The Role of TNF-α in the Pathogenesis of Idiopathic Nephrotic Syndrome and Its Usefulness as a Marker of the Disease Course
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Study of Kidney Disease in Children. Nephrotic syndrome in children: Prediction of histopathology from clinical and laboratory characteristics at time of diagnosis. A report of the International Study of Kidney Disease in Children. Kidney Int. 1978, 13, 159–165. [Google Scholar] [CrossRef]
- KDIGO Clinical Practice Guideline for Glomerulonephritis. Available online: https://kdigo.org/wp-content/uploads/2017/02/KDIGO-2012-GN-Guideline-English.pdf (accessed on 12 December 2023).
- Lombel, R.M.; Gipson, D.S.; Hodson, E.M. Kidney Disease: Improving Global Outcomes. Treatment of steroid-sensitive nephrotic syndrome: New guidelines from KDIGO. Pediatr. Nephrol. 2013, 28, 415–426. [Google Scholar] [CrossRef]
- Mendonça, A.C.; Oliveira, E.A.; Fróes, B.P.; Faria, L.D.; Pinto, J.S.; Nogueira, M.M.; Lima, G.O.; Resende, P.I.; Assis, N.S.; Simões E Silva, A.C.; et al. A predictive model of progressive chronic kidney disease in idiopathic nephrotic syndrome. Pediatr. Nephrol. 2015, 30, 2011–2020. [Google Scholar] [CrossRef]
- Garin, E.H.; West, L.; Zheng, W. Effect of interleukin-8 on glomerular sulfated compounds and albuminuria. Pediatr. Nephrol. 1997, 11, 274–279. [Google Scholar] [CrossRef]
- Souto, M.F.; Teixeira, A.L.; Russo, R.C.; Penido, M.G.; Silveira, K.D.; Teixeira, M.M.; Simões E Silva, A.C. Immune mediators in idiopathic nephrotic syndrome: Evidence for a relation between interleukin 8 and proteinuria. Pediatr. Res. 2008, 64, 637–642. [Google Scholar] [CrossRef]
- Lai, K.W.; Wei, C.L.; Tan, L.K.; Tan, P.H.; Chiang, G.S.; Lee, C.G.; Jordan, S.C.; Yap, H.K. Overexpression of interleukin-13 induces minimal-change-like nephropathy in rats. J. Am. Soc. Nephrol. 2007, 18, 1476–1485. [Google Scholar] [CrossRef]
- Zheng, Y.; Hou, L.; Wang, X.L.; Zhao, C.G.; Du, Y. A review of nephrotic syndrome and atopic diseases in children. Transl. Androl. Urol. 2021, 10, 475–482. [Google Scholar] [CrossRef]
- Ahmadian, E.; Rahbar, S.Y.; Dalir, A.E.; Bastami, M.; Shoja, M.M.; Zununi, V.S.; Ardalan, M. The Role of Cytokines in Nephrotic Syndrome. Mediat. Inflamm. 2022, 9, 6499668. [Google Scholar] [CrossRef]
- Reiser, J.; Mundel, P. Danger signaling by glomerular podocytes defines a novel function of inducible B7-1 in the pathogenesis of nephrotic syndrome. J. Am. Soc. Nephrol. 2004, 15, 2246–2248. [Google Scholar] [CrossRef] [PubMed]
- Shimada, M.; Araya, C.; Rivard, C.; Ishimoto, T.; Johnson, R.J.; Garin, E.H. Minimal change disease: A “two-hit” podocyte immune disorder? Pediatr. Nephrol. 2011, 26, 645–649. [Google Scholar] [CrossRef] [PubMed]
- Davin, J.C. The glomerular permeability factors in idiopathic nephrotic syndrome. Pediatr. Nephrol. 2016, 31, 207–215. [Google Scholar] [CrossRef]
- Liang, Y.; Chen, Y.; Chen, Y.; Gong, Y. Role of the glucocorticoid receptor in the recurrence of primary nephrotic syndrome. Exp. Ther. Med. 2015, 10, 1556–1562. [Google Scholar] [CrossRef]
- Li, X.; Qi, D.; Wang, M.-Y.; Ji, K.; Xie, Q.-L.; Wang, Y.; Du, S.-H.; Fan, H.-Y. Salvianolic acid A attenuates steroid resistant nephrotic syndrome through suPAR/uPAR-αvβ3 signaling inhibition. J. Ethnopharmacol. 2021, 279, 114351. [Google Scholar] [CrossRef]
- Wei, C.; Trachtman, H.; Li, J.; Dong, C.; Friedman, A.L.; Gassman, J.J.; McMahan, J.L.; Radeva, M.; Heil, K.M.; Trautmann, A.; et al. PodoNet and FSGS CT Study Consortia. Circulating suPAR in Two Cohorts of Primary FSGS. J. Am. Soc. Nephrol. 2012, 23, 2051–2059. [Google Scholar] [CrossRef]
- Li, F.; Zheng, C.; Zhong, Y.; Zeng, C.; Xu, F.; Yin, R.; Jiang, Q.; Zhou, M.; Liu, Z. Relationship between Serum Soluble Urokinase Plasminogen Activator Receptor Level and Steroid Responsiveness in FSGS. Clin. J. Am. Soc. Nephrol. 2014, 9, 1903–1911. [Google Scholar] [CrossRef]
- Wada, T.; Nangaku, M. A circulating permeability factor in focal segmental glomerulosclerosis: The hunt continues. Clin. Kidney J. 2015, 8, 708–715. [Google Scholar] [CrossRef] [PubMed]
- Cara-Fuentes, G.; Wei, C.; Segarra, A.; Ishimoto, T.; Rivard, C.; Johnson, R.J.; Reiser, J.; Garin, E.H. CD80 and suPAR in patients with minimal change disease and focal segmental glomerulosclerosis: Diagnostic and pathogenic significance. Pediatr. Nephrol. 2014, 29, 1363–1371. [Google Scholar] [CrossRef] [PubMed]
- Pukajło-Marczyk, A.; Zwolińska, D. Involvement of Hemopexin in the Pathogenesis of Proteinuria in Children with Idiopathic Nephrotic Syndrome. J. Clin. Med. 2021, 10, 3160. [Google Scholar] [CrossRef] [PubMed]
- Pukajło-Marczyk, A.; Zwolińska, D. The role of IL-13 in the pathogenesis of idiopathic nephrotic syndrome (INS) in children. Fam. Med. Prim. Care Rev. 2016, 2, 149–154. [Google Scholar] [CrossRef]
- Holbrook, J.; Lara-Reyna, S.; Jarosz-Griffiths, H.; McDermott, M. Tumour necrosis factor signalling in health and disease. F1000Research 2019, 8, 111. [Google Scholar] [CrossRef]
- You, K.; Gu, H.; Yuan, Z.; Xu, X. Tumor Necrosis Factor Alpha Signaling and Organogenesis. Front. Cell Dev. Biol. 2021, 30, 727075. [Google Scholar] [CrossRef] [PubMed]
- Tolide-ie, H.; Tabatabaee, H.R.; Kamali-Sarvestani, E. Association between Tumor Necrosis Factor-α-308 G/A Polymorphism and Multiple Sclerosis: A Systematic Review and Meta-Analysis. Iran. J. Med. Sci. 2014, 39, 2–10. [Google Scholar] [PubMed]
- Toussi, S.S.; Pan, N.; Walters, H.M.; Walsh, T.J. Infections in Children and Adolescents with Juvenile Idiopathic Arthritis and Inflammatory Bowel Disease Treated with Tumor Necrosis Factor–α Inhibitors: Systematic Review of the Literature. Clin Infect Dis. 2013, 57, 1318–1330. [Google Scholar] [CrossRef]
- Roman, D.; Iurciuc, S.; Caraba, A. Pulmonary Involvement in Sjögren’s Syndrome: Correlations with Biomarkers of Activity and High-Resolution Computer Tomography Findings. J. Clin. Med. 2024, 13, 1100. [Google Scholar] [CrossRef]
- Combe, B.; Allanore, Y.; Alten, R.; Caporali, R.; Durez, P.; Iannone, F.; Nurmohamed, M.T.; Toumi, M.; Lee, S.J.; Kwon, T.S.; et al. Comparative efficacy of subcutaneous (CT-P13) and intravenous infliximab in adult patients with rheumatoid arthritis: A network meta-regression of individual patient data from two randomised trials. Arthritis Res. Ther. 2021, 23, 119. [Google Scholar] [CrossRef]
- Ditto, M.C.; Parisi, S.; Cotugno, V.; Barila, D.A.; Lo Sardo, L.; Cattel, F.; Fusaro, E. Subcutaneous infliximab CT-P13 without intravenous induction in psoriatic arthritis: A case report and pharmacokinetic considerations. Int. J. Clin. Pharmacol. Ther. 2024, 62, 122–125. [Google Scholar] [CrossRef] [PubMed]
- Bertani, T.; Abbate, M.; Zoja, C.; Corna, D.; Perico, N.; Ghezzi, P.; Remuzzi, G. Tumor necrosis factor induces glomerular damage in the rabbit. Am. J. Pathol. 1989, 134, 419–430. [Google Scholar]
- Takemura, T.; Yoshioka, K.; Murakami, K.; Akano, N.; Okada, M.; Aya, N.; Maki, S. Cellular localization of inflammatory cytokines in human glomerulonephritis. Virchows Arch. 1994, 424, 459–464. [Google Scholar] [CrossRef]
- Wan, Q.; Zhou, J.; Wu, Y.; Shi, L.; Liu, W.; Ou, J.; Gao, J. TNF-α-mediated podocyte injury via the apoptotic death receptor pathway in a mouse model of IgA nephropathy. Ren. Fail. 2022, 44, 1216–1226. [Google Scholar] [CrossRef]
- Huang, Y.S.; Fu, S.H.; Lu, K.C.; Chen, J.S.; Hsieh, H.Y.; Sytwu, H.K.; Wu, C.C. Inhibition of tumor necrosis factor signaling attenuates renal immune cell infiltration in experimental membranous nephropathy. Oncotarget 2017, 8, 111631–111641. [Google Scholar] [CrossRef]
- Gómez-Chiarri, M.; Ortíz, A.; Lerma, J.L.; López-Armada, M.J.; Mampaso, F.; González, E.; Egido, J. Involvement of tumor necrosis factor and platelet-activating factor in the pathogenesis of experimental nephrosis in rats. Lab. Investig. 1994, 70, 449–459. [Google Scholar]
- International Study of Kidney Disease in Children. Primary nephrotic syndrome in children: Clinical significance of histopathologic variants of minimal change and of diffuse mesangial hypercellularity. A Report of the International Study of Kidney Disease in Children. Kidney Int. 1981, 20, 765–771. [Google Scholar] [CrossRef]
- Schwartz, G.J.; Muñoz, A.; Schneider, M.F.; Mak, R.H.; Kaskel, F.; Warady, B.A.; Furth, S.L. New equations to estimate GFR in children with CKD. J. Am. Soc. Nephrol. 2009, 20, 629–637. [Google Scholar] [CrossRef]
- Cho, M.H.; Lee, H.S.; Choe, B.H.; Kwon, S.H.; Chung, K.Y.; Koo, J.H.; Ko, C.W. Interleukin-8 and tumor necrosis factor-alpha are increased in minimal change disease but do not alter albumin permeability. Am. J. Nephrol. 2003, 23, 260–266. [Google Scholar] [CrossRef]
- Laflam, P.F.; Garin, E.H. Effect of tumor necrosis factor alpha and vascular permeability growth factor on albuminuria in rats. Pediatr. Nephrol. 2006, 21, 177–181. [Google Scholar] [CrossRef]
- Lama, G.; Luongo, I.; Tirino, G.; Borriello, A.; Carangio, C.; Salsano, M.E. T-lymphocyte populations and cytokines in childhood nephrotic syndrome. Am. J. Kidney Dis. 2002, 39, 958–965. [Google Scholar] [CrossRef]
- Bustos, C.; González, E.; Muley, R.; Alonso, J.L.; Egido, J. Increase of tumour necrosis factor alpha synthesis and gene expression in peripheral blood mononuclear cells of children with idiopathic nephrotic syndrome. Eur. J. Clin. Investig. 1994, 24, 799–805. [Google Scholar] [CrossRef] [PubMed]
- Weissbach, A.; Garty, B.Z.; Lagovsky, I.; Krause, I.; Davidovits, M. Serum Tumor Necrosis Factor-Alpha Levels in Children with Nephrotic Syndrome: A Pilot Study. Isr. Med. Assoc. J. 2017, 19, 30–33. [Google Scholar] [PubMed]
- Roca, N.; Martinez, C.; Jatem, E.; Madrid, A.; Lopez, M.; Segarra, A. Activation of the acute inflammatory phase response in idiopathic nephrotic syndrome: Association with clinicopathological phenotypes and with response to corticosteroids. Clin. Kidney J. 2021, 14, 1207–1215. [Google Scholar] [CrossRef]
- Daniel, V.; Trautmann, Y.; Konrad, M.; Nayir, A.; Schärer, K. T-lymphocyte populations, cytokines and other growth factors in serum and urine of children with idiopathic nephrotic syndrome. Clin. Nephrol. 1997, 47, 289–297. [Google Scholar]
- Rizk, M.K.; El-Nawawy, A.; Abdel-Kareem, E.; Amer, E.S.; El-Gezairy, D.; El-Shafei, A.Z. Serum interleukins and urinary microglobulin in children with idiopathic nephrotic syndrome. East. Mediterr. Health J. 2005, 11, 993–1002. [Google Scholar] [PubMed]
Biochemical Parameters | ||||
---|---|---|---|---|
Groups | Serum Albumin [g/dL] | Total Cholesterol [mg/dL] | Protein/Creatinine Ratio [g Protein/g Creatinine] | CRP [mg/L] |
Total INS N = 51 | 1.90 (1.05–2.55) | 363.0 (268.0–475.0) | 6.2 (3.0–10.6) | 2.90 (0.80–3.60) |
Group IA N = 20 | 1.70 (1.40–2.20) | 372.0 (297.0–464.0) | 4.85 (2.40–7.90) | 1.75 (0.40–3.60) |
Group IB N = 31 | 2.40 (1.00–3.10) | 329.5 (238.0–601.0) | 7.0 (3.9–10.7) | 3.10 (1.65–3.69) |
Group IIA N = 26 | 1.90 (1.10–2.50) | 366.5 (286.5–442.5) | 4.71 (2.5–7.76) a | 3.30 (1.40–3.60) |
Group IIB N = 22 | 2.0 (1.00–2.50) | 329.5 (264.0–636.0) | 9.6 (6.2–19.2) | 2.56 (1.60–4.20) |
Groups | |||
---|---|---|---|
Parameters | Whole Group INS Relapse N = 51 | Whole Group INS Remission N = 35 | Control N = 18 |
sTNF-α [pg/mL] | 45.4 (43.8–47.4) a,b | 17.5 (15.6–18.8) a | 13.2 (12.6–13.6) |
uTNF-α [pg/mL] | 6.24 (5.50–7.10) a,b | 2.06 (1.81–2.56) a | 1.28 (1.23–1.33) |
Group | ||||
---|---|---|---|---|
Parameter | IA Relapse N = 20 | IB Relapse N = 31 | IA Remission N = 9 | IB Remission N = 26 |
sTNF-á [pg/mL] | 45.1 (43.7–46.8) | 45.6 (43.9–48.2) | 15.2 a (13.9–17.3) | 17.7 (16.1–19.1) |
uTNF-á [pg/mL] | 6.27 (5.84–6.73) | 6.24 (5.41–7.10) | 2.55 (2.06–2.55) | 2.06 (1.81–2.56) |
Groups | ||||
---|---|---|---|---|
Parameters | IIA Relapse N = 26 | IIB Relapse N = 22 | IIA Remission N = 17 | IIB Remision N = 17 |
sTNF-α [pg/mL] | 44.6 (43.6–46.8) | 46.0 (44.8–48.4) | 17.5 (15.6–19.1) | 17.5 (15.9–18.4) |
uTNF-α [pg/mL] | 6.32 (5.50–7.10) | 6.20 (5.50–6.67) | 2.06 (1.56–2.55) | 2.06 (1.92–2.56) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pukajło-Marczyk, A.; Zwolińska, D. The Role of TNF-α in the Pathogenesis of Idiopathic Nephrotic Syndrome and Its Usefulness as a Marker of the Disease Course. J. Clin. Med. 2024, 13, 1888. https://doi.org/10.3390/jcm13071888
Pukajło-Marczyk A, Zwolińska D. The Role of TNF-α in the Pathogenesis of Idiopathic Nephrotic Syndrome and Its Usefulness as a Marker of the Disease Course. Journal of Clinical Medicine. 2024; 13(7):1888. https://doi.org/10.3390/jcm13071888
Chicago/Turabian StylePukajło-Marczyk, Agnieszka, and Danuta Zwolińska. 2024. "The Role of TNF-α in the Pathogenesis of Idiopathic Nephrotic Syndrome and Its Usefulness as a Marker of the Disease Course" Journal of Clinical Medicine 13, no. 7: 1888. https://doi.org/10.3390/jcm13071888
APA StylePukajło-Marczyk, A., & Zwolińska, D. (2024). The Role of TNF-α in the Pathogenesis of Idiopathic Nephrotic Syndrome and Its Usefulness as a Marker of the Disease Course. Journal of Clinical Medicine, 13(7), 1888. https://doi.org/10.3390/jcm13071888