IgA Vasculitis (Henoch–Schönlein Purpura): An Update on Treatment
Abstract
:1. Introduction
2. Pathophysiology of IgA Vasculitis
3. Clinical Manifestations
4. Diagnosis
5. Treatment of IgA Vasculitis
5.1. Glucocorticoid and Other Immunosuppressive and Immunomodulatory Agents
5.1.1. Glucocorticoids
5.1.2. Azathioprine
5.1.3. Mycophenolate Mofetil
5.1.4. Calcineurin Inhibitors
5.1.5. Cyclophosphamide
5.1.6. Other Synthetic Disease-Modifying Anti-Rheumatic Drugs (DMARDs): Colchicine, Dapsone, Hydroxychloroquine, Methotrexate, and Leflunomide
5.1.7. Mizoribine
5.2. Biological and Other Advanced Therapies
5.2.1. Rituximab
5.2.2. Immunoglobulin Therapy
5.2.3. Plasma Exchange Therapy
5.3. Potential Future Drugs for IgA Vasculitis Treatment
5.3.1. TRF-Budesonide
5.3.2. B-Cell Modulation
B-Cell-Directed Agents
B-Cell-Depleting Agents
5.3.3. RAAS Inhibitors
5.3.4. Sodium–Glucose Cotransporter-2 Inhibitors (SGLT2-inhs)
5.3.5. Endothelin Receptor Antagonists
5.3.6. Complement Pathway Inhibition
5.3.7. Miscellaneous
Tonsillectomy
Gut Microbiota Modification
6. Controversies and Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jennette, J.C.; Falk, R.J.; Bacon, P.A.; Basu, N.; Cid, M.C.; Ferrario, F.; Flores-Suarez, L.F.; Gross, W.L.; Guillevin, L.; Hagen, E.C.; et al. 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum. 2013, 65, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Pillebout, E.; Thervet, E.; Hill, G.; Alberti, C.; Vanhille, P.; Nochy, D. Henoch-Schönlein Purpura in adults: Outcome and prognostic factors. J. Am. Soc. Nephrol. 2002, 13, 1271–1278. [Google Scholar] [CrossRef] [PubMed]
- Calvo-Río, V.; Loricera, J.; Mata, C.; Martín, L.; Ortiz-Sanjuán, F.; Alvarez, L.; González-Vela, M.C.; González-Lamuño, D.; Rueda-Gotor, J.; Fernández-Llaca, H.; et al. Henoch-Schönlein purpura in northern Spain: Clinical spectrum of the disease in 417 patients from a single center. Medicine 2014, 93, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Audemard-Verger, A.; Pillebout, E.; Amoura, Z.; Cacoub, P.; Jourde-Chiche, N.; Lioger, B.; Martis, N.; Moulis, G.; Rivière, E.; Baldolli, A.; et al. French Vasculitis Study Group (FVSG). Gastrointestinal involvement in adult IgA vasculitis (Henoch-Schönlein purpura): Updated picture from a French multicentre and retrospective series of 260 cases. Rheumatology 2020, 59, 3050–3057. [Google Scholar] [CrossRef] [PubMed]
- Maritati, F.; Canzian, A.; Fenaroli, P.; Vaglio, A. Adult-onset IgA vasculitis (Henoch-Schönlein): Update on therapy. Presse Med. 2020, 49, 104035. [Google Scholar] [CrossRef] [PubMed]
- Gardner-Medwin, J.M.; Dolezalova, P.; Cummins, C.; Southwood, T.R. Incidence of Henoch-Schönlein purpura, Kawasaki disease, and rare vasculitides in children of different ethnic origins. Lancet 2002, 360, 1197–1202. [Google Scholar] [CrossRef] [PubMed]
- Calviño, M.C.; Llorca, J.; García-Porrúa, C.; Fernández-Iglesias, J.L.; Rodriguez-Ledo, P.; González-Gay, M.A. Henoch-Schönlein purpura in children from northwestern Spain: A 20-year epidemiologic and clinical study. Medicine 2001, 80, 279–290. [Google Scholar] [CrossRef] [PubMed]
- González-Gay, M.A.; García-Porrúa, C. Epidemiology of the vasculitides. Rheum. Dis. Clin. N. Am. 2001, 27, 729–749. [Google Scholar] [CrossRef] [PubMed]
- Deshayes, S.; Moulis, G.; Pillebout, E.; Aouba, A.; Audemard-Verger, A. Positive predictive value of hospital discharge diagnosis code to identify immunoglobulin A vasculitis in France: A validation study. Eur. J. Intern. Med. 2017, 43, e18–e19. [Google Scholar] [CrossRef] [PubMed]
- Audemard-Verger, A.; Pillebout, E.; Guillevin, L.; Thervet, E.; Terrier, B. IgA vasculitis (Henoch-Shönlein purpura) in adults: Diagnostic and therapeutic aspects. Autoimmun. Rev. 2015, 14, 579–585. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Huang, X.; Yu, G.; Qiao, J.; Cheng, J.; Wu, J.; Chen, J. Pathogenesis of IgA Vasculitis: An Up-To-Date Review. Front. Immunol. 2021, 12, 771619. [Google Scholar] [CrossRef] [PubMed]
- Hastings, M.C.; Rizk, D.V.; Kiryluk, K.; Nelson, R.; Zahr, R.S.; Novak, J.; Wyatt, R.J. IgA vasculitis with nephritis: Update of pathogenesis with clinical implications. Pediatr. Nephrol. 2022, 37, 719–733. [Google Scholar] [CrossRef] [PubMed]
- Gan, M.Y.; Chua, F.Z.Y.; Chang, Z.Y.; Chua, Y.T.; Chan, G.C. Navigating Adult-Onset IgA Vasculitis-Associated Nephritis. Life 2024, 14, 930. [Google Scholar] [CrossRef] [PubMed]
- Heineke, M.H.; Ballering, A.V.; Jamin, A.; Ben Mkaddem, S.; Monteiro, R.C.; Van Egmond, M. New insights in the pathogenesis of immunoglobulin A vasculitis (Henoch-Schönlein purpura). Autoimmun. Rev. 2017, 16, 1246–1253. [Google Scholar] [CrossRef] [PubMed]
- Breedveld, A.; van Egmond, M. IgA and FcαRI: Pathological Roles and Therapeutic Opportunities. Front. Immunol. 2019, 10, 553. [Google Scholar] [CrossRef] [PubMed]
- Kiryluk, K.; Moldoveanu, Z.; Sanders, J.T.; Eison, T.M.; Suzuki, H.; Julian, B.A.; Novak, J.; Gharavi, A.G.; Wyatt, R.J. Aberrant glycosylation of IgA1 is inherited in both pediatric IgA nephropathy and Henoch-Schönlein purpura nephritis. Kidney Int. 2011, 80, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Davin, J.C.; Coppo, R. Henoch-Schönlein purpura nephritis in children. Nat. Rev. Nephrol. 2014, 10, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Roos, A.; Bouwman, L.H.; van Gijlswijk-Janssen, D.J.; Faber-Krol, M.C.; Stahl, G.L.; Daha, M.R. Human IgA activates the complement system via the mannan-binding lectin pathway. J. Immunol. 2001, 167, 2861–2868. [Google Scholar] [CrossRef] [PubMed]
- Chua, J.S.; Zandbergen, M.; Wolterbeek, R.; Baelde, H.J.; van Es, L.A.; de Fijter, J.W.; Bruijn, J.A.; Bajema, I.M. Complement-mediated microangiopathy in IgA nephropathy and IgA vasculitis with nephritis. Mod. Pathol. 2019, 32, 1147–1157. [Google Scholar] [CrossRef] [PubMed]
- Yaseen, K.; Herlitz, L.C.; Villa-Forte, A. IgA Vasculitis in Adults: A Rare yet Challenging Disease. Curr. Rheumatol. Rep. 2021, 23, 50. [Google Scholar] [CrossRef] [PubMed]
- Ramdani, Y.; Galempoix, J.M.; Augusto, J.F.; Dekmeer, E.; Perard, L.; Ferreira, N.; Bigot, A.; Magnant, J.; Jobard, S.; Diot, E.; et al. Immunoglobulin A Vasculitis Following COVID-19: A French Multicenter Case Series. J. Rheumatol. 2022, 49, 1390–1394. [Google Scholar] [CrossRef] [PubMed]
- Ramdani, Y.; Bettuzzi, T.; Bouznad, A.; Delaitre, L.; Nassarmadji, K.; Didier, K.; Paul, C.; Liozon, E.; Tieu, A.; Richard-Colmant, G.; et al. IgA Vasculitis Following COVID-19 Vaccination: A French Multicenter Case Series Including 12 Patients. J. Rheumatol. 2023, 50, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Maisons, V.; Ramdani, Y.; Hankard, A.; Messiaen, C.; Jannot, A.S.; Sautenet, B.; Halimi, J.M.; Maillot, F.; Pillebout, É.; Audemard-Verger, A. New insights into epidemiological data and impact of the COVID-19 pandemic on IgA vasculitis in children and adults: A French nationwide cohort. Rheumatol. Int. 2023, 43, 1791–1798. [Google Scholar] [CrossRef] [PubMed]
- Ramdani, Y.; Largeau, B.; Jonville-Bera, A.P.; Maillot, F.; Audemard-Verger, A. COVID-19 Vaccination as a Trigger of IgA Vasculitis: A Global Pharmacovigilance Study. J. Rheumatol. 2023, 50, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Valero, C.; Baldivieso-Achá, J.P.; Uriarte, M.; Vicente-Rabaneda, E.F.; Castañeda, S.; García-Vicuña, R. Vasculitis flare after COVID-19: Report of two cases in patients with preexistent controlled IgA vasculitis and review of the literature. Rheumatol. Int. 2022, 42, 1643–1652. [Google Scholar] [CrossRef] [PubMed]
- López-Mejías, R.; Castañeda, S.; Genre, F.; Remuzgo-Martínez, S.; Carmona, F.D.; Llorca, J.; Blanco, R.; Martín, J.; González-Gay, M.A. Genetics of immunoglobulin-A vasculitis (Henoch-Schönlein purpura): An updated review. Autoimmun. Rev. 2018, 17, 301–315. [Google Scholar] [CrossRef] [PubMed]
- Hetland, L.E.; Susrud, K.S.; Lindahl, K.H.; Bygum, A. Henoch-Schönlein Purpura: A Literature Review. Acta Derm. Venereol. 2017, 97, 1160–1166. [Google Scholar] [CrossRef] [PubMed]
- Landecho, M.F.; Ros, N.F.; Alegre, F.; Idoate, M.A.; Lucena, J.F. Henoch-Schönlein purpura associated with celiac disease. J. Am. Acad. Dermatol. 2011, 64, e120–e121. [Google Scholar] [CrossRef] [PubMed]
- Esaki, M.; Matsumoto, T.; Nakamura, S.; Kawasaki, M.; Iwai, K.; Hirakawa, K.; Tarumi, K.; Yao, T.; Iida, M. GI involvement in Henoch-Schönlein purpura. Gastrointest. Endosc. 2002, 56, 920–923. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, K.; Nakamura, S.; Esaki, M.; Kurahara, K.; Eizuka, M.; Okamoto, Y.; Hirata, T.; Hirahashi, M.; Oshiro, Y.; Yanai, S.; et al. Gastrointestinal involvement in patients with vasculitis: IgA vasculitis and eosinophilic granulomatosis with polyangiitis. Endosc. Int. Open 2019, 7, E1333–E1343. [Google Scholar] [CrossRef] [PubMed]
- Nam, E.J.; Kim, G.W.; Kang, J.W.; Im, C.H.; Jeon, S.W.; Cho, C.M.; Jeong, J.Y.; Park, J.Y.; Jang, Y.J.; Kang, Y.M. Gastrointestinal bleeding in adult patients with Henoch-Schönlein purpura. Endoscopy 2014, 46, 981–986. [Google Scholar] [CrossRef] [PubMed]
- Castañeda, S.; Vicente-Rabaneda, E.F.; Blanco, R.; González-Gay, M.A. Gastrointestinal involvement in adult IGA vasculitis. Rheumatology 2020, 59, 2659–2660. [Google Scholar] [CrossRef] [PubMed]
- Gendreau, S.; Porcher, R.; Thoreau, B.; Paule, R.; Maurier, F.; Goulenok, T.; Frumholtz, L.; Bernigaud, C.; Ingen-Housz-Oro, S.; Mekinian, A.; et al. French Vasculitis Study Group. Characteristics and risk factors for poor outcome in patients with systemic vasculitis involving the gastrointestinal tract. Semin. Arthritis Rheumatol. 2021, 51, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Jauhola, O.; Ronkainen, J.; Koskimies, O.; Ala-Houhala, M.; Arikoski, P.; Hölttä, T.; Jahnukainen, T.; Rajantie, J.; Ormälä, T.; Nuutinen, M. Clinical course of extrarenal symptoms in Henoch-Schonlein purpura: A 6-month prospective study. Arch. Dis. Child. 2010, 95, 871–876. [Google Scholar] [CrossRef] [PubMed]
- Audemard-Verger, A.; Terrier, B.; Dechartres, A.; Chanal, J.; Amoura, Z.; Le Gouellec, N.; Cacoub, P.; Jourde-Chiche, N.; Urbanski, G.; Augusto, J.F.; et al. French Vasculitis Study Group. Characteristics and Management of IgA Vasculitis (Henoch-Schönlein) in Adults: Data From 260 Patients Included in a French Multicenter Retrospective Survey. Arthritis Rheumatol. 2017, 69, 1862–1870. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Gay, M.A.; Calviño, M.C.; Vazquez-Lopez, M.E.; Garcia-Porrua, C.; Fernandez-Iglesias, J.L.; Dierssen, T.; Llorca, J. Implications of upper respiratory tract infections and drugs in the clinical spectrum of Henoch-Schönlein purpura in children. Clin. Exp. Rheumatol. 2004, 22, 781–784. [Google Scholar] [PubMed]
- Calvo-Río, V.; Hernández, J.L.; Ortiz-Sanjuán, F.; Loricera, J.; Palmou-Fontana, N.; González-Vela, M.C.; González-Lamuño, D.; González-López, M.A.; Armesto, S.; Blanco, R.; et al. Relapses in patients with Henoch-Schönlein purpura: Analysis of 417 patients from a single center. Medicine 2016, 95, e4217. [Google Scholar] [CrossRef] [PubMed]
- Mills, J.A.; Michel, B.A.; Bloch, D.A.; Calabrese, L.H.; Hunder, G.G.; Arend, W.P.; Edworthy, S.M.; Fauci, A.S.; Leavitt, R.Y.; Lie, J.T.; et al. The American College of Rheumatology 1990 criteria for the classification of Henoch-Schönlein purpura. Arthritis Rheumatol. 1990, 33, 1114–1121. [Google Scholar] [CrossRef] [PubMed]
- Ozen, S.; Pistorio, A.; Iusan, S.M.; Bakkaloglu, A.; Herlin, T.; Brik, R.; Buoncompagni, A.; Lazar, C.; Bilge, I.; Uziel, Y.; et al. Paediatric Rheumatology International Trials Organisation (PRINTO). EULAR/PRINTO/PRES criteria for Henoch-Schönlein purpura, childhood polyarteritis nodosa, childhood Wegener granulomatosis and childhood Takayasu arteritis: Ankara 2008. Part II: Final classification criteria. Ann. Rheum. Dis. 2010, 69, 798–806. [Google Scholar] [CrossRef] [PubMed]
- Hočevar, A.; Rotar, Z.; Jurčić, V.; Pižem, J.; Čučnik, S.; Vizjak, A.; van den Broeke, R.; Tomšič, M. IgA vasculitis in adults: The performance of the EULAR/PRINTO/PRES classification criteria in adults. Arthritis Res. Ther. 2016, 18, 58. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.H.; Yu, H.H.; Chiang, B.L. The diagnosis and classification of Henoch-Schönlein purpura: An updated review. Autoimmun. Rev. 2014, 13, 355–358. [Google Scholar] [CrossRef] [PubMed]
- Hoeger, P.H. Prognostic parameters in Henoch-Schönlein purpura. Br. J. Dermatol. 2015, 172, 1191–1192. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Yang, H.R. Laboratory markers indicating gastrointestinal involvement of henoch-schönlein purpura in children. Pediatr. Gastroenterol. Hepatol. Nutr. 2015, 18, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Weiss, P.F.; Feinstein, J.A.; Luan, X.; Burnham, J.M.; Feudtner, C. Effects of corticosteroid on Henoch-Schönlein purpura: A systematic review. Pediatrics 2007, 120, 1079–1087. [Google Scholar] [CrossRef] [PubMed]
- Dudley, J.; Smith, G.; Llewelyn-Edwards, A.; Bayliss, K.; Pike, K.; Tizard, J. Randomised, double-blind, placebo-controlled trial to determine whether steroids reduce the incidence and severity of nephropathy in Henoch-Schonlein Purpura (HSP). Arch. Dis. Child. 2013, 98, 756–763. [Google Scholar] [CrossRef] [PubMed]
- Ronkainen, J.; Koskimies, O.; Ala-Houhala, M.; Antikainen, M.; Merenmies, J.; Rajantie, J.; Ormälä, T.; Turtinen, J.; Nuutinen, M. Early prednisone therapy in Henoch-Schönlein purpura: A randomized, double-blind, placebo-controlled trial. J. Pediatr. 2006, 149, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Niaudet, P.; Habib, R. Methylprednisolone pulse therapy in the treatment of severe forms of Schönlein-Henoch purpura nephritis. Pediatr. Nephrol. 1998, 12, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Hahn, D.; Hodson, E.M.; Willis, N.S.; Craig, J.C. Interventions for preventing and treating kidney disease in Henoch-Schönlein Purpura (HSP). Cochrane Database Syst. Rev. 2015, 2015, CD005128, Erratum in Cochrane Database Syst. Rev. 2023, 2, CD005128. [Google Scholar] [CrossRef] [PubMed]
- Jauhola, O.; Ronkainen, J.; Autio-Harmainen, H.; Koskimies, O.; Ala-Houhala, M.; Arikoski, P.; Hölttä, T.; Jahnukainen, T.; Rajantie, J.; Ormälä, T.; et al. Cyclosporine A vs. methylprednisolone for Henoch-Schönlein nephritis: A randomized trial. Pediatr. Nephrol. 2011, 26, 2159–2166, Erratum in Pediatr. Nephrol. 2011, 26, 2263–2264. [Google Scholar] [CrossRef] [PubMed]
- Pozzi, C.; Bolasco, P.G.; Fogazzi, G.B.; Andrulli, S.; Altieri, P.; Ponticelli, C.; Locatelli, F. Corticosteroids in IgA nephropathy: A randomised controlled trial. Lancet 1999, 353, 883–887. [Google Scholar] [CrossRef] [PubMed]
- Pozzi, C.; Andrulli, S.; Del Vecchio, L.; Melis, P.; Fogazzi, G.B.; Altieri, P.; Ponticelli, C.; Locatelli, F. Corticosteroid effectiveness in IgA nephropathy: Long-term results of a randomized, controlled trial. J. Am. Soc. Nephrol. 2004, 15, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Radhakrishnan, J.; Cattran, D.C. The KDIGO practice guideline on glomerulonephritis: Reading between the (guide)lines--application to the individual patient. Kidney Int. 2012, 82, 840–856. [Google Scholar] [CrossRef] [PubMed]
- Sestan, M.; Kifer, N.; Sozeri, B.; Demir, F.; Ulu, K.; Silva, C.A.; Campos, R.T.; Batu, E.D.; Koker, O.; Sapina, M.; et al. Vasculitis Working Party of the Pediatric Rheumatology European Society (PReS). Clinical features, treatment and outcome of pediatric patients with severe cutaneous manifestations in IgA vasculitis: Multicenter international study. Semin. Arthritis Rheum. 2023, 61, 152209. [Google Scholar] [CrossRef] [PubMed]
- Floege, J.; Rauen, T.; Tang, S.C.W. Current treatment of IgA nephropathy. Semin. Immunopathol. 2021, 43, 717–728. [Google Scholar] [CrossRef] [PubMed]
- Kidney Disease: Improving Global Outcomes (KDIGO) Glomerular Diseases Work Group. KDIGO 2021 Clinical Practice Guideline for the Management of Glomerular Diseases. Kidney Int. 2021, 100, S1–S276. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Tu, W.; Jiang, D.; Xu, C. Mycophenolate mofetil treatment for IgA nephropathy: A meta-analysis. Am. J. Nephrol. 2009, 29, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Hou, L.; Zhao, C.; Han, M.; Wu, Y. Treatment of children with Henoch-Schönlein purpura nephritis with mycophenolate mofetil. Pediatr. Nephrol. 2012, 27, 765–771. [Google Scholar] [CrossRef] [PubMed]
- Nikibakhsh, A.A.; Mahmoodzadeh, H.; Karamyyar, M.; Hejazi, S.; Noroozi, M.; Macooie, A.A. Treatment of severe henoch-schonlein purpura nephritis with mycophenolate mofetil. Saudi J. Kidney Dis. Transpl. 2014, 25, 858–863. [Google Scholar] [CrossRef] [PubMed]
- Ren, P.; Han, F.; Chen, L.; Xu, Y.; Wang, Y.; Chen, J. The combination of mycophenolate mofetil with corticosteroids induces remission of Henoch-Schönlein purpura nephritis. Am. J. Nephrol. 2012, 36, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Han, F.; Chen, L.L.; Ren, P.P.; Le, J.Y.; Choong, P.J.; Wang, H.J.; Xu, Y.; Chen, J.H. Mycophenolate mofetil plus prednisone for inducing remission of Henoch-Schönlein purpura nephritis: A retrospective study. J. Zhejiang Univ. Sci. B. 2015, 16, 772–779. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.N.; Bi, T.D.; Zhu, L.B.; Liu, L.L. Efficacy and safety of mycophenolate mofetil for IgA nephropathy: An updated meta-analysis of randomized controlled trials. Exp. Ther. Med. 2018, 16, 1882–1890. [Google Scholar] [CrossRef] [PubMed]
- Hou, F.F.; Xie, D.; Wang, J.; Xu, X.; Yang, X.; Ai, J.; Nie, S.; Liang, M.; Wang, G.; Jia, N.; et al. Effectiveness of Mycophenolate Mofetil Among Patients with Progressive IgA Nephropathy: A Randomized Clinical Trial. JAMA Netw. Open 2023, 6, e2254054. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Liu, T.; Lu, J.; Li, X.; Liu, X.; Xu, W. Efficacy and safety of mycophenolate mofetil vs. cyclophosphamide therapy for Henoch Schonlein purpura nephritis in children: A meta-analysis. Medicine 2024, 103, e39059. [Google Scholar] [CrossRef] [PubMed]
- Lai, K.N.; Lai, F.M.; Li, P.K.; Vallance-Owen, J. Cyclosporin treatment of IgA nephropathy: A short term controlled trial. Br. Med. J. (Clin. Res. Ed.) 1987, 295, 1165–1168. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.H.; Cai, G.Y.; Xiao, Y.F.; Wang, Y.P.; Yuan, B.S.; Xia, Y.Y.; Wang, S.Y.; Chen, P.; Liu, S.W.; Chen, X.M. Efficacy and safety of calcineurin inhibitor treatment for IgA nephropathy: A meta-analysis. BMC Nephrol. 2017, 18, 61. [Google Scholar] [CrossRef] [PubMed]
- Ronkainen, J.; Autio-Harmainen, H.; Nuutinen, M. Cyclosporin A for the treatment of severe Henoch-Schönlein glomerulonephritis. Pediatr. Nephrol. 2003, 18, 1138–1142. [Google Scholar] [CrossRef] [PubMed]
- Park, J.M.; Won, S.C.; Shin, J.I.; Yim, H.; Pai, K.S. Cyclosporin A therapy for Henoch-Schönlein nephritis with nephrotic-range proteinuria. Pediatr. Nephrol. 2011, 26, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Kalliakmani, P.; Benou, E.; Goumenos, D.S. Cyclosporin A in adult patients with Henoch-Schönlein purpura nephritis and nephrotic syndrome; 5 case reports. Clin. Nephrol. 2011, 75, 380–383. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.F.; Hao, G.X.; Li, C.Z.; Yang, Y.J.; Liu, F.J.; Liu, L.; Yuan, X.Y.; Li, R.H.; Dong, L.; Dong, Q.; et al. Off-label use of tacrolimus in children with Henoch-Schönlein purpura nephritis: A pilot study. Arch. Dis. Child. 2018, 103, 772–775. [Google Scholar] [CrossRef] [PubMed]
- Gan, Y.; Chen, J.; Wang, M.; Li, Q.; Wang, A.; Yang, H. The efficacy and safety of tacrolimus in treating refractory IgA vasculitis nephritis: A single-center retrospective study on 16 cases. Clin. Kidney J. 2024, 17, sfae115. [Google Scholar] [CrossRef] [PubMed]
- Anastasia Ptinopoulou, V.S. Cyclophosphamide in Rapidly Progressive IgA Nephropathy. 2023. Available online: https://pubs.glomcon.org/cyclophosphamide-in-rapidly-progressive-iga-nephropathy/ (accessed on 25 September 2024).
- Natale, P.; Palmer, S.C.; Ruospo, M.; Saglimbene, V.M.; Craig, J.C.; Vecchio, M.; Samuels, J.A.; Molony, D.A.; Schena, F.P.; Strippoli, G.F. Immunosuppressive agents for treating IgA nephropathy. Cochrane Database Syst. Rev. 2020, 3, CD003965. [Google Scholar] [CrossRef] [PubMed]
- Tarshish, P.; Bernstein, J.; Edelmann, C.M., Jr. Henoch-Schönlein purpura nephritis: Course of disease and efficacy of cyclophosphamide. Pediatr. Nephrol. 2004, 19, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Pillebout, E.; Alberti, C.; Guillevin, L.; Ouslimani, A.; Thervet, E.; CESAR study group. Addition of cyclophosphamide to steroids provides no benefit compared with steroids alone in treating adult patients with severe Henoch Schönlein Purpura. Kidney Int. 2010, 78, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Bhat, A.; Naguwa, S.M.; Cheema, G.S.; Gershwin, M.E. Colchicine revisited. Ann. N. Y. Acad. Sci. 2009, 1173, 766–773. [Google Scholar] [CrossRef] [PubMed]
- Callen, J.P. Colchicine is effective in controlling chronic cutaneous leukocytoclastic vasculitis. J. Am. Acad. Dermatol. 1985, 13 Pt 1, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Allali, S.; Fraitag, S.; Terrier, B.; Bodemer, C.; Chalumeau, M. Efficacy of colchicine in a child with relapsing bullous Henoch-Schönlein purpura. Eur. J. Pediatr. 2016, 175, 147–149. [Google Scholar] [CrossRef] [PubMed]
- Pyne, D.; Mootoo, R.; Bhanji, A. Colchicine for the treatment of recurrent Henoch-Schönlein purpura in an adult. Rheumatology 2001, 40, 1430–1431. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, H.; Evans, A. Dapsone therapy for Henoch-Schönlein purpura: A case series. Arch. Dis. Child. 2005, 90, 985–986. [Google Scholar] [CrossRef] [PubMed]
- Shimomura, N.; Kawai, K.; Watanabe, S.; Katsuumi, K.; Ito, M. Adult Henoch-Schönlein purpura with severe abdominal pain treated with dapsone and factor XIII concentrate. J. Dermatol. 2005, 32, 124–127. [Google Scholar] [CrossRef] [PubMed]
- Volejnikova, J.; Horacek, J.; Kopriva, F. Dapsone treatment is efficient against persistent cutaneous and gastrointestinal symptoms in children with Henoch-Schönlein purpura. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub. 2018, 162, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Stefan, G.; Mircescu, G. Hydroxychloroquine in IgA nephropathy: A systematic review. Ren. Fail. 2021, 43, 1520–1527. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Si, F.L.; Lv, J.C.; Shi, S.F.; Zhou, X.J.; Liu, L.J.; Zhang, H. Hydroxychloroquine reduces proteinuria in Chinese patients with IgA vasculitis nephritis. J. Nephrol. 2023, 36, 2401–2403. [Google Scholar] [CrossRef] [PubMed]
- Rettig, P.; Cron, R.Q. Methotrexate used as a steroid-sparing agent in non-renal chronic Henoch-Schönlein purpura. Clin. Exp. Rheumatol. 2003, 21, 767–769. [Google Scholar] [PubMed]
- Miray Kisla Ekinci, R.; Balci, S.; Serbes, M.; Duyuler Ayçin, G.; Dogruel, D.; Ufuk Altintas, D.; Yilmaz, M. Recurrent Henoch Schönlein purpura without renal involvement successfully treated with methotrexate. Scott. Med. J. 2019, 64, 74–77. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.; Zhang, Z.; Du, Y. Leflunomide therapy for IgA vasculitis with nephritis in children. BMC Pediatr. 2021, 21, 391. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Gao, Y.; Zhang, Z.; Liu, G.; He, H.; Liu, L. Leflunomide in addition to steroids improves proteinuria and renal function in adult Henoch-Schoenlein nephritis with nephrotic proteinuria. Nephrology 2014, 19, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Suzuki, K.; Nakahata, T.; Tsugawa, K.; Ito, E.; Waga, S. Mizoribine oral pulse therapy for patients with disease flare of lupus nephritis. Clin. Nephrol. 2003, 60, 390–394. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, C.; Wei, X.; Li, P.; Cui, Y.; Qin, Y.; Wei, X.; Jin, M.; Kohama, K.; Gao, Y. Heat shock protein 60 stimulates the migration of vascular smooth muscle cells via Toll-like receptor 4 and ERK MAPK activation. Sci. Rep. 2015, 5, 15352. [Google Scholar] [CrossRef] [PubMed]
- Chan, T.M. Treatment of severe lupus nephritis: The new horizon. Nat. Rev. Nephrol. 2015, 11, 46–61. [Google Scholar] [CrossRef] [PubMed]
- Ichiyama, S.; Matayoshi, T.; Kaneko, T.; Shimizu, A.; Osada, S.I.; Watanabe, A.; Kanzaki, A.; Mitsui, K.; Tsuruoka, S.; Iwakiri, K.; et al. Successful multitarget therapy using prednisolone, mizoribine and tacrolimus for Henoch-Schönlein purpura nephritis in children. J. Dermatol. 2017, 44, e56–e57. [Google Scholar] [CrossRef] [PubMed]
- Mima, A. Efficacy of mizoribine and prednisolone combination therapy in adult patients with IgA vasculitis. Rheumatol. Int. 2017, 37, 1387–1393. [Google Scholar] [CrossRef] [PubMed]
- Di Gaetano, N.; Cittera, E.; Nota, R.; Vecchi, A.; Grieco, V.; Scanziani, E.; Botto, M.; Introna, M.; Golay, J. Complement activation determines the therapeutic activity of rituximab in vivo. J. Immunol. 2003, 171, 1581–1587. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Rodríguez, J.; Carbonell, C.; Mirón-Canelo, J.A.; Diez-Ruiz, S.; Marcos, M.; Chamorro, A.J. Rituximab treatment for IgA vasculitis: A systematic review. Autoimmun. Rev. 2020, 19, 102490. [Google Scholar] [CrossRef] [PubMed]
- Pillebout, E.; Rocha, F.; Fardet, L.; Rybojad, M.; Verine, J.; Glotz, D. Successful outcome using rituximab as the only immunomodulation in Henoch-Schonlein purpura: Case report. Nephrol. Dial. Transplant. 2011, 26, 2044–2046. [Google Scholar] [CrossRef] [PubMed]
- Bellan, M.; Pirisi, M.; Sainaghi, P.P. Long-term remission of corticosteroid- and cyclophosphamide-resistant Henoch-Schönlein purpura with rituximab. Scand. J. Rheumatol. 2016, 45, 83–84. [Google Scholar] [CrossRef] [PubMed]
- Maritati, F.; Fenoglio, R.; Pillebout, E.; Emmi, G.; Urban, M.L.; Rocco, R.; Nicastro, M.; Incerti, M.; Goldoni, M.; Trivioli, G.; et al. Brief Report: Rituximab for the Treatment of Adult-Onset IgA Vasculitis (Henoch-Schönlein). Arthritis Rheumatol. 2018, 70, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Fenoglio, R.; Sciascia, S.; Naretto, C.; De Simone, E.; Del Vecchio, G.; Ferro, M.; Quattrocchio, G.; Roccatello, D. Rituximab in severe immunoglobulin-A vasculitis (Henoch-Schönlein) with aggressive nephritis. Clin. Exp. Rheumatol. 2020, 38 (Suppl. S124), 195–200. [Google Scholar] [PubMed]
- Lafayette, R.A.; Canetta, P.A.; Rovin, B.H.; Appel, G.B.; Novak, J.; Nath, K.A.; Sethi, S.; Tumlin, J.A.; Mehta, K.; Hogan, M.; et al. A Randomized, Controlled Trial of Rituximab in IgA Nephropathy with Proteinuria and Renal Dysfunction. J. Am. Soc. Nephrol. 2017, 28, 1306–1313. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, S.; Westergren, E.; Smolander, J.; Bruchfeld, A. B cell-depleting therapy with rituximab or ofatumumab in immunoglobulin A nephropathy or vasculitis with nephritis. Clin. Kidney J. 2017, 10, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Simoes, J.; Sciascia, S.; Camara, I.; Baldovino, S.; Karim, Y.; Roccatello, D.; Cuadrado, M.J. Use of intravenous immunoglobulin in patients with active vasculitis associated with concomitant infection. J. Clin. Rheumatol. 2015, 21, 35–37. [Google Scholar] [CrossRef] [PubMed]
- Rostoker, G.; Desvaux-Belghiti, D.; Pilatte, Y.; Petit-Phar, M.; Philippon, C.; Deforges, L.; Terzidis, H.; Intrator, L.; André, C.; Adnot, S.; et al. High-dose immunoglobulin therapy for severe IgA nephropathy and Henoch-Schönlein purpura. Ann. Intern. Med. 1994, 120, 476–484. [Google Scholar] [CrossRef] [PubMed]
- Rostoker, G.; Desvaux-Belghiti, D.; Pilatte, Y.; Petit-Phar, M.; Philippon, C.; Deforges, L.; Terzidis, H.; Intrator, L.; André, C.; Adnot, S.; et al. Immunomodulation with low-dose immunoglobulins for moderate IgA nephropathy and Henoch-Schönlein purpura. Preliminary results of a prospective uncontrolled trial. Nephron 1995, 69, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Jayne, D.R.; Gaskin, G.; Rasmussen, N.; Abramowicz, D.; Ferrario, F.; Guillevin, L.; Mirapeix, E.; Savage, C.O.; Sinico, R.A.; Stegeman, C.A.; et al. European Vasculitis Study Group. Randomized trial of plasma exchange or high-dosage methylprednisolone as adjunctive therapy for severe renal vasculitis. J. Am. Soc. Nephrol. 2007, 18, 2180–2188. [Google Scholar] [CrossRef] [PubMed]
- Levy, J.B.; Turner, A.N.; Rees, A.J.; Pusey, C.D. Long-term outcome of anti-glomerular basement membrane antibody disease treated with plasma exchange and immunosuppression. Ann. Intern. Med. 2001, 134, 1033–1042. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, B.; Acharya, C.; Tangpanithandee, S.; Miao, J.; Krisanapan, P.; Thongprayoon, C.; Amir, O.; Mao, M.A.; Cheungpasitporn, W.; Acharya, P.C. Efficacy and Safety of Plasma Exchange as an Adjunctive Therapy for Rapidly Progressive IgA Nephropathy and Henoch-Schönlein Purpura Nephritis: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 3977. [Google Scholar] [CrossRef] [PubMed]
- Padmanabhan, A.; Connelly-Smith, L.; Aqui, N.; Balogun, R.A.; Klingel, R.; Meyer, E.; Pham, H.P.; Schneiderman, J.; Witt, V.; Wu, Y.; et al. Guidelines on the Use of Therapeutic Apheresis in Clinical Practice—Evidence-Based Approach from the Writing Committee of the American Society for Apheresis: The Eighth Special Issue. J. Clin. Apher. 2019, 34, 171–354. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, Y.; Suzuki, J.; Murai, M.; Takahashi, A.; Isome, M.; Nozawa, R.; Suzuki, S.; Suzuki, H. Plasmapheresis therapy for rapidly progressive Henoch-Schönlein nephritis. Pediatr. Nephrol. 2004, 19, 920–923. [Google Scholar] [CrossRef] [PubMed]
- Shenoy, M.; Ognjanovic, M.V.; Coulthard, M.G. Treating severe Henoch-Schönlein and IgA nephritis with plasmapheresis alone. Pediatr. Nephrol. 2007, 22, 1167–1171. [Google Scholar] [CrossRef] [PubMed]
- Augusto, J.F.; Sayegh, J.; Delapierre, L.; Croue, A.; Tollis, F.; Cousin, M.; Subra, J.F. Addition of plasma exchange to glucocorticosteroids for the treatment of severe Henoch-Schönlein purpura in adults: A case series. Am. J. Kidney Dis. 2012, 59, 663–669. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.E.C.; Lamond, M.; Marro, J.; Chetwynd, A.J.; Oni, L. A narrative review of potential drug treatments for nephritis in children with IgA vasculitis (HSP). Clin. Rheumatol. 2023, 42, 3189–3200. [Google Scholar] [CrossRef] [PubMed]
- Barratt, J.; Lafayette, R.; Kristensen, J.; Stone, A.; Cattran, D.; Floege, J.; Tesar, V.; Trimarchi, H.; Zhang, H.; Eren, N.; et al. NefIgArd Trial Investigators. Results from part A of the multi-center, double-blind, randomized, placebo-controlled NefIgArd trial, which evaluated targeted-release formulation of budesonide for the treatment of primary immunoglobulin A nephropathy. Kidney Int. 2023, 103, 391–402. [Google Scholar] [CrossRef] [PubMed]
- Samy, E.; Wax, S.; Huard, B.; Hess, H.; Schneider, P. Targeting BAFF and APRIL in systemic lupus erythematosus and other antibody-associated diseases. Int. Rev. Immunol. 2017, 36, 3–19. [Google Scholar] [CrossRef] [PubMed]
- Neubert, K.; Meister, S.; Moser, K.; Weisel, F.; Maseda, D.; Amann, K.; Wiethe, C.; Winkler, T.H.; Kalden, J.R.; Manz, R.A.; et al. The proteasome inhibitor bortezomib depletes plasma cells and protects mice with lupus-like disease from nephritis. Nat. Med. 2008, 14, 748–755. [Google Scholar] [CrossRef] [PubMed]
- Van de Perre, E.; Smith, R.M.; Bardsley, V.; Crawley, C.; Willcocks, L.C.; Jayne, D.R. Successful outcome using bortezomib in adult refractory IgA vasculitis: A case report. Rheumatology 2016, 55, 2089–2091. [Google Scholar] [CrossRef] [PubMed]
- Ozen, S.; Marks, S.D.; Brogan, P.; Groot, N.; de Graeff, N.; Avcin, T.; Bader-Meunier, B.; Dolezalova, P.; Feldman, B.M.; Kone-Paut, I.; et al. European consensus-based recommendations for diagnosis and treatment of immunoglobulin A vasculitis-the SHARE initiative. Rheumatology 2019, 58, 1607–1616. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Shi, S.; Liu, L.; Zhou, X.; Lv, J.; Zhang, H. Effect of SGLT2 inhibitors on the proteinuria reduction in patients with IgA nephropathy. Front. Med. 2023, 10, 1242241. [Google Scholar] [CrossRef] [PubMed]
- Masaki, T. Historical review: Endothelin. Trends Pharmacol. Sci. 2004, 25, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Rovin, B.H.; Barratt, J.; Heerspink, H.J.L.; Alpers, C.E.; Bieler, S.; Chae, D.W.; Diva, U.A.; Floege, J.; Gesualdo, L.; Inrig, J.K.; et al. DUPRO steering committee and PROTECT Investigators. Efficacy and safety of sparsentan versus irbesartan in patients with IgA nephropathy (PROTECT): 2-year results from a randomised, active-controlled, phase 3 trial. Lancet 2023, 402, 2077–2090. [Google Scholar] [CrossRef] [PubMed]
- Wright, R.D.; Marro, J.; Northey, S.J.; Corkhill, R.; Beresford, M.W.; Oni, L. Urinary complement proteins are increased in children with IgA vasculitis (Henoch-Schönlein purpura) nephritis. Pediatr. Nephrol. 2023, 38, 1491–1498. [Google Scholar] [CrossRef] [PubMed]
- Alexopoulos, E.; Papaghianni, A.; Papadimitriou, M. The pathogenetic significance of C5b-9 in IgA nephropathy. Nephrol. Dial. Transplant. 1995, 10, 1166–1172. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Koo, H.M.; Lim, B.J.; Oh, H.J.; Yoo, D.E.; Shin, D.H.; Lee, M.J.; Doh, F.M.; Park, J.T.; Yoo, T.H.; et al. Decreased circulating C3 levels and mesangial C3 deposition predict renal outcome in patients with IgA nephropathy. PLoS ONE 2012, 7, e40495. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.H.; Tsai, I.J.; Chang, C.J.; Chuang, Y.H.; Hsu, H.Y.; Chiang, B.L. The interaction between circulating complement proteins and cutaneous microvascular endothelial cells in the development of childhood Henoch-Schönlein Purpura. PLoS ONE 2015, 10, e0120411. [Google Scholar] [CrossRef] [PubMed]
- Selvaskandan, H.; Kay Cheung, C.; Dormer, J.; Wimbury, D.; Martinez, M.; Xu, G.; Barratt, J. Inhibition of the Lectin Pathway of the Complement System as a Novel Approach in the Management of IgA Vasculitis-Associated Nephritis. Nephron 2020, 144, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Bruchfeld, A.; Magin, H.; Nachman, P.; Parikh, S.; Lafayette, R.; Potarca, A.; Miao, S.; Bekker, P. C5a receptor inhibitor avacopan in immunoglobulin A nephropathy-an open-label pilot study. Clin. Kidney J. 2022, 15, 922–928. [Google Scholar] [CrossRef] [PubMed]
- Akpinar, M.E.; Kocak, I.; Gurpinar, B.; Ozturk, B. Henoch-Schönlein purpura after adenotonsillectomy. Otolaryngol. Head Neck Surg. 2009, 141, 149–150. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, X.; Lin, X.; Bian, X.; Jing, R.; Frelinger, A.; Zhang, A. Comparison and Analysis of Gut Microbiota in Children with IgA Vasculitis With Different Clinical Symptoms. Front. Pediatr. 2022, 9, 800677. [Google Scholar] [CrossRef] [PubMed]
- Di Leo, V.; Gleeson, P.J.; Sallustio, F.; Bounaix, C.; Da Silva, J.; Loreto, G.; Ben Mkaddem, S.; Monteiro, R.C. Rifaximin as a Potential Treatment for IgA Nephropathy in a Humanized Mice Model. J. Pers. Med. 2021, 11, 309. [Google Scholar] [CrossRef] [PubMed]
ACR Classification Criteria * (Mills et al., 1990) Ref. [38] | EULAR/PRINTO/PRES Classification Criteria * (Ozen et al., 2010) Ref. [39] |
---|---|
Two or more of the following: - age ≤ 20 years 1 - palpable purpura (not related to thrombocytopenia) 2 - acute abdominal pain: generally diffuse and worsens with Meals 3 - skin biopsy showing granulocytes inside small arteriolar or venular walls Sensitivity 87.1%; specificity 87.7% | MANDATORY: Purpura or petechiae with lower limb predominance 2 AND One or more of the following 4 criteria: - abdominal pain (diffuse with acute onset) 3 - arthritis or arthralgia (of acute onset) 4 - kidney involvement (proteinuria and/or hematuria) 5 - leucocytoclastic vasculitis with predominant IgA deposits or proliferative GMN with predominant IgA deposits Sensitivity 100%; specificity 87% |
Regulation of mucosal immunity - Tonsillectomy - Gut microbiota modification - Targeted-release formulation (TRF) of budesonide |
B-cell modulation - B-cell-directed therapy - BAFF-neutralizing monoclonal antibodies - APRIL-neutralizing monoclonal antibodies: sibeprenlimab; zigakibart - Dual antagonists of BAFF and APRIL: atacicept; telitacicept; povetacicept - BLyS-neutralizing monoclonal antibody: belimumab - B-cell-depleting agents - Humanized anti-CD20 monoclonal antibody: ofatumumab - Bortezomib (proteasome inhibitor); felzartamab (anti-CD38 monoclonal antibody) |
SYK inhibition - Fostamanitib |
T-cell modulation |
RAAS inhibitors - Angiotensin-converting enzyme inhibitors (ACEI) - Angiotensin receptor blockers (ARB) - New ACEI: benazepril |
Sodium-Glucose Cotransporter-2 Inhibitors (SGLT2-inh) - Dapaglifozin and empaglifozin |
Endothelin receptor antagonists - Spasertan; atrasentan; bosentan |
Complement pathways inhibitors - Lectin pathway inhibition: narsoplimab (MASP-2 inhibition) - Alternative pathway inhibition: iptacopan; vermicopan - Terminal pathway inhibition: pegcetacoplan; ravulizumab; cemdisiran; avacopan |
Unclassified agents - Mizoribine (reduces DNA synthesis and decreases the proliferation of B and T cells) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castañeda, S.; Quiroga-Colina, P.; Floranes, P.; Uriarte-Ecenarro, M.; Valero-Martínez, C.; Vicente-Rabaneda, E.F.; González-Gay, M.A. IgA Vasculitis (Henoch–Schönlein Purpura): An Update on Treatment. J. Clin. Med. 2024, 13, 6621. https://doi.org/10.3390/jcm13216621
Castañeda S, Quiroga-Colina P, Floranes P, Uriarte-Ecenarro M, Valero-Martínez C, Vicente-Rabaneda EF, González-Gay MA. IgA Vasculitis (Henoch–Schönlein Purpura): An Update on Treatment. Journal of Clinical Medicine. 2024; 13(21):6621. https://doi.org/10.3390/jcm13216621
Chicago/Turabian StyleCastañeda, Santos, Patricia Quiroga-Colina, Paz Floranes, Miren Uriarte-Ecenarro, Cristina Valero-Martínez, Esther F. Vicente-Rabaneda, and Miguel A. González-Gay. 2024. "IgA Vasculitis (Henoch–Schönlein Purpura): An Update on Treatment" Journal of Clinical Medicine 13, no. 21: 6621. https://doi.org/10.3390/jcm13216621
APA StyleCastañeda, S., Quiroga-Colina, P., Floranes, P., Uriarte-Ecenarro, M., Valero-Martínez, C., Vicente-Rabaneda, E. F., & González-Gay, M. A. (2024). IgA Vasculitis (Henoch–Schönlein Purpura): An Update on Treatment. Journal of Clinical Medicine, 13(21), 6621. https://doi.org/10.3390/jcm13216621