bath, P.M. High blood pressure in acute stroke and subsequent outcome: A systematic review. Hypertension 2004, 43, 18–24. [Google Scholar] [CrossRef]
- Vemmos, K.N.; Tsivgoulis, G.; Spengos, K.; Zakopoulos, N.; Synetos, A.; Manios, E.; Konstantopoulou, P.; Mavrikakis, M. U-shaped relationship between mortality and admission blood pressure in patients with acute stroke. J. Intern. Med. 2004, 255, 257–265. [Google Scholar] [CrossRef]
- Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Hoh, B.; et al. Guidelines for the Early Management of Patients with Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke 2019, 50, e344–e418. [Google Scholar] [PubMed]
- Sandset, E.C.; Anderson, C.S.; Bath, P.M.; Christensen, H.; Fischer, U.; Gąsecki, D.; Lal, A.; Manning, L.S.; Sacco, S.; Steiner, T.; et al. European Stroke Organisation (ESO) guidelines on blood pressure management in acute ischaemic stroke and intracerebral haemorrhage. Eur. Stroke J. 2021, 6, XLVIII–LXXXIX. [Google Scholar] [CrossRef]
- Parati, G.; Bilo, G.; Kollias, A.; Pengo, M.; Ochoa, J.E.; Castiglioni, P.; Stergiou, G.S.; Mancia, G.; Asayama, K.; Asmar, R.; et al. Blood pressure variability: Methodological aspects, clinical relevance and practical indications for management—A European Society of Hypertension position paper. J. Hypertens. 2023, 41, 527–544. [Google Scholar] [CrossRef]
- Parati, G.; Stergiou, G.S.; Dolan, E.; Bilo, G. Blood pressure variability: Clinical relevance and application. J. Clin. Hypertens. 2018, 20, 1133–1137. [Google Scholar] [CrossRef]
- Dawson, S.L.; Panerai, R.B.; Potter, J.F. Serial changes in static and dynamic cerebral autoregulation after acute ischaemic stroke. Cerebrovasc. Dis. 2003, 16, 69–75. [Google Scholar] [CrossRef]
- Manning, L.S.; Rothwell, P.M.; Potter, J.F.; Robinson, T.G. Prognostic Significance of Short-Term Blood Pressure Variability in Acute Stroke: Systematic Review. Stroke 2015, 46, 2482–2490. [Google Scholar] [CrossRef]
- Qin, J.; Zhang, Z. Prognostic significance of early systolic blood pressure variability after endovascular thrombectomy and intravenous thrombolysis in acute ischemic stroke: A systematic review and meta-analysis. Brain Behav. 2020, 10, e01898. [Google Scholar] [CrossRef]
- Tsivgoulis, G.; Ntaios, G. Blood pressure variability in subacute ischemic stroke: A neglected potential therapeutic target. Neurology 2012, 79, 2014–2015. [Google Scholar] [CrossRef]
- Hawkes, M.A.; Anderson, C.S.; Rabinstein, A.A. Blood Pressure Variability After Cerebrovascular Events: A Possible New Therapeutic Target: A Narrative Review. Neurology 2022, 99, 150–160. [Google Scholar] [CrossRef]
- Kobayashi, A.; Czlonkowska, A.; Ford, G.A.; Fonseca, A.C.; Luijckx, G.J.; Korv, J.; de la Ossa, N.P.; Price, C.; Russell, D.; Tsiskaridze, A.; et al. European Academy of Neurology and European Stroke Organization consensus statement and practical guidance for pre-hospital management of stroke. Eur. J. Neurol. 2018, 25, 425–433. [Google Scholar] [CrossRef]
- Ankolekar, S.; Fuller, M.; Cross, I.; Renton, C.; Cox, P.; Sprigg, N.; Siriwardena, A.N.; Bath, P.M. Feasibility of an ambulance-based stroke trial, and safety of glyceryl trinitrate in ultra-acute stroke: The rapid intervention with glyceryl trinitrate in Hypertensive Stroke Trial (RIGHT, ISRCTN66434824). Stroke 2013, 44, 3120–3128. [Google Scholar] [CrossRef]
- RIGHT-2 Investigators. Prehospital transdermal glyceryl trinitrate in patients with ultra-acute presumed stroke (RIGHT-2): An ambulance-based, randomised, sham-controlled, blinded, phase 3 trial. Lancet 2019, 393, 1009–1020. [Google Scholar] [CrossRef]
- van den Berg, S.A.; Uniken Venema, S.M.; Reinink, H.; Hofmeijer, J.; Schonewille, W.J.; Miedema, I.; Fransen, P.S.S.; DM, O.P.; Raaijmakers, T.W.M.; van Dijk, G.W.; et al. Prehospital transdermal glyceryl trinitrate in patients with presumed acute stroke (MR ASAP): An ambulance-based, multicentre, randomised, open-label, blinded endpoint, phase 3 trial. Lancet Neurol. 2022, 21, 971–981. [Google Scholar] [CrossRef]
- Shaw, L.; Price, C.; McLure, S.; Howel, D.; McColl, E.; Younger, P.; Ford, G.A. Paramedic Initiated Lisinopril For Acute Stroke Treatment (PIL-FAST): Results from the pilot randomised controlled trial. Emerg. Med. J. 2014, 31, 994–999. [Google Scholar] [CrossRef] [PubMed]
- Saver, J.L.; Starkman, S.; Eckstein, M.; Stratton, S.J.; Pratt, F.D.; Hamilton, S.; Conwit, R.; Liebeskind, D.S.; Sung, G.; Kramer, I.; et al. Prehospital use of magnesium sulfate as neuroprotection in acute stroke. N. Engl. J. Med. 2015, 372, 528–536. [Google Scholar] [CrossRef] [PubMed]
- Gioia, L.C.; Zewude, R.T.; Kate, M.P.; Liss, K.; Rowe, B.H.; Buck, B.; Jeerakathil, T.; Butcher, K. Prehospital systolic blood pressure is higher in acute stroke compared with stroke mimics. Neurology 2016, 86, 2146–2153. [Google Scholar] [CrossRef]
- Shriki, J.; Johnson, L.; Patel, P.; McGann, M.; Lurie, T.; Phipps, M.S.; Yarbrough, K.; Jindal, G.; Mubariz, H.; Galvagno, S.M., Jr.; et al. Transport Blood Pressures and Outcomes in Stroke Patients Requiring Thrombectomy. Air Med. J. 2020, 39, 166–172. [Google Scholar] [CrossRef]
- Chung, P.W.; Kim, J.T.; Sanossian, N.; Starkmann, S.; Hamilton, S.; Gornbein, J.; Conwit, R.; Eckstein, M.; Pratt, F.; Stratton, S.; et al. Association Between Hyperacute Stage Blood Pressure Variability and Outcome in Patients with Spontaneous Intracerebral Hemorrhage. Stroke 2018, 49, 348–354. [Google Scholar] [CrossRef]
- Oh, D.M.; Shkirkova, K.; Poblete, R.A.; Chung, P.W.; Saver, J.L.; Starkman, S.; Liebeskind, D.S.; Hamilton, S.; Wilson, M.; Sanossian, N. Association Between Hyperacute Blood Pressure Variability and Hematoma Expansion after Intracerebral Hemorrhage: Secondary Analysis of the FAST-MAG Database. Neurocrit Care 2023, 38, 356–364. [Google Scholar] [CrossRef]
- Song, L.; Chen, C.; Chen, X.; Guo, Y.; Liu, F.; Lin, Y.; Billot, L.; Li, Q.; Liu, H.; Si, L.; et al. INTEnsive ambulance-delivered blood pressure Reduction in hyper-ACute stroke Trial (INTERACT4): Study protocol for a randomized controlled trial. Trials 2021, 22, 885. [Google Scholar] [CrossRef]
- Sandset, E.C.; Bath, P.M.; Boysen, G.; Jatuzis, D.; Kõrv, J.; Lüders, S.; Murray, G.D.; Richter, P.S.; Roine, R.O.; Terént, A.; et al. The angiotensin-receptor blocker candesartan for treatment of acute stroke (SCAST): A randomised, placebo-controlled, double-blind trial. Lancet 2011, 377, 741–750. [Google Scholar] [CrossRef]
- ENOS Trial Investigators. Efficacy of nitric oxide, with or without continuing antihypertensive treatment, for management of high blood pressure in acute stroke (ENOS): A partial-factorial randomised controlled trial. Lancet 2015, 385, 617–628. [Google Scholar] [CrossRef]
- He, J.; Zhang, Y.; Xu, T.; Zhao, Q.; Wang, D.; Chen, C.S.; Tong, W.; Liu, C.; Xu, T.; Ju, Z.; et al. Effects of immediate blood pressure reduction on death and major disability in patients with acute ischemic stroke: The CATIS randomized clinical trial. JAMA 2014, 311, 479–489. [Google Scholar] [CrossRef]
- Bath, P.M.; Martin, R.H.; Palesch, Y.; Cotton, D.; Yusuf, S.; Sacco, R.; Diener, H.C.; Toni, D.; Estol, C.; Roberts, R. Effect of telmisartan on functional outcome, recurrence, and blood pressure in patients with acute mild ischemic stroke: A PRoFESS subgroup analysis. Stroke 2009, 40, 3541–3546. [Google Scholar] [CrossRef] [PubMed]
- Wahlgren, N.G.; MacMahon, D.G.; De Keyser, J.; Indredavik, B.; Ryman, T. Intravenous Nimodipine West European Stroke Trial (INWEST) of Nimodipine in the Treatment of Acute Ischaemic Stroke. Cerebrovasc. Dis. 1994, 4, 204–210. [Google Scholar] [CrossRef]
- Bang, O.Y.; Chung, J.W.; Kim, S.K.; Kim, S.J.; Lee, M.J.; Hwang, J.; Seo, W.K.; Ha, Y.S.; Sung, S.M.; Kim, E.G.; et al. Therapeutic-induced hypertension in patients with noncardioembolic acute stroke. Neurology 2019, 93, e1955–e1963. [Google Scholar] [CrossRef]
- Kang, J.; Hong, J.H.; Jang, M.U.; Choi, N.C.; Lee, J.S.; Kim, B.J.; Han, M.K.; Bae, H.J. Change in blood pressure variability in patients with acute ischemic stroke and its effect on early neurologic outcome. PLoS ONE 2017, 12, e0189216. [Google Scholar] [CrossRef]
- Chung, J.W.; Kim, N.; Kang, J.; Park, S.H.; Kim, W.J.; Ko, Y.; Park, J.H.; Lee, J.S.; Lee, J.; Yang, M.H.; et al. Blood pressure variability and the development of early neurological deterioration following acute ischemic stroke. J. Hypertens. 2015, 33, 2099–2106. [Google Scholar] [CrossRef]
- Stead, L.G.; Gilmore, R.M.; Vedula, K.C.; Weaver, A.L.; Decker, W.W.; Brown, R.D., Jr. Impact of acute blood pressure variability on ischemic stroke outcome. Neurology 2006, 66, 1878–1881. [Google Scholar] [CrossRef] [PubMed]
- de Havenon, A.; Stoddard, G.; Saini, M.; Wong, K.H.; Tirschwell, D.; Bath, P. Increased blood pressure variability after acute ischemic stroke increases the risk of death: A secondary analysis of the Virtual International Stroke Trial Archive. JRSM Cardiovasc. Dis. 2019, 8, 2048004019856496. [Google Scholar] [CrossRef] [PubMed]
- Woods, A.G.; Lillicrap, T.; Hood, R.; Fletcher, J.W.; Ranhage, V.; Larsson, E.; Cahlin, F.; Jood, K.; Tatlisumak, T.; Garcia-Esperon, C.; et al. Blood Pressure Variability Is Associated with Infarct Growth in Acute Ischaemic Stroke. Cerebrovasc. Dis. 2023. [Google Scholar] [CrossRef]
- Wu, M.N.; Liu, Y.P.; Fong, Y.O.; Lin, Y.H.; Yang, I.H.; Chou, P.S.; Hsu, C.Y.; Lin, H.F. The impact of blood pressure variability on the development of parenchymal hematoma in acute cerebral infarction with atrial fibrillation. Hypertens. Res. 2024, 47, 618–627. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ma, Y.; Qin, J.; Wei, X.; Yang, Y.; Yuan, Y.; Yan, F.; Huo, X.; Han, L. Blood pressure variability predicts poor outcomes in acute stroke patients without thrombolysis: A systematic review and meta-analysis. J. Neurol. 2023, 30, 023–12054. [Google Scholar] [CrossRef]
- Todo, K. Blood pressure variability in acute ischemic stroke. Hypertens. Res. 2024, 47, 679–680. [Google Scholar] [CrossRef]
- Polychronopoulos, G.; Milonas, D.; Tziomalos, K. Blood Pressure Variability in Patients with Acute Ischemic Stroke: Is It Worth Measuring? Am. J. Hypertens. 2023, 36, 17–18. [Google Scholar] [CrossRef]
- Yuan, F.; Yang, F.; Zhao, J.; Fu, F.; Liu, Y.; Xue, C.; Wang, K.; Yuan, X.; Li, D.; Liu, Q.; et al. Controlling Hypertension after Severe Cerebrovascular Event (CHASE): A randomized, multicenter, controlled study. Int. J. Stroke 2021, 16, 456–465. [Google Scholar] [CrossRef]
- Zhao, J.; Yuan, F.; Fu, F.; Liu, Y.; Xue, C.; Wang, K.; Yuan, X.; Li, D.; Liu, Q.; Zhang, W.; et al. Blood pressure variability and outcome in acute severe stroke: A post hoc analysis of CHASE-A randomized controlled trial. J. Clin. Hypertens. 2021, 23, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, K.; Kai, H.; Kamouchi, M.; Hata, J.; Ago, T.; Nakane, H.; Imaizumi, T.; Kitazono, T. Day-by-Day Blood Pressure Variability and Functional Outcome after Acute Ischemic Stroke: Fukuoka Stroke Registry. Stroke 2015, 46, 1832–1839. [Google Scholar] [CrossRef] [PubMed]
- Manning, L.S.; Mistri, A.K.; Potter, J.; Rothwell, P.M.; Robinson, T.G. Short-term blood pressure variability in acute stroke: Post hoc analysis of the controlling hypertension and hypotension immediately post stroke and continue or stop post-stroke antihypertensives collaborative study trials. Stroke 2015, 46, 1518–1524. [Google Scholar] [CrossRef] [PubMed]
- Minhas, J.S.; Wang, X.; Lavados, P.M.; Moullaali, T.J.; Arima, H.; Billot, L.; Hackett, M.L.; Olavarria, V.V.; Middleton, S.; Pontes-Neto, O.; et al. Blood pressure variability and outcome in acute ischemic and hemorrhagic stroke: A post hoc analysis of the HeadPoST study. J. Hum. Hypertens. 2019, 33, 411–418. [Google Scholar] [CrossRef]
- Shin, D.H.; Song, S.; Lee, Y.B. Comparison of the Effect of Fimasartan versus Valsartan on Blood Pressure Variability in Acute Ischemic Stroke: A Double-Blind Randomized Trial. Cardiovasc. Ther. 2019, 2019, 7836527. [Google Scholar] [CrossRef] [PubMed]
- Robinson, T.G.; Davison, W.J.; Rothwell, P.M.; Potter, J.F. Randomised controlled trial of a Calcium Channel or Angiotensin Converting Enzyme Inhibitor/Angiotensin Receptor Blocker Regime to Reduce Blood Pressure Variability following Ischaemic Stroke (CAARBS): A protocol for a feasibility study. BMJ Open 2019, 9, 2018–025301. [Google Scholar] [CrossRef] [PubMed]
- Davison, W.J.; Appiah, K.; Robinson, T.G.; McGurgan, I.J.; Rothwell, P.M.; Potter, J.F. A calcium channel or angiotensin converting enzyme inhibitor/angiotensin receptor blocker regime to reduced blood pressure variability in acute ischaemic stroke (CAARBS): A feasibility trial. J. Neurol. Sci. 2020, 413, 19. [Google Scholar] [CrossRef] [PubMed]
- Tsivgoulis, G.; Saqqur, M.; Sharma, V.K.; Lao, A.Y.; Hill, M.D.; Alexandrov, A.V. Association of pretreatment blood pressure with tissue plasminogen activator-induced arterial recanalization in acute ischemic stroke. Stroke 2007, 38, 961–966. [Google Scholar] [CrossRef]
- Martin-Schild, S.; Hallevi, H.; Albright, K.C.; Khaja, A.M.; Barreto, A.D.; Gonzales, N.R.; Grotta, J.C.; Savitz, S.I. Aggressive blood pressure-lowering treatment before intravenous tissue plasminogen activator therapy in acute ischemic stroke. Arch. Neurol. 2008, 65, 1174–1178. [Google Scholar] [CrossRef]
- Sandset, E.C. Blood pressure in acute stroke. Lancet Neurol. 2014, 13, 342–343. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, K.; Ahmed, N.; Filippatou, A.; Katsanos, A.H.; Goyal, N.; Tsioufis, K.; Manios, E.; Pikilidou, M.; Schellinger, P.D.; Alexandrov, A.W.; et al. Association of Elevated Blood Pressure Levels with Outcomes in Acute Ischemic Stroke Patients Treated with Intravenous Thrombolysis: A Systematic Review and Meta-Analysis. J. Stroke 2019, 21, 78–90. [Google Scholar] [CrossRef] [PubMed]
- Tsivgoulis, G.; Kotsis, V.; Giannopoulos, S. Intravenous thrombolysis for acute ischaemic stroke: Effective blood pressure control matters. Int. J. Stroke 2011, 6, 125–127. [Google Scholar] [CrossRef] [PubMed]
- Anderson, C.S.; Huang, Y.; Lindley, R.I.; Chen, X.; Arima, H.; Chen, G.; Li, Q.; Billot, L.; Delcourt, C.; Bath, P.M.; et al. Intensive blood pressure reduction with intravenous thrombolysis therapy for acute ischaemic stroke (ENCHANTED): An international, randomised, open-label, blinded-endpoint, phase 3 trial. Lancet 2019, 393, 877–888. [Google Scholar] [CrossRef] [PubMed]
- Sandset, E.C.; Fischer, U. Blood pressure lowering in acute ischaemic stroke thrombolysis. Lancet 2019, 393, 849–850. [Google Scholar] [CrossRef] [PubMed]
- Thomalla, G.; Simonsen, C.Z.; Boutitie, F.; Andersen, G.; Berthezene, Y.; Cheng, B.; Cheripelli, B.; Cho, T.H.; Fazekas, F.; Fiehler, J.; et al. MRI-Guided Thrombolysis for Stroke with Unknown Time of Onset. N. Engl. J. Med. 2018, 379, 611–622. [Google Scholar] [CrossRef]
- Barow, E.; Boutitie, F.; Cheng, B.; Cho, T.H.; Ebinger, M.; Endres, M.; Fiebach, J.B.; Fiehler, J.; Nickel, A.; Puig, J.; et al. 24-hour blood pressure variability and treatment effect of intravenous alteplase in acute ischaemic stroke. Eur. Stroke J. 2021, 6, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Kellert, L.; Sykora, M.; Gumbinger, C.; Herrmann, O.; Ringleb, P.A. Blood pressure variability after intravenous thrombolysis in acute stroke does not predict intracerebral hemorrhage but poor outcome. Cerebrovasc. Dis. 2012, 33, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Kellert, L.; Hametner, C.; Ahmed, N.; Rauch, G.; MacLeod, M.J.; Perini, F.; Lees, K.R.; Ringleb, P.A. Reciprocal Interaction of 24-Hour Blood Pressure Variability and Systolic Blood Pressure on Outcome in Stroke Thrombolysis. Stroke 2017, 48, 1827–1834. [Google Scholar] [CrossRef]
- Delgado-Mederos, R.; Ribo, M.; Rovira, A.; Rubiera, M.; Munuera, J.; Santamarina, E.; Delgado, P.; Maisterra, O.; Alvarez-Sabin, J.; Molina, C.A. Prognostic significance of blood pressure variability after thrombolysis in acute stroke. Neurology 2008, 71, 552–558. [Google Scholar] [CrossRef]
- Endo, K.; Kario, K.; Koga, M.; Nakagawara, J.; Shiokawa, Y.; Yamagami, H.; Furui, E.; Kimura, K.; Hasegawa, Y.; Okada, Y.; et al. Impact of early blood pressure variability on stroke outcomes after thrombolysis: The SAMURAI rt-PA Registry. Stroke 2013, 44, 816–818. [Google Scholar] [CrossRef]
- Reddy, S.; Paramasivan, N.K.; Sreedharan, S.E.; Sukumaran, S.; Vinoda Thulaseedharan, J.; Sylaja, P.N. Association of 24 h Blood Pressure on Functional Outcome in Patients with Acute Ischemic Stroke Post Intravenous Thrombolysis. Cerebrovasc. Dis. 2023, 52, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.X.; Wang, C.; Zhang, P.; Qu, Y.; Guo, Z.N.; Yang, Y. Effects of Early Changes in Blood Pressure During Intravenous Thrombolysis on the Prognosis of Acute Ischemic Stroke Patients. Front. Aging Neurosci. 2020, 12, 601471. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Yan, S.; Zhang, S.; Guo, Y.; Lou, M. Systolic Blood Pressure Variability is Associated with Severe Hemorrhagic Transformation in the Early Stage After Thrombolysis. Transl. Stroke Res. 2016, 7, 186–191. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Wang, H.; Tang, Y.; Wang, J.; Cui, B.; Xu, B.; Sun, Y.; Zhang, G.; He, X.; Niu, X.; et al. Blood pressure undulation of peripheral thrombolysis period in acute ischemic stroke is associated with prognosis. J. Hypertens. 2022, 40, 749–757. [Google Scholar] [CrossRef]
- Katsanos, A.H.; Alexandrov, A.V.; Mandava, P.; Köhrmann, M.; Soinne, L.; Barreto, A.D.; Sharma, V.K.; Mikulik, R.; Muir, K.W.; Rothlisberger, T.; et al. Pulse pressure variability is associated with unfavorable outcomes in acute ischaemic stroke patients treated with intravenous thrombolysis. Eur. J. Neurol. 2020, 27, 2453–2462. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Duan, Z.; Zhai, Y.; Zhang, C.; Zhang, J.; Hu, T.; Liu, T.; Liu, Z.; Xu, J.; Liu, H.; et al. Early blood pressure changes during systemic thrombolysis and its association with unexplained early neurological deterioration in small subcortical infarct. J. Clin. Hypertens. 2022, 24, 1086–1094. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.X.; Qiu, D.H.; Zheng, W.C.; Zhao, J.H.; Yin, H.P.; Liu, Y.L.; Chen, Y.K. Effects of Early-Stage Blood Pressure Variability on the Functional Outcome in Acute Ischemic Stroke Patients With Symptomatic Intracranial Artery Stenosis or Occlusion Receiving Intravenous Thrombolysis. Front. Neurol. 2022, 13, 823494. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, K.; Goyal, N.; Katsanos, A.H.; Filippatou, A.; Mistry, E.A.; Khatri, P.; Anadani, M.; Spiotta, A.M.; Sandset, E.C.; Sarraj, A.; et al. Association of Blood Pressure with Outcomes in Acute Stroke Thrombectomy. Hypertension 2020, 75, 730–739. [Google Scholar] [CrossRef]
- Goyal, N.; Tsivgoulis, G.; Iftikhar, S.; Khorchid, Y.; Fawad Ishfaq, M.; Doss, V.T.; Zand, R.; Chang, J.; Alsherbini, K.; Choudhri, A.; et al. Admission systolic blood pressure and outcomes in large vessel occlusion strokes treated with endovascular treatment. J. Neurointerventional. Surg. 2017, 9, 451–454. [Google Scholar] [CrossRef]
- Mulder, M.; Ergezen, S.; Lingsma, H.F.; Berkhemer, O.A.; Fransen, P.S.S.; Beumer, D.; van den Berg, L.A.; Lycklama À Nijeholt, G.; Emmer, B.J.; van der Worp, H.B.; et al. Baseline Blood Pressure Effect on the Benefit and Safety of Intra-Arterial Treatment in MR CLEAN (Multicenter Randomized Clinical Trial of Endovascular Treatment of Acute Ischemic Stroke in The Netherlands). Stroke 2017, 48, 1869–1876. [Google Scholar] [CrossRef]
- Maïer, B.; Gory, B.; Taylor, G.; Labreuche, J.; Blanc, R.; Obadia, M.; Abrivard, M.; Smajda, S.; Desilles, J.P.; Redjem, H.; et al. Mortality and Disability According to Baseline Blood Pressure in Acute Ischemic Stroke Patients Treated by Thrombectomy: A Collaborative Pooled Analysis. J. Am. Heart Assoc. 2017, 6, 006484. [Google Scholar] [CrossRef] [PubMed]
- Petersen, N.H.; Ortega-Gutierrez, S.; Wang, A.; Lopez, G.V.; Strander, S.; Kodali, S.; Silverman, A.; Zheng-Lin, B.; Dandapat, S.; Sansing, L.H.; et al. Decreases in Blood Pressure During Thrombectomy Are Associated with Larger Infarct Volumes and Worse Functional Outcome. Stroke 2019, 50, 1797–1804. [Google Scholar] [CrossRef]
- Löwhagen Hendén, P.; Rentzos, A.; Karlsson, J.E.; Rosengren, L.; Sundeman, H.; Reinsfelt, B.; Ricksten, S.E. Hypotension during Endovascular Treatment of Ischemic Stroke Is a Risk Factor for Poor Neurological Outcome. Stroke 2015, 46, 2678–2680. [Google Scholar] [CrossRef] [PubMed]
- Whalin, M.K.; Halenda, K.M.; Haussen, D.C.; Rebello, L.C.; Frankel, M.R.; Gershon, R.Y.; Nogueira, R.G. Even Small Decreases in Blood Pressure during Conscious Sedation Affect Clinical Outcome after Stroke Thrombectomy: An Analysis of Hemodynamic Thresholds. AJNR Am. J. Neuroradiol. 2017, 38, 294–298. [Google Scholar] [CrossRef] [PubMed]
- Maïer, B.; Fahed, R.; Khoury, N.; Guenego, A.; Labreuche, J.; Taylor, G.; Blacher, J.; Zuber, M.; Lapergue, B.; Blanc, R.; et al. Association of Blood Pressure during Thrombectomy for Acute Ischemic Stroke with Functional Outcome: A Systematic Review. Stroke 2019, 50, 2805–2812. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, M.; Schönenberger, S.; Hendèn, P.L.; Valentin, J.B.; Espelund, U.S.; Sørensen, L.H.; Juul, N.; Uhlmann, L.; Johnsen, S.P.; Rentzos, A.; et al. Blood Pressure Thresholds and Neurologic Outcomes after Endovascular Therapy for Acute Ischemic Stroke: An Analysis of Individual Patient Data from 3 Randomized Clinical Trials. JAMA Neurol. 2020, 77, 622–631. [Google Scholar] [CrossRef]
- Martins, A.I.; Sargento-Freitas, J.; Silva, F.; Jesus-Ribeiro, J.; Correia, I.; Gomes, J.P.; Aguiar-Gonçalves, M.; Cardoso, L.; Machado, C.; Rodrigues, B.; et al. Recanalization Modulates Association Between Blood Pressure and Functional Outcome in Acute Ischemic Stroke. Stroke 2016, 47, 1571–1576. [Google Scholar] [CrossRef]
- Mazighi, M.; Richard, S.; Lapergue, B.; Sibon, I.; Gory, B.; Berge, J.; Consoli, A.; Labreuche, J.; Olivot, J.M.; Broderick, J.; et al. Safety and efficacy of intensive blood pressure lowering after successful endovascular therapy in acute ischaemic stroke (BP-TARGET): A multicentre, open-label, randomised controlled trial. Lancet Neurol. 2021, 20, 265–274. [Google Scholar] [CrossRef]
- Yang, P.; Song, L.; Zhang, Y.; Zhang, X.; Chen, X.; Li, Y.; Sun, L.; Wan, Y.; Billot, L.; Li, Q.; et al. Intensive blood pressure control after endovascular thrombectomy for acute ischaemic stroke (ENCHANTED2/MT): A multicentre, open-label, blinded-endpoint, randomised controlled trial. Lancet 2022, 400, 1585–1596. [Google Scholar] [CrossRef]
- Nam, H.S.; Kim, Y.D.; Heo, J.; Lee, H.; Jung, J.W.; Choi, J.K.; Lee, I.H.; Lim, I.H.; Hong, S.H.; Baik, M.; et al. Intensive vs Conventional Blood Pressure Lowering After Endovascular Thrombectomy in Acute Ischemic Stroke: The OPTIMAL-BP Randomized Clinical Trial. JAMA 2023, 330, 832–842. [Google Scholar] [CrossRef] [PubMed]
- Mistry, E.A.; Hart, K.W.; Davis, L.T.; Gao, Y.; Prestigiacomo, C.J.; Mittal, S.; Mehta, T.; LaFever, H.; Harker, P.; Wilson-Perez, H.E.; et al. Blood Pressure Management After Endovascular Therapy for Acute Ischemic Stroke: The BEST-II Randomized Clinical Trial. JAMA 2023, 330, 821–831. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Meis, J.; Potreck, A.; Sauer, L.D.; Kieser, M.; Bendszus, M.; Wick, W.; Ringleb, P.A.; Möhlenbruch, M.A.; Schönenberger, S. Effect of Individualized Versus Standardized Blood Pressure Management During Endovascular Stroke Treatment on Clinical Outcome: A Randomized Clinical Trial. Stroke 2023, 54, 2755–2765. [Google Scholar] [CrossRef]
- Katsanos, A.H.; Catanese, L.; Sahlas, D.J.; Srivastava, A.; Veroniki, A.A.; Perera, K.; Ng, K.K.H.; Joundi, R.; Adel, B.V.; Larrazabal, R.; et al. Blood Pressure Management Following Endovascular Stroke Treatment: A Feasibility Trial and Meta-Analysis of Outcomes. Stroke Vasc. Interv. Neurol. 2024, 0, e001287. [Google Scholar] [CrossRef]
- Maïer, B.; Gory, B.; Lapergue, B.; Sibon, I.; Escalard, S.; Kyheng, M.; Labreuche, J.; de Havenon, A.; Petersen, N.; Anadani, M.; et al. Effect of blood pressure variability in the randomized controlled BP TARGET trial. Eur. J. Neurol. 2022, 29, 771–781. [Google Scholar] [CrossRef]
- Palaiodimou, L.; Joundi, R.A.; Katsanos, A.H.; Ahmed, N.; Kim, J.T.; Goyal, N.; Maier, I.L.; de Havenon, A.; Anadani, M.; Matusevicius, M.; et al. Association between blood pressure variability and outcomes after endovascular thrombectomy for acute ischemic stroke: An individual patient data meta-analysis. Eur. Stroke J. 2023, 3, 23969873231211157. [Google Scholar] [CrossRef]
- Yang, M.; Lu, T.; Weng, B.; He, Y.; Yang, H. Association Between Blood Pressure Variability and Short-Term Outcome after Intra-arterial Thrombectomy in Acute Stroke Patients with Large-Vessel Occlusion. Front. Neurol. 2021, 11, 604437. [Google Scholar] [CrossRef]
- Mistry, E.A.; Mehta, T.; Mistry, A.; Arora, N.; Starosciak, A.K.; De Los Rios La Rosa, F.; Siegler, J.E., 3rd; Chitale, R.; Anadani, M.; Yaghi, S.; et al. Blood Pressure Variability and Neurologic Outcome after Endovascular Thrombectomy: A Secondary Analysis of the BEST Study. Stroke 2020, 51, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; He, Q.; Zhang, Z. Detrimental effect of increased blood pressure variability on clinical outcome in acute ischemic stroke treated with reperfusion therapy: A case control study. BMC Neurol. 2022, 22, 87. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, X.; Wen, C.; Zhou, F.; Gao, S.; Zhang, X.; Lin, S.; Shi, J.; Li, W. Effect of short-term blood pressure variability on functional outcome after intra-arterial treatment in acute stroke patients with large-vessel occlusion. BMC Neurol. 2019, 19, 228. [Google Scholar] [CrossRef]
- Xu, C.; Jin, T.; Chen, Z.; Zhang, Z.; Zhang, K.; Mao, H.; Ye, S.; Geng, Y.; Shi, Z. Increased blood pressure variability during general anaesthesia is associated with worse outcomes after mechanical thrombectomy: A prospective observational cohort study. BMJ Open 2022, 12, 2021–059108. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Shen, R.; Lin, W.; Zhou, X.; Hu, J.; Zhang, Q. Association between blood pressure variability and clinical outcomes after successful recanalization in patients with large vessel occlusion stroke after mechanical thrombectomy. Front. Neurol. 2022, 13, 967395. [Google Scholar] [CrossRef] [PubMed]
- Nepal, G.; Shrestha, G.S.; Shing, Y.K.; Muha, A.; Bhagat, R. Systolic blood pressure variability following endovascular thrombectomy and clinical outcome in acute ischemic stroke: A meta-analysis. Acta Neurol. Scand. 2021, 144, 343–354. [Google Scholar] [CrossRef] [PubMed]
- Goyal, N.; Tsivgoulis, G.; Pandhi, A.; Chang, J.J.; Dillard, K.; Ishfaq, M.F.; Nearing, K.; Choudhri, A.F.; Hoit, D.; Alexandrov, A.W.; et al. Blood pressure levels post mechanical thrombectomy and outcomes in large vessel occlusion strokes. Neurology 2017, 89, 540–547. [Google Scholar] [CrossRef] [PubMed]
- Maier, I.L.; Tsogkas, I.; Behme, D.; Bähr, M.; Knauth, M.; Psychogios, M.N.; Liman, J. High Systolic Blood Pressure after Successful Endovascular Treatment Affects Early Functional Outcome in Acute Ischemic Stroke. Cerebrovasc. Dis. 2018, 45, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Matusevicius, M.; Cooray, C.; Bottai, M.; Mazya, M.; Tsivgoulis, G.; Nunes, A.P.; Moreira, T.; Ollikainen, J.; Tassi, R.; Strbian, D.; et al. Blood Pressure After Endovascular Thrombectomy: Modeling for Outcomes Based on Recanalization Status. Stroke 2020, 51, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Cho, B.H.; Kim, J.T.; Lee, J.S.; Park, M.S.; Kang, K.W.; Choi, K.H.; Lee, S.H.; Choi, S.M.; Kim, B.C.; Kim, M.K.; et al. Associations of various blood pressure parameters with functional outcomes after endovascular thrombectomy in acute ischaemic stroke. Eur. J. Neurol. 2019, 26, 1019–1027. [Google Scholar] [CrossRef]
- Bennett, A.E.; Wilder, M.J.; McNally, J.S.; Wold, J.J.; Stoddard, G.J.; Majersik, J.J.; Ansari, S.; de Havenon, A. Increased blood pressure variability after endovascular thrombectomy for acute stroke is associated with worse clinical outcome. J. Neurointerventional Surg. 2018, 10, 823–827. [Google Scholar] [CrossRef]
- Kim, T.J.; Park, H.K.; Kim, J.M.; Lee, J.S.; Park, S.H.; Jeong, H.B.; Park, K.Y.; Rha, J.H.; Yoon, B.W.; Ko, S.B. Blood pressure variability and hemorrhagic transformation in patients with successful recanalization after endovascular recanalization therapy: A retrospective observational study. Ann. Neurol. 2019, 85, 574–581. [Google Scholar] [CrossRef]
- Anadani, M.; Orabi, Y.; Alawieh, A.; Chatterjee, A.; Lena, J.; Al Kasab, S.; Spiotta, A.M. Blood pressure and outcome post mechanical thrombectomy. J. Clin. Neurosci. 2019, 62, 94–99. [Google Scholar] [CrossRef]
- Chu, H.J.; Lin, C.H.; Chen, C.H.; Hwang, Y.T.; Lee, M.; Lee, C.W.; Tang, S.C.; Jeng, J.S. Effect of blood pressure parameters on functional independence in patients with acute ischemic stroke in the first 6 hours after endovascular thrombectomy. J. Neurointerventional Surg. 2020, 12, 937–941. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Samara, H.; Ebrahim, A.; Kinariwala, J.; Mohamed, W. Blood pressure variability and short-term outcomes after mechanical thrombectomy in patients with acute ischemic stroke. J. Stroke Cerebrovasc. Dis. 2023, 32, 31. [Google Scholar] [CrossRef]
- Prasad, A.; Kobsa, J.; Kodali, S.; Bartolome, D.; Begunova, L.; Quispe-Orozco, D.; Farooqui, M.; Zevallos, C.; Ortega-Gutiérrez, S.; Anadani, M.; et al. Temporal profiles of systolic blood pressure variability and neurologic outcomes after endovascular thrombectomy. Eur. Stroke J. 2022, 7, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Anadani, M.; Orabi, M.Y.; Alawieh, A.; Goyal, N.; Alexandrov, A.V.; Petersen, N.; Kodali, S.; Maier, I.L.; Psychogios, M.N.; Swisher, C.B.; et al. Blood Pressure and Outcome after Mechanical Thrombectomy with Successful Revascularization. Stroke 2019, 50, 2448–2454. [Google Scholar] [CrossRef] [PubMed]
- Mujanovic, A.; Ng, F.; Meinel, T.R.; Dobrocky, T.; Piechowiak, E.I.; Kurmann, C.C.; Seiffge, D.J.; Wegener, S.; Wiest, R.; Meyer, L.; et al. No-reflow phenomenon in stroke patients: A systematic literature review and meta-analysis of clinical data. Int. J. Stroke 2024, 19, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Nie, X.; Leng, X.; Miao, Z.; Fisher, M.; Liu, L. Clinically Ineffective Reperfusion After Endovascular Therapy in Acute Ischemic Stroke. Stroke 2023, 54, 873–881. [Google Scholar] [CrossRef] [PubMed]
- Jillella, D.V.; Calder, C.S.; Uchino, K.; Qeadan, F.; Ikram, A.; Casul, Y.R.; Tran, H.Q. Blood Pressure and Hospital Discharge Outcomes in Acute Ischemic Stroke Patients Undergoing Reperfusion Therapy. J. Stroke Cerebrovasc. Dis. 2020, 29, 7. [Google Scholar] [CrossRef] [PubMed]
- Koshimizu, H.; Kojima, R.; Kario, K.; Okuno, Y. Prediction of blood pressure variability using deep neural networks. Int. J. Med. Inform. 2020, 136, 8. [Google Scholar] [CrossRef]
- Najafali, D.; Johnstone, T.; Pergakis, M.; Buganu, A.; Ullah, M.; Vuong, K.; Panchal, B.; Sutherland, M.; Yarbrough, K.L.; Phipps, M.S.; et al. Prediction of blood pressure variability during thrombectomy using supervised machine learning and outcomes of patients with ischemic stroke from large vessel occlusion. J. Thromb. Thrombolysis 2023, 56, 12–26. [Google Scholar] [CrossRef]
- Castro, P.; Ferreira, F.; Nguyen, C.K.; Payabvash, S.; Ozan Tan, C.; Sorond, F.; Azevedo, E.; Petersen, N. Rapid Assessment of Blood Pressure Variability and Outcome After Successful Thrombectomy. Stroke 2021, 52, e531–e535. [Google Scholar] [CrossRef]
- Jiang, X.; Gao, L.; Wang, J.; Bao, J.; Fang, J.; He, L. Collateral Status Modification of the Association Between Blood Pressure Variation Within 72 Hours After Endovascular Treatment and Clinical Outcome in Acute Ischemic Stroke: A Retrospective Cohort Study. Clin. Interv. Aging 2023, 18, 1491–1499. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Nie, X.; Pan, Y.; Yan, H.; Pu, Y.; Wei, Y.; Cai, Y.; Ding, Y.; Lu, Q.; Zhang, Z.; et al. Adverse Outcomes Associated With Higher Mean Blood Pressure and Greater Blood Pressure Variability Immediately After Successful Embolectomy in Those With Acute Ischemic Stroke, and the Influence of Pretreatment Collateral Circulation Status. J. Am. Heart Assoc. 2021, 10, 26. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.Y.; Jeon, S.B.; Jung, C.; Gwak, D.S.; Han, M.K. Postreperfusion Blood Pressure Variability after Endovascular Thrombectomy Affects Outcomes in Acute Ischemic Stroke Patients with Poor Collateral Circulation. Front. Neurol. 2019, 10, 346. [Google Scholar] [CrossRef]
- Huang, X.; Guo, H.; Yuan, L.; Cai, Q.; Zhang, M.; Zhang, Y.; Zhu, W.; Li, Z.; Yang, Q.; Zhou, Z.; et al. Blood pressure variability and outcomes after mechanical thrombectomy based on the recanalization and collateral status. Ther. Adv. Neurol. Disord. 2021, 14, 1756286421997383. [Google Scholar] [CrossRef]
- Chang, J.Y.; Jeon, S.B.; Lee, J.H.; Kwon, O.K.; Han, M.K. The Relationship between Blood Pressure Variability, Recanalization Degree, and Clinical Outcome in Large Vessel Occlusive Stroke after an Intra-Arterial Thrombectomy. Cerebrovasc. Dis. 2018, 46, 279–286. [Google Scholar] [CrossRef]
- Petersen, N.H.; Silverman, A.; Strander, S.M.; Kodali, S.; Wang, A.; Sansing, L.H.; Schindler, J.L.; Falcone, G.J.; Gilmore, E.J.; Jasne, A.S.; et al. Fixed Compared With Autoregulation-Oriented Blood Pressure Thresholds After Mechanical Thrombectomy for Ischemic Stroke. Stroke 2020, 51, 914–921. [Google Scholar] [CrossRef]
- Tao, C.; Xu, P.; Yao, Y.; Zhu, Y.; Li, R.; Li, J.; Luo, W.; Hu, W. A Prospective Study to Investigate Controlling Blood Pressure Under Transcranial Doppler after Endovascular Treatment in Patients with Occlusion of Anterior Circulation. Front. Neurol. 2021, 12, 735758. [Google Scholar] [CrossRef]
- Webb, A.J.; Rothwell, P.M. Effect of dose and combination of antihypertensives on interindividual blood pressure variability: A systematic review. Stroke 2011, 42, 2860–2865. [Google Scholar] [CrossRef] [PubMed]
- Webb, A.J.; Fischer, U.; Mehta, Z.; Rothwell, P.M. Effects of antihypertensive-drug class on interindividual variation in blood pressure and risk of stroke: A systematic review and meta-analysis. Lancet 2010, 375, 906–915. [Google Scholar] [CrossRef]
- Li, J.; Liu, B.J.; Wang, Y.J.; Cui, Y.; Chen, H.S. Antihypertensive Drugs Affect the Association of Systolic Blood Pressure Variability with Outcomes in Patients with Acute Stroke who had Successful Recanalization after Endovascular Treatment. J. Atheroscler. Thromb. 2024, 14, 64637. [Google Scholar] [CrossRef]
- Parati, G.; Ravogli, A.; Frattola, A.; Groppelli, A.; Ulian, L.; Santucciu, C.; Mancia, G. Blood pressure variability: Clinical implications and effects of antihypertensive treatment. J. Hypertens. Suppl. 1994, 12, S35–S40. [Google Scholar] [PubMed]
- Liu, H.T.; Deng, N.H.; Wu, Z.F.; Zhou, Z.Y.; Tian, Z.; Liu, X.Y.; Wang, Y.X.; Zheng, H.Y.; Ou, Y.S.; Jiang, Z.S. Statin’s role on blood pressure levels: Meta-analysis based on randomized controlled trials. J. Clin. Hypertens. 2023, 25, 238–250. [Google Scholar] [CrossRef]
- Cordonnier, C.; Demchuk, A.; Ziai, W.; Anderson, C.S. Intracerebral haemorrhage: Current approaches to acute management. Lancet 2018, 392, 1257–1268. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Hu, X.; Song, L.; Chen, X.; Ouyang, M.; Billot, L.; Li, Q.; Malavera, A.; Li, X.; Muñoz-Venturelli, P.; et al. The third Intensive Care Bundle with Blood Pressure Reduction in Acute Cerebral Haemorrhage Trial (INTERACT3): An international, stepped wedge cluster randomised controlled trial. Lancet 2023, 402, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Anderson, C.S.; Heeley, E.; Huang, Y.; Wang, J.; Stapf, C.; Delcourt, C.; Lindley, R.; Robinson, T.; Lavados, P.; Neal, B.; et al. Rapid blood-pressure lowering in patients with acute intracerebral hemorrhage. N. Engl. J. Med. 2013, 368, 2355–2365. [Google Scholar] [CrossRef] [PubMed]
- Manning, L.; Hirakawa, Y.; Arima, H.; Wang, X.; Chalmers, J.; Wang, J.; Lindley, R.; Heeley, E.; Delcourt, C.; Neal, B.; et al. Blood pressure variability and outcome after acute intracerebral haemorrhage: A post-hoc analysis of INTERACT2, a randomised controlled trial. Lancet Neurol. 2014, 13, 364–373. [Google Scholar] [CrossRef] [PubMed]
- Divani, A.A.; Liu, X.; Di Napoli, M.; Lattanzi, S.; Ziai, W.; James, M.L.; Jafarli, A.; Jafari, M.; Saver, J.L.; Hemphill, J.C.; et al. Blood Pressure Variability Predicts Poor In-Hospital Outcome in Spontaneous Intracerebral Hemorrhage. Stroke 2019, 50, 2023–2029. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, E.; Koga, M.; Kobayashi, J.; Kario, K.; Kamiyama, K.; Furui, E.; Shiokawa, Y.; Hasegawa, Y.; Okuda, S.; Todo, K.; et al. Blood pressure variability on antihypertensive therapy in acute intracerebral hemorrhage: The Stroke Acute Management with Urgent Risk-factor Assessment and Improvement-intracerebral hemorrhage study. Stroke 2014, 45, 2275–2279. [Google Scholar] [CrossRef]
- Meeks, J.R.; Bambhroliya, A.B.; Meyer, E.G.; Slaughter, K.B.; Fraher, C.J.; Sharrief, A.Z.; Bowry, R.; Ahmed, W.O.; Tyson, J.E.; Miller, C.C.; et al. High in-hospital blood pressure variability and severe disability or death in primary intracerebral hemorrhage patients. Int. J. Stroke 2019, 14, 987–995. [Google Scholar] [CrossRef]
- Rodriguez-Luna, D.; Piñeiro, S.; Rubiera, M.; Ribo, M.; Coscojuela, P.; Pagola, J.; Flores, A.; Muchada, M.; Ibarra, B.; Meler, P.; et al. Impact of blood pressure changes and course on hematoma growth in acute intracerebral hemorrhage. Eur. J. Neurol. 2013, 20, 1277–1283. [Google Scholar] [CrossRef]
- Lattanzi, S.; Cagnetti, C.; Provinciali, L.; Silvestrini, M. Blood Pressure Variability and Clinical Outcome in Patients with Acute Intracerebral Hemorrhage. J. Stroke Cerebrovasc. Dis. 2015, 24, 1493–1499. [Google Scholar] [CrossRef] [PubMed]
- de Havenon, A.; Majersik, J.J.; Stoddard, G.; Wong, K.H.; McNally, J.S.; Smith, A.G.; Rost, N.S.; Tirschwell, D.L. Increased Blood Pressure Variability Contributes to Worse Outcome After Intracerebral Hemorrhage. Stroke 2018, 49, 1981–1984. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Guo, Z.N.; Zhang, P.; Ma, H.Y.; Sun, Y.Y.; Ren, J.X.; Liu, J.; Zhang, P.D.; Yang, Y. Time course of beat-to-beat blood pressure variability and outcome in patients with spontaneous intracerebral haemorrhage. J. Hypertens. 2022, 40, 1744–1750. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.X.; Fan, Q.X.; Xue, S.Z.; Zhang, M.; Zhao, J.X. Twenty-four-hour blood pressure variability plays a detrimental role in the neurological outcome of hemorrhagic stroke. J. Int. Med. Res. 2018, 46, 2558–2568. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.P.; Kim, C.; Kim, S.E. Blood Pressure Variability and Outcome in Patients with Acute Nonlobar Intracerebral Hemorrhage following Intensive Antihypertensive Treatment. Chin. Med. J. 2018, 131, 657–664. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhuang, X.; Zhang, L. Prognostic Value of Blood Pressure Variability for Patients With Acute or Subacute Intracerebral Hemorrhage: A Meta-Analysis of Prospective Studies. Front. Neurol. 2021, 12, 606594. [Google Scholar] [CrossRef] [PubMed]
- Moullaali, T.J.; Wang, X.; Martin, R.H.; Shipes, V.B.; Robinson, T.G.; Chalmers, J.; Suarez, J.I.; Qureshi, A.I.; Palesch, Y.Y.; Anderson, C.S. Blood pressure control and clinical outcomes in acute intracerebral haemorrhage: A preplanned pooled analysis of individual participant data. Lancet Neurol. 2019, 18, 857–864. [Google Scholar] [CrossRef] [PubMed]
- Andalib, S.; Lattanzi, S.; Di Napoli, M.; Petersen, A.; Biller, J.; Kulik, T.; Macri, E.; Girotra, T.; Torbey, M.T.; Divani, A.A. Blood Pressure Variability: A New Predicting Factor for Clinical Outcomes of Intracerebral Hemorrhage. J. Stroke Cerebrovasc. Dis. 2020, 29, 105340. [Google Scholar] [CrossRef]
- Qureshi, A.I.; Qureshi, M.H. Acute hypertensive response in patients with intracerebral hemorrhage pathophysiology and treatment. J. Cereb. Blood Flow. Metab. 2018, 38, 1551–1563. [Google Scholar] [CrossRef]
- Vemmos, K.N.; Tsivgoulis, G.; Spengos, K.; Zakopoulos, N.; Synetos, A.; Kotsis, V.; Vassilopoulos, D.; Mavrikakis, M. Association between 24-h blood pressure monitoring variables and brain oedema in patients with hyperacute stroke. J. Hypertens. 2003, 21, 2167–2173. [Google Scholar] [CrossRef]
- Sykora, M.; Diedler, J.; Turcani, P.; Rupp, A.; Steiner, T. Subacute perihematomal edema in intracerebral hemorrhage is associated with impaired blood pressure regulation. J. Neurol. Sci. 2009, 284, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Olivot, J.M.; Mlynash, M.; Kleinman, J.T.; Straka, M.; Venkatasubramanian, C.; Bammer, R.; Moseley, M.E.; Albers, G.W.; Wijman, C.A. MRI profile of the perihematomal region in acute intracerebral hemorrhage. Stroke 2010, 41, 2681–2683. [Google Scholar] [CrossRef] [PubMed]
- Menon, R.S.; Burgess, R.E.; Wing, J.J.; Gibbons, M.C.; Shara, N.M.; Fernandez, S.; Jayam-Trouth, A.; German, L.; Sobotka, I.; Edwards, D.; et al. Predictors of highly prevalent brain ischemia in intracerebral hemorrhage. Ann. Neurol. 2012, 71, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.; Shi, K.; Liu, J.; Li, N.; Wu, J.; Zhao, X. Autonomic dysfunction and treatment strategies in intracerebral hemorrhage. CNS Neurosci. Ther. 2024, 30, 14544. [Google Scholar] [CrossRef] [PubMed]
- Jafari, M.; Damani, R. Blood pressure variability and outcome after acute intracerebral hemorrhage. J. Neurol. Sci. 2020, 413, 2. [Google Scholar] [CrossRef] [PubMed]
- Rabinstein, A.A.; Anderson, C.D. Time is brain also counts for ICH. Neurology 2015, 84, 970–971. [Google Scholar] [CrossRef] [PubMed]
- Graffagnino, C.; Bergese, S.; Love, J.; Schneider, D.; Lazaridis, C.; LaPointe, M.; Lee, K.; Lynch, G.; Hu, M.Y.; Williams, G.C. Clevidipine rapidly and safely reduces blood pressure in acute intracerebral hemorrhage: The ACCELERATE trial. Cerebrovasc. Dis. 2013, 36, 173–180. [Google Scholar] [CrossRef]
- Poyant, J.O.; Kuper, P.J.; Mara, K.C.; Dierkhising, R.A.; Rabinstein, A.A.; Wijdicks, E.F.M.; Ritchie, B.M. Nicardipine Reduces Blood Pressure Variability After Spontaneous Intracerebral Hemorrhage. Neurocrit. Care 2019, 30, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.S.; Ping, C.; Lin, Y.X.; Lin, Z.Y.; Yu, L.H.; Dai, L.S.; Kang, D.Z. Systolic Blood Pressure Variability is a Novel Risk Factor for Rebleeding in Acute Subarachnoid Hemorrhage: A Case-Control Study. Medicine 2016, 95, e3028. [Google Scholar] [CrossRef]
- Yang, M.; Pan, X.; Liang, Z.; Huang, X.; Duan, M.; Cai, H.; Jiang, G.; Wen, X.; Chen, L. Association between blood pressure variability and the short-term outcome in patients with acute spontaneous subarachnoid hemorrhage. Hypertens. Res. 2019, 42, 1701–1707. [Google Scholar] [CrossRef]
- Beseoglu, K.; Unfrau, K.; Steiger, H.J.; Hänggi, D. Influence of blood pressure variability on short-term outcome in patients with subarachnoid hemorrhage. Cent. Eur. Neurosurg. 2010, 71, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Kirkness, C.J.; Burr, R.L.; Mitchell, P.H. Intracranial and blood pressure variability and long-term outcome after aneurysmal sub-arachnoid hemorrhage. Am. J. Crit. Care 2009, 18, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Igase, M.; Igase, K.; Kohara, K.; Yamashita, S.; Fujisawa, M.; Katagi, R.; Miki, T. Visit-to-visit variability in systolic blood pressure is a novel risk factor for the growth of intracranial aneurysms. Cerebrovasc. Dis. 2013, 36, 401–406. [Google Scholar] [CrossRef] [PubMed]
Index | Description | Formula |
---|---|---|
Standard Deviation (SD)—mmHg | Denotes the dispersion of BP measurements around the mean. It is more resilient to the influence of isolated extreme values compared to the maximum–minimum range, given a sufficient number of measurements. Disadvantages include its correlation with average BP levels and susceptibility to BP trends, especially in 24 h recordings due to diurnal BP variations. | |
Coefficient of Variation (CV)—% | The ratio of SD to the mean BP. While it can mitigate the correlation between SD and average BP levels, it still remains susceptible to BP trends. | |
Weighted 24 h SD—mmHg | Adjusts for the nocturnal BP lowering and its impact on the 24 h SD by factoring in a weighted average of the daytime and nighttime SD. it may still be influenced by trends occurring within the daytime and nighttime periods. | |
Successive Variation (SV)—mmHg | Refers to the fluctuation or change observed between consecutive blood pressure readings over a given period of time and provides valuable information about the short-term variability of blood pressure. Susceptible to BP trends. | |
Residual Variability (RV)—mmHg [2] | A 24 h total BP variance by using spectral analysis and removing first and second harmonics to exclude circadian changes | |
where CC corresponds to the cycling components of the circadian BP pattern. | ||
Average Real Variability (ARV)—mmHg | Overall variability of differences between successive readings over 24 h or over different days. Resilient to BP trends but affected by poor data quality and missing values. | |
Variation Independent of Mean (VIM)—mmHg | A more sophisticated modification of SD that results through nonlinear regression to eliminate its correlation with average BP. | |
where power x is computed as fitting a curve through nonlinear regression. | ||
Time Rate (TR)—mmHg/min | Capable of determining not only the grade of BPV but also the speed of BP fluctuations. May be limited by fixed intervals between measurements, such as in ambulatory blood pressure monitoring. | |
Mean Absolute Change (MAC)—mmHg | Used as a quantitative index of variability which is less dependent on the mean BP value. | |
Range—mmHg | Heavily influenced by outliers. |
Study | Design | Period of Enrollment | Patients | BPV Measurement | BPV Indices | Results | |
---|---|---|---|---|---|---|---|
Adverse Functional Outcomes | Symptomatic Intracranial Haemorrhage | ||||||
BP TARGET [85] | Post-hoc analysis of RCT | 2017–2019 | 290 | 34 BP measurements within the first 24 h | SD, CV, range, SV, TR | ||
BPV was not associated with functional outcomes. BPV was not associated with symptomatic intracranial haemorrhage. | |||||||
Palaiodimou et al. [86] | Individual patient data meta-analysis from 5 observational studies [94,95,96,97,98] | 2012–2016 [94] 2013–2017 [95] 2014–2017 [96] 2011–2016 [97] 2005–2015 [98] | 2460 | At least 4 BP measurements within the first 24 h | SD, CV | ||
BPV was associated with higher mortality, death or disability and functional impairment at 3 months. BPV was not associated with symptomatic intracranial haemorrhage. | |||||||
Kim et al. [99] | Retrospective | 2013–2017 | 211 | 24 BP measurements within the first 24 h | Range, SD, CV, SV, TR | NR | |
BPV was associated with symptomatic intracranial haemorrhage. | |||||||
Anadani et al. [100] | Retrospective | 2014–2017 | 298 | 24 BP measurements within the first 24 h | SD, CV, range | NR | |
BPV was not associated with functional outcomes. | |||||||
Chu et al. [101] | Retrospective | 2014–2018 | 224 | 24 BP measurements within the first 24 h | SD | NR | |
BPV was associated with worse functional outcomes at 3 months. | |||||||
Mistry et al. [88] | Post-hoc analysis of a prospective, observational study | 2017–2018 | 443 | Within the first 24 h. | SD, CV, SV, RSD, ARV | ||
BPV was associated with poor functional outcomes or death at 3 months. BPV was not associated with symptomatic intracranial haemorrhage. | |||||||
Zhang et al. [90] | Retrospective | 2015–2018 | 72 | 24 BP measurements within the first 24 h | SD, CV, SV | NR | |
BPV was associated with worse functional outcomes at 3 months. | |||||||
Zhou et al. [102] | Retrospective | 2016–2019 | 95 | 24 BP measurements within the first 24 and 48 h | IQR | NR | |
BPV was associated with worse functional outcomes at discharge. | |||||||
Prasad et al. [103] | Retrospective | 2012–2019 | 2041 | 50 BP measurements within the first 72 h | SD, CV, ARV, SV, RSD | ||
BPV was associated with worse functional outcomes and mortality at 3 months. BPV was not associated with haemorrhagic transformation or symptomatic intracranial haemorrhage. | |||||||
Yang et al. [87] | Retrospective | 2015–2020 | 257 | 12 BP measurements within the first 24 h | PPV, SD, SV, range | ||
BPV was associated with worse functional outcomes at 3 months. BPV was associated with symptomatic intracranial haemorrhage. | |||||||
Qin et al. [89] | Retrospective | NR | 236 | Hyperacute: 8 BP measurements within the first 2 h Acute: 22 BP measurements between 2 and 24 h Subacute: 6 BP measurements between 2 and 7 days. | SD, CV, ARV, range | NR | |
BPV was associated with worse functional outcomes at 3 months. | |||||||
Xu et al. [91] | Prospective | 2018–2020 | 141 | Every 5 min during endovascular treatment | SD, CV, range, SV | ||
BPV was associated with worse functional outcomes at 3 months. BPV was not associated with parenchymal haemorrhage. | |||||||
Lu et al. [92] | Retrospective | 2017–2021 | 458 | 24 BP measurements within the first 24 h | SD | ||
BPV was associated with worse functional outcomes at 3 months. BPV was associated with mortality at 30 days. BPV was associated with symptomatic intracranial haemorrhage. |
Study | Design | Period of Enrollment | Patients | BPV Measurement | BPV Indices | Results | |
---|---|---|---|---|---|---|---|
Adverse Clinical Outcomes | Haematoma Expansion | ||||||
INTERACT2 [126] | Post-hoc analysis of RCT | 2008–2012 | 2645 | Hyperacute phase: 5 BP measurements within the first 24 h Acute phase: 12 measurements taken on days 2–7 | SD, CV, VIM, RSD, ARV | ||
BPV in both the hyperacute and acute phases was associated with death/major disability and worse functional outcomes at 3 months. BPV was not associated with haematoma expansion. | |||||||
FAST-MAG [23,24] | Post-hoc analysis of RCT | 2005–2012 | 386 | 11 BP measurements within the first 24 h | SD, CV, SV | ||
BPV was associated with poor functional outcomes at 3 months. BPV was not associated with haematoma expansion. | |||||||
ATACH-2 [132] | Post-hoc analysis of RCT | 2011–2015 | 913 (acute phase) 877 (subacute phase) | Acute phase: 44 BP measurements within the first 24 h Subacute phase: 12 BP measurements taken on days 2–7 | SD, CV, SV, ARV, RSD | ||
BPV in both the acute and subacute phases was associated with poor functional outcomes at 3 months. BPV was not associated with haematoma expansion. | |||||||
HeadPoST [45] | Post-hoc analysis of RCT | 2015–2016 | 817 | 6 BP measurements within the first 24 h | CV | NR | |
BPV was associated with an unfavourable shift of modified Rankin Scale score at 3 months. BPV was associated with poor functional outcomes at 3 months. | |||||||
Rodriguez-Luna et al. [130] | Prospective | 2009–2010 | 117 | 96 BP measurements within the first 24 h | SD, maximum BP increase from baseline, minimum BP and maximum BP drop from baseline values, percentage of 24 h BP monitoring values exceeding 180 and 130 mmHg | ||
BPV was associated with haematoma growth at 24 h. BPV was associated with early neurological deterioration at 24 h. | |||||||
SAMURAI-ICH [128] | Prospective | 2009–2011 | 205 | 24 BP measurements within the first 24 h | SD, SV | ||
BPV was associated with neurological deterioration at 72 h and with an unfavourable functional outcome at 3 months. BPV was not associated with haematoma expansion. | |||||||
Lattanzi et al. [131] | Retrospective | 2007–2013 | 138 | 18 BP measurements within the first 72 h | SD, CV, maximum–minimum difference | NR | |
BPV was associated with poor functional outcomes at 3 months. | |||||||
Divani et al. [127] | Retrospective | 2008–2017 | 762 | 16 BP measurements within the first 24 h | SD, CV, SV, range, functional SV | ||
BPV was associated with death and disability at discharge. BPV was not associated with haematoma expansion. | |||||||
Jeon et al. [135] | Retrospective | 2008–2016 | 104 | 23 BP measurements within the first 24–48 h | SD, CV, MAC, range | ||
BPV was associated with poor functional outcomes higher shift of modified Rankin Scale score at 3 months. MAC was associated with haematoma growth. | |||||||
Zhang et al. [134] | Prospective | 2013–2016 | 131 | 32 BP measurements within the first 24 h | SD, CV, range | NR | |
BPV was associated with poor functional outcomes at 3 months. | |||||||
Meeks et al. [129] | Prospective | 2016–2018 | 566 | NR | SD | NR | |
BPV was associated with poor functional outcomes at discharge, at 1 and at 3 months. BPV was associated with mortality during hospitalisation, at 1 and at 3 months. | |||||||
Qu et al. [133] | Prospective | 2014–2020 | 66 | Continuously for 5 min for calculation of beat-to-beat BPV | SD, VIM | NR | |
Beat-to-beat BPV within 1–2 days after stroke onset was associated with unfavourable outcomes at 3 months. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zompola, C.; Palaiodimou, L.; Voumvourakis, K.; Stefanis, L.; Katsanos, A.H.; Sandset, E.C.; Boviatsis, E.; Tsivgoulis, G. Blood Pressure Variability in Acute Stroke: A Narrative Review. J. Clin. Med. 2024, 13, 1981. https://doi.org/10.3390/jcm13071981
Zompola C, Palaiodimou L, Voumvourakis K, Stefanis L, Katsanos AH, Sandset EC, Boviatsis E, Tsivgoulis G. Blood Pressure Variability in Acute Stroke: A Narrative Review. Journal of Clinical Medicine. 2024; 13(7):1981. https://doi.org/10.3390/jcm13071981
Chicago/Turabian StyleZompola, Christina, Lina Palaiodimou, Konstantinos Voumvourakis, Leonidas Stefanis, Aristeidis H. Katsanos, Else C. Sandset, Estathios Boviatsis, and Georgios Tsivgoulis. 2024. "Blood Pressure Variability in Acute Stroke: A Narrative Review" Journal of Clinical Medicine 13, no. 7: 1981. https://doi.org/10.3390/jcm13071981
APA StyleZompola, C., Palaiodimou, L., Voumvourakis, K., Stefanis, L., Katsanos, A. H., Sandset, E. C., Boviatsis, E., & Tsivgoulis, G. (2024). Blood Pressure Variability in Acute Stroke: A Narrative Review. Journal of Clinical Medicine, 13(7), 1981. https://doi.org/10.3390/jcm13071981