Muscle Mass and Muscle Strength in Non-Dialysis-Dependent Chronic Kidney Disease Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Eligibility Criteria
2.2. Laboratory Measurements
2.3. The Assessment of eGFR
2.4. The Diagnosis of Diabetes Mellitus Type 2
2.5. The Assessment of Muscle Strength
2.6. The Assessment of Skeletal Muscle Mass
2.7. Statistical Analysis
3. Results
4. Discussion
4.1. Appendicular Skeletal Muscle Mass and Anthropometric Variables
4.2. Hand Grip Strength and Anthropometric Variables
4.3. Appendicular Skeletal Muscle Mass and Clinical Variables
4.4. HGS and Clinical Variables
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ASM | appendicular skeletal muscle mass |
ATM | adipose tissue mass |
BCM | body composition monitor |
BIA | bioelectrical impedance analysis |
BIS | multifrequency bioimpedance spectroscopy |
BMI | body mass index |
CKD | chronic kidney disease |
CT | computed tomography |
DXA | dual-energy X-ray absorptiometry |
ECW | extracellular water |
eGFR | estimated glomerular filtration rate |
EWGSOP2 | European Working Group on Sarcopenia in Older People |
FFM | fat-free mass |
FM | fat mass |
FTI | fat tissue index |
HGS | hand grip strength |
ICW | intracellular water |
LTI | lean tissue index |
LTM | lean tissue mass |
MDRD | modification of diet in renal disease formula |
MRI | magnetic resonance imaging |
NH weight | normally hydrated weight |
OGTT | oral glucose tolerance test |
OH | overhydration |
PEW | protein-energy wasting |
Rel Fat | relative fat |
Rel OH | relative overhydration |
SD | standard deviations |
TBW | total body water |
UA | uric acid |
ULN | upper limit of normal |
References
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Bilski, J.; Pierzchalski, P.; Szczepanik, M.; Bonior, J.; Zoladz, J.A. Multifactorial Mechanism of Sarcopenia and Sarcopenic Obesity. Role of Physical Exercise, Microbiota and Myokines. Cells 2022, 11, 160. [Google Scholar] [CrossRef] [PubMed]
- Antunes, A.C.; Araújo, D.A.; Veríssimo, M.T.; Amaral, T.F. Sarcopenia and hospitalisation costs in older adults: A cross-sectional study. Nutr. Diet. 2017, 74, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, H.S.; Neri, S.G.R.; Oliveira, J.S.; Bennett, P.N.; Viana, J.L.; Lima, R.M. Association between sarcopenia and clinical outcomes in chronic kidney disease patients: A systematic review and meta-analysis. Clin. Nutr. 2022, 41, 1131–1140. [Google Scholar] [CrossRef] [PubMed]
- Beaudart, C.; Demonceau, C.; Reginster, J.Y.; Locquet, M.; Cesari, M.; Cruz Jentoft, A.J.; Bruyère, O. Sarcopenia and health-related quality of life: A systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle 2023, 14, 1228–1243. [Google Scholar] [CrossRef]
- Francis, A.; Harhay, M.N.; Ong, A.C.M.; Tummalapalli, S.L.; Ortiz, A.; Fogo, A.B.; Fliser, D.; Roy-Chaudhury, P.; Fontana, M.; Nangaku, M.; et al. Chronic kidney disease and the global public health agenda: An international consensus. Nat. Rev. Nephrol. 2024, 20, 473–485. [Google Scholar] [CrossRef]
- Slee, A.; McKeaveney, C.; Adamson, G.; Davenport, A.; Farrington, K.; Fouque, D.; Kalantar-Zadeh, K.; Mallett, J.; Maxwell, A.P.; Mullan, R.; et al. Estimating the Prevalence of Muscle Wasting, Weakness, and Sarcopenia in Hemodialysis Patients. J. Ren. Nutr. 2020, 30, 313–321. [Google Scholar] [CrossRef]
- Sabatino, A.; Cuppari, L.; Stenvinkel, P.; Lindholm, B.; Avesani, C.M. Sarcopenia in chronic kidney disease: What have we learned so far? J. Nephrol. 2021, 34, 1347–1372. [Google Scholar] [CrossRef]
- Duarte, M.P.; Almeida, L.S.; Neri, S.G.R.; Oliveira, J.S.; Wilkinson, T.J.; Ribeiro, H.S.; Lima, R.M. Prevalence of sarcopenia in patients with chronic kidney disease: A global systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle 2024, 15, 501–512. [Google Scholar] [CrossRef]
- Guida, B.; Maro, M.D.; Lauro, M.D.; Lauro, T.D.; Trio, R.; Santillo, M.; Belfiore, A.; Memoli, A.; Cataldi, M. Identification of sarcopenia and dynapenia in CKD predialysis patients with EGWSOP2 criteria: An observational, cross-sectional study. Nutrition 2020, 78, 110815. [Google Scholar] [CrossRef]
- Yuan, S.; Larsson, S.C. Epidemiology of sarcopenia: Prevalence, risk factors, and consequences. Metabolism 2023, 144, 155533. [Google Scholar] [CrossRef] [PubMed]
- Moreno-González, R.; Cruzado, J.M.; Corsonello, A.; Fabbietti, P.; Tap, L.; Mattace-Raso, F.; Ärnlöv, J.; Carlsson, A.C.; Guligowska, A.; Kostka, T.; et al. Kidney function and other associated factors of sarcopenia in community-dwelling older adults: The SCOPE study. Eur. J. Intern. Med. 2024, 123, 81–93. [Google Scholar] [CrossRef] [PubMed]
- Harris, T. Muscle mass and strength: Relation to function in population studies. J. Nutr. 1997, 127 (Suppl. S5), 1004S–1006S. [Google Scholar] [CrossRef] [PubMed]
- Isoyama, N.; Qureshi, A.R.; Avesani, C.M.; Lindholm, B.; Bàràny, P.; Heimbürger, O.; Cederholm, T.; Stenvinkel, P.; Carrero, J.J. Comparative associations of muscle mass and muscle strength with mortality in dialysis patients. Clin. J. Am. Soc. Nephrol. 2014, 9, 1720–1728. [Google Scholar] [CrossRef] [PubMed]
- Marini, A.C.; Motobu, R.D.; Freitas, A.T.V.; Laviano, A.; Pimentel, G.D. Pre-sarcopenia in patients undergoing hemodialysis: Prevalence and association with biochemical parameters. Clin. Nutr. ESPEN 2018, 28, 236–238. [Google Scholar] [CrossRef]
- Han, E.; Lee, Y.H.; Lee, B.W.; Kang, E.S.; Cha, B.S. Pre-sarcopenia is associated with renal hyperfiltration independent of obesity or insulin resistance: Nationwide Surveys (KNHANES 2008–2011). Medicine 2017, 96, e7165. [Google Scholar] [CrossRef]
- Moreira, V.G.; Perez, M.; Lourenço, R.A. Prevalence of sarcopenia and its associated factors: The impact of muscle mass, gait speed, and handgrip strength reference values on reported frequencies. Clinics 2019, 74, e477. [Google Scholar] [CrossRef]
- Ibrahim, K.; May, C.; Patel, H.P.; Baxter, M.; Sayer, A.A.; Roberts, H. A feasibility study of implementing grip strength measurement into routine hospital practice (GRImP): Study protocol. Pilot Feasibility Stud. 2016, 2, 27. [Google Scholar] [CrossRef]
- Lorenzo, A.D.; Andreoli, A. Segmental bioelectrical impedance analysis. Curr. Opin. Clin. Nutr. Metab. Care 2003, 6, 551–555. [Google Scholar] [CrossRef]
- Eyre, S.; Stenberg, J.; Wallengren, O.; Keane, D.; Avesani, C.M.; Bosaeus, I.; Clyne, N.; Heimbürger, O.; Indurain, A.; Johansson, A.C.; et al. Bioimpedance analysis in patients with chronic kidney disease. J. Ren. Care 2023, 49, 147–157. [Google Scholar] [CrossRef]
- Sergi, G.; De Rui, M.; Veronese, N.; Bolzetta, F.; Berton, L.; Carraro, S.; Bano, G.; Coin, A.; Manzato, E.; Perissinotto, E.; et al. Assessing appendicular skeletal muscle mass with bioelectrical impedance analysis in free-living Caucasian older adults. Clin. Nutr. 2015, 34, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.Y.; Wu, M.Y.; Chen, H.S.; Hung, S.C.; Lim, P.S. Development and validation of a multifrequency bioimpedance spectroscopy equation to predict appendicular skeletal muscle mass in hemodialysis patients. Clin. Nutr. 2021, 40, 3288–3295. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, J.H.; Marcora, S.M.; Jibani, M.; Roberts, G.; Kumwenda, M.J.; Glover, R.; Barron, J.; Lemmey, A.B. Bioelectrical impedance can be used to predict muscle mass and hence improve estimation of glomerular filtration rate in non-diabetic patients with chronic kidney disease. Nephrol. Dial. Transplant. 2006, 21, 3481–3487. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Bosch, J.P.; Lewis, J.B.; Greene, T.; Rogers, N.; Roth, D. A more accurate method to estimate glomerular filtration rate from serum creatinine: A new prediction equation. Modification of Diet in Renal Disease Study Group. Ann. Intern. Med. 1999, 130, 461–470. [Google Scholar] [CrossRef]
- Levey, A.S.; Coresh, J.; Greene, T.; Stevens, L.A.; Zhang, Y.L.; Hendriksen, S.; Kusek, J.W.; Van Lente, F. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann. Intern. Med. 2006, 145, 247–254. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2022. Diabetes Care 2022, 45 (Suppl. S1), S17–S38. [Google Scholar] [CrossRef]
- Rymarz, A.; Szamotulska, K.; Niemczyk, S. Comparison of Skinfold Thicknesses and Bioimpedance Spectroscopy to Dual-Energy X-Ray Absorptiometry for the Body Fat Measurement in Patients With Chronic Kidney Disease. Nutr. Clin. Pract. 2017, 32, 533–538. [Google Scholar] [CrossRef]
- Stevens, P.E.; Ahmed, S.B.; Carrero, J.J.; Foster, B.; Francis, A.; Hall, R.K.; Herrington, W.G.; Hill, G.; Inker, L.A.; Kazancıoğlu, R.; et al. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2024, 105, 117–314. [Google Scholar] [CrossRef]
- Yu, S.C.; Powell, A.; Khow, K.S.; Visvanathan, R. The Performance of Five Bioelectrical Impedance Analysis Prediction Equations against Dual X-ray Absorptiometry in Estimating Appendicular Skeletal Muscle Mass in an Adult Australian Population. Nutrients 2016, 8, 189. [Google Scholar] [CrossRef]
- Cáñez-Ríos, M.; Esparza-Romero, J.; González-Arellanes, R.; Ramírez-Torres, M.; Figueroa-Pesqueira, G.; Urquidez-Romero, R.; Rangel-Peniche, D.B.; Alemán-Mateo, H. External validation of BIA equations to estimate appendicular skeletal muscle mass in older adults: Importance of the bias analysis and derivation of correction factors to achieve agreement. Front. Nutr. 2022, 9, 951346. [Google Scholar] [CrossRef]
- Wilkinson, T.J.; Miksza, J.; Yates, T.; Lightfoot, C.J.; Baker, L.A.; Watson, E.L.; Zaccardi, F.; Smith, A.C. Association of sarcopenia with mortality and end-stage renal disease in those with chronic kidney disease: A UK Biobank study. J. Cachexia Sarcopenia Muscle 2021, 12, 586–598. [Google Scholar] [CrossRef] [PubMed]
- Alzayer, H.; Roshanravan, B. Dissecting the Obesity Paradox in Patients With Obesity and CKD. Kidney Int. Rep. 2023, 8, 1281–1282. [Google Scholar] [CrossRef] [PubMed]
- Bellafronte, N.T.; De Queirós Mattoso Ono, A.; Chiarello, P.G. Sarcopenic Obesity in Chronic Kidney Disease: Challenges in Diagnosis Using Different Diagnostic Criteria. Med. Princ. Pract. 2021, 30, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Liu, M.; Liu, Y.; Xu, H.; Chen, X.; Zheng, H.; Wu, X.; Shen, Z.; Shen, C. Chronic kidney disease: Prevalence and association with handgrip strength in a cross-sectional study. BMC Nephrol. 2021, 22, 246. [Google Scholar] [CrossRef]
- Curtis, M.; Swan, L.; Fox, R.; Warters, A.; O’Sullivan, M. Associations between Body Mass Index and Probable Sarcopenia in Community-Dwelling Older Adults. Nutrients 2023, 15, 1505. [Google Scholar] [CrossRef]
- Jiang, K.; Slee, A.; Davenport, A. Body composition and weakness of hand grip strength and pinch strength in patients with chronic kidney disease from different ethnic backgrounds. J. Hum. Nutr. Diet. 2021, 34, 450–455. [Google Scholar] [CrossRef]
- Pinto Pereira, S.M.; Garfield, V.; Farmaki, A.E.; Tomlinson, D.J.; Norris, T.; Fatemifar, G.; Denaxas, S.; Finan, C.; Coope, R. Adiposity and grip strength: A Mendelian randomisation study in UK Biobank. BMC Med. 2022, 20, 201. [Google Scholar] [CrossRef]
- Byambaa, A.; Altankhuyag, I.; Damdinbazar, O.; Jadamba, T.; Byambasukh, O. Anthropometric and Body Circumference Determinants for Hand Grip Strength: A Population-Based Mon-Timeline Study. J. Aging Res. 2023, 2023, 6272743. [Google Scholar] [CrossRef]
- Ong, H.L.; Abdin, E.; Chua, B.Y.; Zhang, Y.; Seow, E.; Vaingankar, J.A.; Chong, S.A.; Subramaniam, M. Hand-grip strength among older adults in Singapore: A comparison with international norms and associative factors. BMC Geriatr. 2017, 17, 176. [Google Scholar] [CrossRef]
- Angst, F.; Drerup, S.; Werle, S.; Herren, D.B.; Simmen, B.R.; Goldhahn, J. Prediction of grip and key pinch strength in 978 healthy subjects. BMC Musculoskelet. Disord. 2010, 11, 94. [Google Scholar] [CrossRef]
- Günther, C.M.; Bürger, A.; Rickert, M.; Crispin, A.; Schulz, C.U. Grip strength in healthy caucasian adults: Reference values. J. Hand Surg. Am. 2008, 33, 558–565. [Google Scholar] [CrossRef] [PubMed]
- Hernández Corona, D.M.; González Heredia, T.; Méndez Del Villar, M.; Pazarin Villaseñor, L.; Yanowsky Escatell, F.G.; Topete Reyes, J.F.; Hernández-García, S. Loss of muscle strength in patients under hemodialysis evaluated by dynamometry in the Mexican population. Nutr. Hosp. 2020, 37, 964–969. [Google Scholar] [CrossRef] [PubMed]
- Hasheminejad, N.; Namdari, M.; Mahmoodi, M.R.; Bahrampour, A.; Azmandian, J. Association of Handgrip Strength With Malnutrition-Inflammation Score as an Assessment of Nutritional Status in Hemodialysis Patients. Iran. J. Kidney Dis. 2016, 10, 30–35. [Google Scholar] [PubMed]
- Hanna, R.M.; Ghobry, L.; Wassef, O.; Rhee, C.M.; Kalantar-Zadeh, K. A Practical Approach to Nutrition, Protein-Energy Wasting, Sarcopenia, and Cachexia in Patients with Chronic Kidney Disease. Blood Purif. 2020, 49, 202–211. [Google Scholar] [CrossRef]
- Chen, Z.; Song, C.; Yao, Z.; Sun, J.; Liu, W. Associations between albumin, globulin, albumin to globulin ratio and muscle mass in adults: Results from the national health and nutrition examination survey 2011–2014. BMC Geriatr. 2022, 22, 383. [Google Scholar] [CrossRef]
- Birajdar, N.; Anandh, U.; Premlatha, S.; Rajeshwari, G. Hand Grip Strength in Patients on Maintenance Hemodialysis: An Observational Cohort Study from India. Indian J. Nephrol. 2019, 29, 393–397. [Google Scholar] [CrossRef]
- Panorchan, K.; Nongnuch, A.; El-Kateb, S.; Goodlad, C.; Davenport, A. Changes in muscle and fat mass with haemodialysis detected by multi-frequency bioelectrical impedance analysis. Eur. J. Clin. Nutr. 2015, 69, 1109–1112. [Google Scholar] [CrossRef]
- Ng, J.K.; Lau, S.L.; Chan, G.C.; Tian, N.; Li, P.K. Nutritional Assessments by Bioimpedance Technique in Dialysis Patients. Nutrients 2023, 16, 15. [Google Scholar] [CrossRef]
- Hong, S.; Chang, Y.; Jung, H.S.; Yun, K.E.; Shin, H.; Ryu, S. Relative muscle mass and the risk of incident type 2 diabetes: A cohort study. PLoS ONE 2017, 12, e0188650. [Google Scholar] [CrossRef]
- Larsen, B.A.; Wassel, C.L.; Kritchevsky, S.B.; Strotmeyer, E.S.; Criqui, M.H.; Kanaya, A.M.; Fried, L.F.; Schwartz, A.V.; Harris, T.B.; Ix, J.H. Association of Muscle Mass, Area, and Strength With Incident Diabetes in Older Adults: The Health ABC Study. J. Clin. Endocrinol. Metab. 2016, 101, 1847–1855. [Google Scholar] [CrossRef]
- Bi, L.N.; Zheng, X.; Qi, Y.Y.; Hu, S.; Li, C.; Zhang, Y. Prevalence and influencing factors of muscle mass loss in adults with diabetes and a high body fat percentage: A cross-sectional study. J. Back Musculoskelet. Rehabil. 2024, 37, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Yi, D.; Lee, M.J.; Khang, A.R.; Kang, Y.H. Association between serum uric acid and relative hand grip strength in comparison with metabolic syndrome components. Osteoporos. Sarcopenia 2022, 8, 158–164. [Google Scholar] [CrossRef] [PubMed]
- García-Esquinas, E.; Rodríguez-Artalejo, F. Association between serum uric acid concentrations and grip strength: Is there effect modification by age? Clin. Nutr. 2018, 37, 566–572. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Niu, K.; Kobayashi, Y.; Guan, L.; Momma, H.; Cui, Y.; Chujo, M.; Otomo, A.; Guo, H.; Tadaura, H.; et al. An inverted J-shaped association of serum uric acid with muscle strength among Japanese adult men: A cross-sectional study. BMC Musculoskelet. Disord. 2013, 14, 258. [Google Scholar] [CrossRef] [PubMed]
- Gherghina, M.E.; Peride, I.; Tiglis, M.; Neagu, T.P.; Niculae, A.; Checherita, I.A. Uric Acid and Oxidative Stress-Relationship with Cardiovascular, Metabolic, and Renal Impairment. Int. J. Mol. Sci. 2022, 23, 3188. [Google Scholar] [CrossRef]
- Garagarza, C.; Flores, A.L.; Valente, A. Influence of Body Composition and Nutrition Parameters in Handgrip Strength: Are There Differences by Sex in Hemodialysis Patients? Nutr. Clin. Pract. 2018, 33, 247–254. [Google Scholar] [CrossRef]
- Thein, M.; Ershler, W.B.; Artz, A.S.; Tecson, J.; Robinson, B.E.; Rothstein, G.; Liede, A.; Gylys-Colwell, I.; Lu, Z.J.; Robbinset, S. Diminished quality of life and physical function in community-dwelling elderly with anemia. Medicine 2009, 88, 107–114. [Google Scholar] [CrossRef]
- Joosten, E.; Detroyer, E.; Milisen, K. Effect of anaemia on hand grip strength, walking speed, functionality and 1 year mortality in older hospitalized patients. BMC Geriatr. 2016, 16, 153. [Google Scholar] [CrossRef]
- Tseng, S.H.; Lee, W.J.; Peng, L.N.; Lin, M.H.; Chen, L.K. Associations between hemoglobin levels and sarcopenia and its components: Results from the I-Lan longitudinal study. Exp. Gerontol. 2021, 150, 111379. [Google Scholar] [CrossRef]
- Lee, M.R.; Jung, S.M.; Bang, H.; Kim, H.S.; Kim, Y.B. Association between muscle strength and type 2 diabetes mellitus in adults in Korea Data from the Korea national health and nutrition examination survey (KNHANES) VI. Medicine 2018, 97, e10984. [Google Scholar] [CrossRef]
- Mainous, A.G., 3rd; Tanner, R.J.; Anton, S.D.; Jo, A. Low Grip Strength and Prediabetes in Normal-Weight Adults. J. Am. Board Fam. Med. 2016, 29, 280–282. [Google Scholar] [CrossRef] [PubMed]
Anthropometric Variables | Total | Women | Men | Pmen vs. women | |||
---|---|---|---|---|---|---|---|
n | Mean ± SD | n | Mean ± SD | n | Mean ± SD | ||
HGS (kg) | 84 | 25.27 ± 10.09 | 38 | 18.88 ± 5.31 | 46 | 30.55 ± 10.07 | <0.001 |
ASM (BIS) | 84 | 19.72 ± 4.89 | 38 | 16.90 ± 4.42 | 46 | 22.04 ± 3.97 | <0.001 |
Age (years) | 84 | 68.71 ± 14.61 | 38 | 66.53 ± 15.27 | 46 | 70.52 ± 13.94 | 0.214 |
Body mass (kg) | 84 | 82.87 ± 18.88 | 38 | 77.58 ± 20.57 | 46 | 87.25 ± 16.33 | 0.018 |
NH weight (kg) | 84 | 82.20 ± 19.04 | 38 | 77.54 ± 21.10 | 46 | 86.04 ± 16.40 | 0.041 |
Height (cm) | 84 | 164.65 ± 8.57 | 38 | 158.11 ± 6.86 | 46 | 170.07 ± 5.54 | <0.001 |
BMI (kg/m2) | 84 | 30.45 ± 6.02 | 38 | 30.74 ± 6.66 | 46 | 30.21 ± 5.49 | 0.685 |
LTM (kg) | 84 | 33.39 ± 8.71 | 38 | 28.80 ± 7.61 | 46 | 37.18 ± 7.74 | <0.001 |
LTI | 84 | 12.26 ± 2.91 | 38 | 11.53 ± 3.19 | 46 | 12.87 ± 2.55 | 0.037 |
Fat (kg) | 84 | 35.24 ± 13.17 | 38 | 35.42 ± 14.93 | 46 | 35.09 ± 11.69 | 0.909 |
RFM (%) | 84 | 41.64 ± 8.53 | 38 | 44.24 ± 9.52 | 46 | 39.49 ± 7.00 | 0.010 |
FTI | 84 | 17.65 ± 6.40 | 38 | 19.02 ± 7.18 | 46 | 16.53 ± 5.50 | 0.075 |
Clinical Variables | Total | Women | Men | Pmen vs. women | |||
---|---|---|---|---|---|---|---|
n | % | n | % | n | % | ||
Serum albumin (g/dL) | |||||||
<3.9 | 9 | 11.1% | 3 | 8.3% | 6 | 13.3% | 0.722 |
3.9–4.9 | 72 | 88.9% | 33 | 91.7% | 39 | 86.7% | |
Hemoglobin (g/dL) | |||||||
<11.0 | 16 | 19.5% | 8 | 21.1% | 8 | 18.2% | 0.744 |
11.0–18.0 | 66 | 80.5% | 30 | 78.9% | 36 | 81.8% | |
eGFR (mL/min/1.73 m2) | |||||||
≤29 | 62 | 73.8% | 28 | 73.7% | 34 | 73.9% | 0.981 |
30–44 | 22 | 26.2% | 10 | 26.3% | 12 | 26.1% | |
Serum creatinine (xULN) | |||||||
<1.5 | 18 | 21.4% | 15 | 39.5% | 3 | 6.5% | 0.001 |
1.5–2.0 | 31 | 36.9% | 14 | 36.8% | 17 | 37.0% | |
2.0–3.0 | 27 | 32.1% | 6 | 15.8% | 21 | 45.7% | |
>3.0 | 8 | 9.5% | 3 | 7.9% | 5 | 10.9% | |
Serum urea (xULN) | 0.012 | ||||||
≤1 | 3 | 4.2% | 0 | 0.0% | 3 | 7.7% | |
1–1.5 | 20 | 27.8% | 11 | 33.3% | 9 | 23.1% | |
1.5–2 | 22 | 30.6% | 15 | 45.5% | 7 | 17.9% | |
2–2.5 | 16 | 22.2% | 3 | 9.1% | 13 | 33.3% | |
>2.5 | 11 | 15.3% | 4 | 12.1% | 7 | 17.9% | |
Serum uric acid (mg/dL) | 0.032 | ||||||
W: 2.4–5.7, M: 3.4–7.0 | 29 | 37.7% | 9 | 25.0% | 20 | 48.8% | |
W: >5.7, M: >7.0 | 48 | 62.3% | 27 | 75.0% | 21 | 51.2% | |
OH (L) | |||||||
<−1.0 | 9 | 10.7% | 4 | 10.5% | 5 | 10.9% | 0.006 |
−1.0–1.0 | 47 | 56.0% | 28 | 73.7% | 19 | 41.3% | |
>1.0 | 28 | 33.3% | 6 | 15.8% | 22 | 47.8% | |
ROH (%) | |||||||
<−7.0 | 8 | 9.5% | 4 | 10.5% | 4 | 8.7% | 0.017 |
−7.0–7.0 | 52 | 61.9% | 29 | 76.3% | 23 | 50.0% | |
>7.0 | 24 | 28.6% | 5 | 13.2% | 19 | 41.3% | |
Diabetes mellitus type 2 | |||||||
No | 63 | 75.0% | 28 | 73.7% | 35 | 76.1% | 0.800 |
Yes | 21 | 25.0% | 10 | 26.3% | 11 | 23.9% |
Anthropometric Variables | Appendicular Skeletal Muscle Mass | Hand Grip Strength | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | Women | Men | Total | Women | Men | ||||||||||||||
n | r | p-Value | n | r | p-Value | n | r | p-Value | n | r | p-Value | n | r | p-Value | n | r | p-Value | ||
Body mass (kg) | 84 | 0.903 | <0.001 | 38 | 0.949 | <0.001 | 46 | 0.922 | <0.001 | 84 | 0.319 | 0.003 | 38 | 0.468 | 0.003 | 46 | 0.109 | 0.472 | |
NH Weight | 84 | 0.882 | <0.001 | 38 | 0.950 | <0.001 | 46 | 0.897 | <0.001 | 84 | 0.315 | 0.004 | 38 | 0.449 | 0.005 | 46 | 0.147 | 0.330 | |
Height (cm) | 84 | 0.694 | <0.001 | 38 | 0.640 | <0.001 | 46 | 0.421 | 0.004 | 84 | 0.666 | <0.001 | 38 | 0.548 | <0.001 | 46 | 0.452 | 0.002 | |
BMI (kg/m2) | 84 | 0.701 | <0.001 | 38 | 0.879 | <0.001 | 46 | 0.826 | <0.001 | 84 | 0.048 | 0.666 | 38 | 0.352 | 0.030 | 46 | −0.036 | 0.814 | |
LTM (kg) | 84 | 0.664 | <0.001 | 38 | 0.505 | 0.001 | 46 | 0.594 | <0.001 | 84 | 0.490 | <0.001 | 38 | 0.212 | 0.200 | 46 | 0.348 | 0.018 | |
LTI | 84 | 0.433 | <0.001 | 38 | 0.273 | 0.097 | 46 | 0.500 | <0.001 | 84 | 0.238 | 0.029 | 38 | 0.007 | 0.968 | 46 | 0.221 | 0.141 | |
Fat (kg) | 84 | 0.614 | <0.001 | 38 | 0.799 | <0.001 | 46 | 0.653 | <0.001 | 84 | 0.103 | 0.350 | 38 | 0.392 | 0.015 | 46 | 0.013 | 0.932 | |
RFM | 84 | 0.090 | 0.415 | 38 | 0.344 | 0.034 | 46 | 0.227 | 0.129 | 84 | −0.146 | 0.185 | 38 | 0.196 | 0.238 | 46 | −0.080 | 0.596 | |
FTI | 84 | 0.449 | <0.001 | 38 | 0.723 | <0.001 | 46 | 0.593 | <0.001 | 84 | −0.058 | 0.599 | 38 | 0.319 | 0.051 | 46 | −0.063 | 0.677 | |
ASM (BIS) (kg) | 84 | 0.501 | <0.001 | 38 | 0.531 | 0.001 | 46 | 0.188 | 0.210 |
Clinical Variables | Appendicular Skeletal Muscle Mass | Hand Grip Strength | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | Women | Men | Total | Women | Men | |||||||||||||
n | Mean ± SD | p-Value | n | Mean ± SD | p-Value | n | Mean ± SD | p-Value | n | Mean ± SD | p-Value | n | Mean ± SD | p-Value | n | Mean ± SD | p-Value | |
Serum albumin (g/dL) | ||||||||||||||||||
<3.9 | 9 | 22.6 ± 5.4 | 0.073 | 3 | 23.2 ± 6.8 | 0.011 | 6 | 22.3 ± 5.2 | 0.896 | 9 | 23.6 ± 5.5 | 0.603 | 3 | 20.3 ± 1.2 | 0.642 | 6 | 25.3 ± 6.23 | 0.185 |
3.9–4.9 | 72 | 19.4 ± 4.8 | 33 | 16.4 ± 4.0 | 39 | 22.0 ± 3.9 | 72 | 25.5 ± 10.6 | 33 | 18.8 ± 5.7 | 39 | 31.2 ± 10.4 | ||||||
Hemoglobin (g/dL) | ||||||||||||||||||
<11.0 | 16 | 19.0 ± 5.8 | 0.580 | 8 | 17.6 ± 6.1 | 0.605 | 8 | 20.4 ± 5.6 | 0.221 | 16 | 23.3 ± 7.2 | 0.413 | 8 | 21.0 ± 6.3 | 0.209 | 8 | 25.7 ± 7.66 | 0.125 |
11.0–18.0 | 66 | 19.8 ± 4.7 | 30 | 16.7 ± 4.0 | 36 | 22.3 ± 3.6 | 66 | 25.7 ± 10.7 | 30 | 18.3 ± 5.0 | 36 | 31.8 ± 10.4 | ||||||
eGFR (mL/min/1.73 m2) | ||||||||||||||||||
≤29 | 62 | 19.4 ± 4.8 | 0.304 | 28 | 16.7 ± 4.5 | 0.694 | 34 | 21.6 ± 3.9 | 0.185 | 62 | 24.3 ± 9.5 | 0.131 | 28 | 18.2 ± 5.4 | 0.212 | 34 | 29.3 ± 9.30 | 0.146 |
30–44 | 22 | 20.6 ± 5.2 | 10 | 17.4 ± 4.5 | 12 | 23.4 ± 4.1 | 22 | 28.1 ± 11.4 | 10 | 20.7 ± 5.0 | 12 | 34.2 ± 11.7 | ||||||
Serum creatinine (xULN) | ||||||||||||||||||
<1.5 | 18 | 17.9 ± 4.6 | 0.138 | 15 | 17.0 ± 3.8 | 0.971 | 3 | 22.3 ± 6.3 | 0.191 | 18 | 21.3 ± 6.3 | 0.105 | 15 | 19.5 ± 4.9 | 0.786 | 3 | 30.3 ± 4.5 | 0.741 |
1.5–2.0 | 31 | 19.4 ± 5.1 | 14 | 17.2 ± 5.6 | 17 | 21.3 ± 4.0 | 31 | 24.4 ± 11.5 | 14 | 17.6 ± 4.6 | 17 | 29.9 ± 12.6 | ||||||
2.0–3.0 | 27 | 20.5 ± 4.0 | 6 | 16.1 ± 1.7 | 21 | 21.8 ± 3.6 | 27 | 27.6 ± 9.3 | 6 | 19.3 ± 6.0 | 21 | 30.0 ± 8.7 | ||||||
>3.0 | 8 | 22.2 ± 6.4 | 3 | 16.6 ± 6.5 | 5 | 25.6 ± 3.4 | 8 | 29.8 ± 11.7 | 3 | 20.5 ± 10.3 | 5 | 35.4 ± 9.1 | ||||||
Serum urea (xULN) | ||||||||||||||||||
≤1 | 3 | 24.0 ± 2.8 | 0.408 | 0 | - | 0.706 | 3 | 24.0 ± 2.8 | 0.833 | 3 | 50.3 ± 8.1 | <0.001 | 0 | - | 0.937 | 3 | 50.3 ± 8.1 | 0.003 |
1–1.5 | 20 | 19.4 ± 5.1 | 11 | 16.5 ± 3.1 | 9 | 23.0 ± 4.8 | 20 | 23.2 ± 7.4 | 11 | 20.0 ± 4.9 | 9 | 27.1 ± 8.4 | ||||||
1.5–2 | 22 | 19.1 ± 5.5 | 15 | 17.7 ± 5.3 | 7 | 21.9 ± 5.1 | 22 | 23.8 ± 10.9 | 15 | 18.8 ± 6.5 | 7 | 34.6 ± 10.7 | ||||||
2–2.5 | 16 | 21.2 ± 3.7 | 3 | 19.7 ± 5.7 | 13 | 21.5 ± 3.3 | 16 | 25.9 ± 8.9 | 3 | 18.0 ± 1.0 | 13 | 27.7 ± 9.0 | ||||||
>2.5 | 11 | 20.6 ± 5.5 | 4 | 16.4 ± 5.0 | 7 | 23.0 ± 4.3 | 11 | 24.7 ± 8.0 | 4 | 19.0 ± 7.0 | 7 | 28.0 ± 7.0 | ||||||
Serum uric acid (mg/dL) | ||||||||||||||||||
W: 2.4–5.7; M: 3.4–7.0 | 29 | 19.7 ± 5.2 | 0.965 | 9 | 15.8 ± 5.7 | 0.395 | 20 | 21.5 ± 3.9 | 0.263 | 29 | 28.2 ± 11.2 | 0.039 | 9 | 18.9 ± 5.7 | 0.937 | 20 | 32.4 ± 10.5 | 0.266 |
W: >5.7; M: >7.0 | 48 | 19.8 ± 5.1 | 27 | 17.3 ± 4.1 | 21 | 23.0 ± 4.4 | 48 | 23.3 ± 9.1 | 27 | 19.1 ± 5.3 | 21 | 28.8 ± 10.2 | ||||||
OH (L) | ||||||||||||||||||
<−1.0 | 9 | 25.0 ± 3.7 | <0.001 | 4 | 23.3 ± 4.9 | 0.006 | 5 | 26.4 ± 2.1 | 0.026 | 9 | 29.6 ± 11.4 | 0.121 | 4 | 20.5 ± 7.9 | 0.715 | 5 | 36.9 ± 7.9 | 0.298 |
−1.0–1.0 | 47 | 18.1 ± 4.6 | 28 | 16.1 ± 3.8 | 19 | 21.1 ± 4.1 | 47 | 23.4 ± 10.1 | 28 | 18.5 ± 4.8 | 19 | 30.6 ± 11.6 | ||||||
>1.0 | 28 | 20.7 ± 4.3 | 6 | 16.4 ± 4.1 | 22 | 21.8 ± 3.6 | 28 | 27.1 ± 9.2 | 6 | 19.8 ± 6.7 | 22 | 29.1 ± 8.8 | ||||||
ROH (%) | ||||||||||||||||||
<−7.0 | 8 | 24.7 ± 3.9 | 0.003 | 4 | 23.3 ± 4.9 | 0.005 | 4 | 26.2 ± 2.4 | 0.086 | 8 | 28.2 ± 11.3 | 0.536 | 4 | 20.5 ± 7.9 | 0.695 | 4 | 35.9 ± 8.7 | 0.374 |
−7.0–7.0 | 52 | 18.7 ± 4.7 | 29 | 16.4 ± 4.0 | 23 | 21.6 ± 4.0 | 52 | 24.4 ± 10.2 | 29 | 18.9 ± 5.3 | 23 | 31.3 ± 10.8 | ||||||
>7.0 | 24 | 20.3 ± 4.5 | 5 | 14.9 ± 2.0 | 19 | 21.7 ± 3.9 | 24 | 26.2 ± 9.6 | 5 | 17.4 ± 3.9 | 19 | 28.5 ± 9.4 | ||||||
Diabetes mellitus type 2 | ||||||||||||||||||
No | 63 | 19.2 ± 4.4 | 0.118 | 28 | 16.7 ± 4.1 | 0.674 | 35 | 21.3 ± 3.5 | 0.014 | 63 | 26.0 ± 10.5 | 0.288 | 28 | 19.4 ± 5.6 | 0.295 | 35 | 31.2 ± 10.7 | 0.465 |
Yes | 21 | 21.2 ± 6.1 | 10 | 17.4 ± 5.4 | 11 | 24.6 ± 4.6 | 21 | 23.2 ± 8.6 | 10 | 17.4 ± 4.2 | 11 | 28.6 ± 8.1 |
Independent Variables | Coefficient | 95%CI | p-Value |
---|---|---|---|
Height (cm) | 0.405 | 0.122; 0.688 | 0.006 |
Age (years) | −0.231 | −0.353; −0.109 | <0.001 |
Gender (men) | 8.981 | 3.960; 14.002 | 0.001 |
Uric acid (mg/dL) | −1.078 | −2.110; −0.045 | 0.041 |
OH (L) | −0.805 | −1.579; −0.032 | 0.042 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romejko, K.; Szamotulska, K.; Rymarz, A.; Niemczyk, S. Muscle Mass and Muscle Strength in Non-Dialysis-Dependent Chronic Kidney Disease Patients. J. Clin. Med. 2024, 13, 6448. https://doi.org/10.3390/jcm13216448
Romejko K, Szamotulska K, Rymarz A, Niemczyk S. Muscle Mass and Muscle Strength in Non-Dialysis-Dependent Chronic Kidney Disease Patients. Journal of Clinical Medicine. 2024; 13(21):6448. https://doi.org/10.3390/jcm13216448
Chicago/Turabian StyleRomejko, Katarzyna, Katarzyna Szamotulska, Aleksandra Rymarz, and Stanisław Niemczyk. 2024. "Muscle Mass and Muscle Strength in Non-Dialysis-Dependent Chronic Kidney Disease Patients" Journal of Clinical Medicine 13, no. 21: 6448. https://doi.org/10.3390/jcm13216448
APA StyleRomejko, K., Szamotulska, K., Rymarz, A., & Niemczyk, S. (2024). Muscle Mass and Muscle Strength in Non-Dialysis-Dependent Chronic Kidney Disease Patients. Journal of Clinical Medicine, 13(21), 6448. https://doi.org/10.3390/jcm13216448