Dual-Energy CT as a Well-Established CT Modality to Reduce Contrast Media Amount: A Systematic Review from the Computed Tomography Subspecialty Section of the Italian Society of Radiology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search Strategy and Study Selection
2.2. Inclusion and Exclusion Criteria
2.3. Literature Search
2.4. Data Extraction and Quality Assessment
2.5. Outcome Measures
2.6. Study Risk of Bias Assessment
3. Results
3.1. Literature Search Results
3.2. Characteristics of the Included Studies’ Population
3.3. Characteristics of CT Scans and CM Protocols
3.4. Quantitative and Qualitative Image Assessment
4. Discussion
4.1. CT Coronary Angiography (CTCA)
4.2. CT Pulmonary Angiography (CTPA) and CT for Pulmonary Vessels
4.3. Abdomen
4.3.1. Liver, Portal Vein and Pancreas
4.3.2. Kidneys and Urinary Tract
4.4. Aorta and Its Branches
4.5. Dose Exposure Considerations
4.6. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilhelm-Leen, E.; Montez-Rath, M.E.; Chertow, G. Estimating the Risk of Radiocontrast-Associated Nephropathy. J. Am. Soc. Nephrol. 2017, 28, 653–659. [Google Scholar] [CrossRef] [PubMed]
- American College of Radiology. Manual on Contrast Media; Version 10.3; American College of Radiology: Reston, VA, USA, 2018; Available online: https://www.acr.org/Clinical-Resources/Contrast-Manual (accessed on 16 May 2019).
- Ascenti, G.; Cicero, G.; Bertelli, E.; Papa, M.; Gentili, F.; Ciccone, V.; Manetta, R.; Gandolfo, N.; Cardone, G.; Miele, V. CT-urography: A nationwide survey by the Italian Board of Urogenital Radiology. Radiol. Med. 2022, 127, 577–588. [Google Scholar] [CrossRef] [PubMed]
- Heyman, S.N.; Rosen, S.; Rosemberger, C. Renal parenchymal adaptation, and the pathogenesis of radiocontrast nephropathy. Clin. J. Am. Soc. Nephrol. 2008, 3, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Khwaja, A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin. Pract. 2012, 120, c179–c184. [Google Scholar] [CrossRef]
- Dangas, G.; Iakovou, I.; Nikolsky, E.; Aymong, E.D.; Mintz, G.S.; Kipshidze, N.N.; Lansky, A.J.; Moussa, I.; Stone, G.W.; Moses, J.W.; et al. Contrast-induced nephropathy after percutaneous coronary interventions in relation to chronic kidney disease and hemodynamic variables. Am. J. Cardiol. 2005, 95, 13–19. [Google Scholar] [CrossRef]
- Cho, J.Y.; Jeong, M.H.; Hwan Park, S.; Kim, I.S.; Park, K.H.; Sim, D.S.; Yoon, N.S.; Yoon, H.J.; Park, H.W.; Hong, Y.J.; et al. Effect of contrast-induced nephropathy on cardiac outcomes after use of nonionic isosmolar contrast media during coronary procedure. J. Cardiol. 2010, 56, 300–306. [Google Scholar] [CrossRef]
- Kusirisin, P.; Chattipakorn, S.C.; Chattipakorn, N. Contrast-induced nephropathy and oxidative stress: Mechanistic insights for better interventional approaches. J. Transl. Med. 2020, 18, 400. [Google Scholar] [CrossRef]
- Do, C. Intravenous Contrast: Friend or Foe? A Review on Contrast-Induced Nephropathy. Adv. Chronic Kidney Dis. 2017, 24, 147–149. [Google Scholar] [CrossRef]
- Khalfallah, M.; Allaithy, A.; Maria, D.A. Incidence, Predictors and Outcomes of Contrast Induced Nephropathy in Patients with ST Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention. Glob. Heart 2021, 16, 57. [Google Scholar] [CrossRef]
- Minsinger, K.D.; Kassis, H.M.; Block, C.A.; Sidhu, M.; Brown, J.R. Meta-analysis of the effect of automated contrast injection devices versus manual injection and contrast volume on risk of contrast-induced nephropathy. Am. J. Cardiol. 2014, 113, 49–53. [Google Scholar] [CrossRef]
- Kooiman, J.; Le Haen, P.A.; Gezgin, G.; de Vries, J.P.; Boersma, D.; Brulez, H.F.; Sijpkens, Y.W.; van der Molen, A.J.; Cannegieter, S.C.; Hamming, J.F.; et al. Contrast-induced acute kidney injury and clinical outcomes after intra-arterial and intravenous contrast administration: Risk comparison adjusted for patient characteristics by design. Am. Heart J. 2013, 165, 793–799.e1. [Google Scholar] [CrossRef] [PubMed]
- Davenport, M.S.; Perazella, M.A.; Yee, J.; Dillman, J.R.; Fine, D.; McDonald, R.J.; Rodby, R.A.; Wang, C.L.; Weinreb, J.C. Use of Intravenous Iodinated Contrast Media in Patients with Kidney Disease: Consensus Statements from the American College of Radiology and the National Kidney Foundation. Radiology 2020, 294, 660–668. [Google Scholar] [CrossRef] [PubMed]
- Du, M.; Jiang, L.; Tang, X.; Gao, Z.; Xu, B.; Yuan, J. Contrast Induced Nephropathy and 2-Year Outcomes of Iso-Osmolar Compared with Low-Osmolar Contrast Media after Elective Percutaneous Coronary Intervention. Korean Circ. J. 2021, 51, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Cavallo, J.J.; Pahade, J.K. Practice Management Strategies for Imaging Facilities Facing an Acute Iodinated Contrast Media Shortage. AJR Am. J. Roentgenol. 2022, 219, 666–670. [Google Scholar] [CrossRef]
- Barreto, I.L.; Grajo, J.R.; Brock, D.E.; Magnelli, L.; Patel, P.; Hochhegger, B. A Health System’s Response to the Ongoing Global Shortage of Iodinated Contrast Media. AJR Am. J. Roentgenol. 2022, 219, 974–979. [Google Scholar] [CrossRef]
- Orlacchio, A.; Guastoni, C.; Beretta, G.D.; Cosmai, L.; Galluzzo, M.; Gori, S.; Grassedonio, E.; Incorvaia, L.; Marcantoni, C.; Netti, G.S.; et al. SIRM-SIN-AIOM: Appropriateness criteria for evaluation and prevention of renal damage in the patient undergoing contrast medium examinations-consensus statements from Italian College of Radiology (SIRM), Italian College of Nephrology (SIN) and Italian Association of Medical Oncology (AIOM). Radiol. Med. 2022, 127, 534–542. [Google Scholar] [CrossRef]
- Gentili, F.; Guerrini, S.; Mazzei, F.G.; Monteleone, I.; Di Meglio, N.; Sansotta, L.; Perrella, A.; Puglisi, S.; De Filippo, M.; Gennaro, P.; et al. Dual energy CT in gland tumors: A comprehensive narrative review and differential diagnosis. Gland. Surg. 2020, 9, 2269–2282. [Google Scholar] [CrossRef]
- Kristiansen, C.H.; Thomas, O.; Tran, T.T.; Roy, S.; Hykkerud, D.L.; Sanderud, A.; Geitung, J.T.; Lauritzen, P.M. Halved contrast medium dose in lower limb dual-energy computed tomography angiography-a randomized controlled trial. Eur. Radiol. 2023, 33, 6033–6044. [Google Scholar] [CrossRef]
- Davenport, M.S.; Khalatbari, S.; Cohan, R.H.; Dillman, J.R.; Myles, J.D.; Ellis, J.H. Contrast material–induced nephrotoxicity and intravenous low-osmolality iodinated contrast material: Risk stratification by using estimated glomerular filtration rate. Radiology 2013, 268, 719–728. [Google Scholar] [CrossRef]
- Shuman, W.P.; Mileto, A.; Busey, J.M.; Desai, N.; Koprowicz, K.M. Dual-Energy CT Urography With 50% Reduced Iodine Dose Versus Single-Energy CT Urography with Standard Iodine Dose. AJR Am. J. Roentgenol. 2019, 212, 117–123. [Google Scholar] [CrossRef]
- Volterrani, L.; Gentili, F.; Fausto, A.; Pelini, V.; Megha, T.; Sardanelli, F.; Mazzei, M.A. Dual-Energy CT for Locoregional Staging of Breast Cancer: Preliminary Results. AJR Am. J. Roentgenol. 2020, 214, 707–714. [Google Scholar] [CrossRef] [PubMed]
- Mazzei, M.A.; Gentili, F.; Volterrani, L. Dual-Energy CT Iodine Mapping and 40-keV Monoenergetic Applications in the Diagnosis of Acute Bowel Ischemia: A Necessary Clarification. AJR Am. J. Roentgenol. 2019, 212, W93–W94. [Google Scholar] [CrossRef] [PubMed]
- Arico’, F.M.; Trimarchi, R.; Portaluri, A.; Barilla’, C.; Migliaccio, N.; Bucolo, G.M.; Cicero, G.; Sofia, C.; Booz, C.; Vogl, T.J.; et al. Virtual monoenergetic dual-layer dual-energy CT images in colorectal cancer: CT diagnosis could be improved? Radiol. Med. 2023, 128, 891–899. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, R.; Treglia, G. Systematic reviews and meta-analyses of diagnostic studies: A practical guideline. Clin. Transl. Imaging 2017, 5, 83–87. [Google Scholar] [CrossRef]
- Whiting, P.F.; Rutjes, A.W.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.; Sterne, J.A.; Bossuyt, P.M.; QUADAS-2 Group. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef]
- Raju, R.; Thompson, A.G.; Lee, K.; Precious, B.; Yang, T.H.; Berger, A.; Taylor, C.; Heilbron, B.; Nguyen, G.; Earls, J.; et al. Reduced iodine load with CT coronary angiography using dual-energy imaging: A prospective randomized trial compared with standard coronary CT angiography. J. Cardiovasc. Comput. Tomogr. 2014, 8, 282–288. [Google Scholar] [CrossRef]
- Oda, S.; Takaoka, H.; Katahira, K.; Honda, K.; Nakaura, T.; Nagayama, Y.; Taguchi, N.; Kidoh, M.; Utsunomiya, D.; Funama, Y.; et al. Low contrast material dose coronary computed tomographic angiography using a dual-layer spectral detector system in patients at risk for contrast-induced nephropathy. Br. J. Radiol. 2019, 92, 20180215. [Google Scholar] [CrossRef]
- Rotzinger, D.C.; Si-Mohamed, S.A.; Yerly, J.; Boccalini, S.; Becce, F.; Boussel, L.; Meuli, R.A.; Qanadli, S.D.; Douek, P.C. Reduced-iodine-dose dual-energy coronary CT angiography: Qualitative and quantitative comparison between virtual monochromatic and polychromatic CT images. Eur. Radiol. 2021, 31, 7132–7142. [Google Scholar] [CrossRef]
- Carrascosa, P.; Leipsic, J.A.; Capunay, C.; Deviggiano, A.; Vallejos, J.; Goldsmit, A.; Rodriguez-Granillo, G.A. Monochromatic image reconstruction by dual energy imaging allows half iodine load computed tomography coronary angiography. Eur. J. Radiol. 2015, 84, 1915–1920. [Google Scholar] [CrossRef]
- Dong, J.; Wang, X.; Jiang, X.; Gao, L.; Li, F.; Qiu, J.; Xu, Y.; Wang, H. Low-contrast agent dose dual-energy CT monochromatic imaging in pulmonary angiography versus routine CT. J. Comput. Assist. Tomogr. 2013, 37, 618–625. [Google Scholar] [CrossRef]
- Yuan, R.; Shuman, W.P.; Earls, J.P.; Hague, C.J.; Mumtaz, H.A.; Scott-Moncrieff, A.; Ellis, J.D.; Mayo, J.R.; Leipsic, J.A. Reduced iodine load at CT pulmonary angiography with dual-energy monochromatic imaging: Comparison with standard CT pulmonary angiography—A prospective randomized trial. Radiology 2012, 262, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Delesalle, M.A.; Pontana, F.; Duhamel, A.; Faivre, J.B.; Flohr, T.; Tacelli, N.; Remy, J.; Remy-Jardin, M. Spectral optimization of chest CT angiography with reduced iodine load: Experience in 80 patients evaluated with dual-source, dual-energy CT. Radiology 2013, 267, 256–266. [Google Scholar] [CrossRef] [PubMed]
- Clark, Z.E.; Bolus, D.N.; Little, M.D.; Morgan, D.E. Abdominal rapid-kVp-switching dual-energy MDCT with reduced IV contrast compared to conventional MDCT with standard weight-based IV contrast: An intra-patient comparison. Abdom. Imaging 2015, 40, 852–858. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Chen, X.; Lei, Y.; Ma, C.; Zhou, J.; Xiao, Y.; Yu, Y. Iodine load reduction in dual-energy spectral CT portal venography with low energy images combined with adaptive statistical iterative reconstruction. Br. J. Radiol. 2019, 92, 20180414. [Google Scholar] [CrossRef]
- Kim, J.E.; Kim, H.O.; Bae, K.; Cho, J.M.; Choi, H.C.; Choi, D.S.; Na, J. Advanced Virtual Monochromatic Images from Dual Source Dual-Energy CT for a Reduction in the Contrast Medium Dose (389 mgI/kg) in Multiphase Liver CT: Evaluation of Image Quality and Focal Lesion Conspicuity. Iran. J. Radiol. 2019, 16, e83014. [Google Scholar] [CrossRef]
- Lennartz, S.; Große Hokamp, N.; Zäske, C.; Zopfs, D.; Bratke, G.; Glauner, A.; Maintz, D.; Persigehl, T.; Chang, D.H.; Hickethier, T. Virtual monoenergetic images preserve diagnostic assessability in contrast media reduced abdominal spectral detector CT. Br. J. Radiol. 2020, 93, 20200340. [Google Scholar] [CrossRef]
- Li, W.; Li, A.; Wang, B.; Niu, X.; Cao, X.; Wang, X.; Shi, H. Automatic spectral imaging protocol and iterative reconstruction for radiation dose reduction in typical hepatic hemangioma computed tomography with reduced iodine load: A preliminary study. Br. J. Radiol. 2018, 91, 20170978. [Google Scholar] [CrossRef]
- Lv, P.; Liu, J.; Chai, Y.; Yan, X.; Gao, J.; Dong, J. Automatic spectral imaging protocol selection and iterative reconstruction in abdominal CT with reduced contrast agent dose: Initial experience. Eur. Radiol. 2017, 27, 374–383. [Google Scholar] [CrossRef]
- Ma, C.L.; Chen, X.X.; Lei, Y.X.; Zhang, X.R.; Jia, Y.J.; Tian, X.; Tian, Q. Clinical value of dual-energy spectral imaging with adaptive statistical iterative reconstruction for reducing contrast medium dose in CT portal venography: In comparison with standard 120-kVp imaging protocol. Br. J. Radiol. 2016, 89, 20151022. [Google Scholar] [CrossRef]
- Nagayama, Y.; Nakaura, T.; Oda, S.; Utsunomiya, D.; Funama, Y.; Iyama, Y.; Taguchi, N.; Namimoto, T.; Yuki, H.; Kidoh, M.; et al. Dual-layer DECT for multiphasic hepatic CT with 50 percent iodine load: A matched-pair comparison with a 120 kVp protocol. Eur. Radiol. 2018, 28, 1719–1730. [Google Scholar] [CrossRef]
- Agrawal, M.D.; Oliveira, G.R.; Kalva, S.P.; Pinho, D.F.; Arellano, R.S.; Sahani, D.V. Prospective Comparison of Reduced-Iodine-Dose Virtual Monochromatic Imaging Dataset from Dual-Energy CT Angiography With Standard-Iodine-Dose Single-Energy CT Angiography for Abdominal Aortic Aneurysm. AJR Am. J. Roentgenol. 2016, 207, W125–W132. [Google Scholar] [CrossRef] [PubMed]
- Carrascosa, P.; Capunay, C.; Rodriguez-Granillo, G.A.; Deviggiano, A.; Vallejos, J.; Leipsic, J.A. Substantial iodine volume load reduction in CT angiography with dual-energy imaging: Insights from a pilot randomized study. Int. J. Cardiovasc. Imaging 2014, 30, 1613–1620. [Google Scholar] [CrossRef] [PubMed]
- Hou, P.; Feng, X.; Liu, J.; Zhou, Y.; Jiang, Y.; Jiang, X.; Gao, J. Iterative reconstruction in single-source dual-energy CT angiography: Feasibility of low and ultra-low volume contrast medium protocols. Br. J. Radiol. 2017, 90, 20160506. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, A.; Liu, L.; Tian, S.; Liu, J.; Pu, R.; Fang, X.; Liu, X.; Yuan, G. Feasibility of spectral imaging with low-concentration contrast medium in abdominal CT angiography of obese patients. Int. J. Clin. Pract. 2016, 70 (Suppl. S9B), B37–B43. [Google Scholar] [CrossRef]
- Patino, M.; Parakh, A.; Lo, G.C.; Agrawal, M.; Kambadakone, A.R.; Oliveira, G.R.; Sahani, D.V. Virtual Monochromatic Dual-Energy Aortoiliac CT Angiography with Reduced Iodine Dose: A Prospective Randomized Study. AJR Am. J. Roentgenol. 2019, 212, 467–474. [Google Scholar] [CrossRef]
- Sugawara, H.; Suzuki, S.; Katada, Y.; Ishikawa, T.; Fukui, R.; Yamamoto, Y.; Abe, O. Comparison of full-iodine conventional CT and half-iodine virtual monochromatic imaging: Advantages and disadvantages. Eur. Radiol. 2019, 29, 1400–1407. [Google Scholar] [CrossRef]
- Ogurtsova, K.; da Rocha Fernandes, J.D.; Huang, Y.; Linnenkamp, U.; Guariguata, L.; Cho, N.H.; Cavan, D.; Shaw, J.E.; Makaroff, L.E. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pract. 2017, 128, 40–50. [Google Scholar] [CrossRef]
- Pieraccini, M.; Guerrini, S.; Laiolo, E.; Puliti, A.; Roviello, G.; Misuraca, L.; Spargi, G.; Limbruno, U.; Breggia, M.; Grechi, M. Acute Massive and Submassive Pulmonary Embolism: Preliminary Validation of Aspiration Mechanical Thrombectomy in Patients with Contraindications to Thrombolysis. Cardiovasc. Interv. Radiol. 2018, 41, 1840–1848. [Google Scholar] [CrossRef]
- Nie, Z.; Liu, Y.; Wang, C.; Sun, G.; Chen, G.; Lu, Z. Safe Limits of Contrast Media for Contrast-Induced Nephropathy: A Multicenter Prospective Cohort Study. Front. Med. 2021, 8, 701062. [Google Scholar] [CrossRef]
- Amukotuwa, S.A.; Jackson, D.; Bammer, R. Iodinated Contrast Media Conservation Measures During a Global Shortage: Effect on Contrast Media Use at a Large Health System. AJR Am. J. Roentgenol. 2022, 219, 983. [Google Scholar] [CrossRef]
- Cellina, M.; Cè, M.; Rossini, N.; Cacioppa, L.M.; Ascenti, V.; Carrafiello, G.; Floridi, C. Computed Tomography Urography: State of the Art and Beyond. Tomography 2023, 9, 909–930. [Google Scholar] [CrossRef] [PubMed]
- Brar, S.S.; Aharonian, V.; Mansukhani, P.; Moore, N.; Shen, A.Y.; Jorgensen, M.; Dua, A.; Short, L.; Kane, K. Haemodynamic-guided fluid administration for the prevention of contrast-induced acute kidney injury: The POSEIDON randomised controlled trial. Lancet 2014, 383, 1814–1823. [Google Scholar] [CrossRef] [PubMed]
- Ascenti, G.; Cicero, G.; Cardone, G.; Bertelli, E.; Papa, M.; Ciccone, V.; Manetta, R.; Gentili, F.; Francioso, A.P.; Mazzei, M.A.; et al. Cornerstones of CT urography: A shared document by the Italian board of urogenital radiology. Radiol. Med. 2023, 128, 601–611. [Google Scholar] [CrossRef]
- Borges, A.P.; Antunes, C.; Curvo-Semedo, L. Pros and Cons of Dual-Energy CT Systems: “One Does Not Fit All”. Tomography 2023, 9, 195–216. [Google Scholar] [CrossRef]
- Niu, Z.; Chen, J.; Ren, H.; Wang, Y.; Tao, X.; Zhan, K. Comparison of image quality between split-filter twin beam dual energy and single energy images in abdominal CT. Eur. J. Radiol. 2019, 121, 108702. [Google Scholar] [CrossRef]
- Wortman, J.R.; Sodickson, A.D. Pearls, Pitfalls, and Problems in Dual-Energy Computed Tomography Imaging of the Body. Radiol. Clin. N. Am. 2018, 56, 625–640. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, J.; Yu, N.; Ren, Z.; Tian, Q.; Tian, X.; Jia, Y.; He, T.; Guo, C. Reducing contrast medium dose with low photon energy images in renal dual-energy spectral CT angiography and adaptive statistical iterative reconstruction (ASIR). Br. J. Radiol. 2021, 94, 20200974. [Google Scholar] [CrossRef]
- Wang, C.L.; Asch, D.; Cavallo, J.; Dillman, J.R.; Ellis, J.H.; Forbes-Amrhein, M.M.; Gilligan, L.A.; Krishnan, P.; McDonald, R.J.; McDonald, J.S.; et al. Statement from the ACR Committee on Drugs and Contrast Media on the Intravenous Iodinated Contrast Media Shortage. J. Am. Coll. Radiol. 2022, 19, 834–835. [Google Scholar] [CrossRef]
- Foley, W.D.; Shuman, W.P.; Siegel, M.J.; Sahani, D.V.; Boll, D.T.; Bolus, D.N.; De Cecco, C.N.; Kaza, R.K.; Morgan, D.E.; Schoepf, U.J.; et al. White Paper of the Society of Computed Body Tomography and Magnetic Resonance on Dual-Energy CT, Part 2: Radiation Dose and Iodine Sensitivity. J. Comput. Assist. Tomogr. 2016, 40, 846–850. [Google Scholar] [CrossRef]
- Henzler, T.; Fink, C.; Schoenberg, S.O.; Schoepf, U.J. Dual-energy CT: Radiation dose aspects. AJR Am. J. Roentgenol. 2012, 199 (Suppl. S5), S16–S25, Erratum in AJR Am. J. Roentgenol. 2013, 200, 705. [Google Scholar] [CrossRef]
- Schenzle, J.C.; Sommer, W.H.; Neumaier, K.; Michalski, G.; Lechel, U.; Nikolaou, K.; Becker, C.R.; Reiser, M.F.; Johnson, T.R. Dual energy CT of the chest: How about the dose? Investig. Radiol. 2010, 45, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Bedernik, A.; Wuest, W.; May, M.S.; Heiss, R.; Uder, M.; Wiesmueller, M. Image quality comparison of single-energy and dual-energy computed tomography for head and neck patients: A prospective randomized study. Eur. Radiol. 2022, 32, 7700–7709. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Primak, A.N.; Liu, X.; McCollough, C.H. Image quality optimization and evaluation of linearly mixed images in dual-source, dual-energy CT. Med. Phys. 2009, 36, 1019–1024. [Google Scholar] [CrossRef] [PubMed]
- John, D.; Athira, R.; Selvaraj, S.; Renganathan, R.; Gunasekaran, K.; Arunachalam, V.K. Does dual-energy abdominal computed tomography increase the radiation dose to patients: A prospective observational study. Pol. J. Radiol. 2021, 86, e208–e216. [Google Scholar] [CrossRef]
- Fusco, R.; Setola, S.V.; Raiano, N.; Granata, V.; Cerciello, V.; Pecori, B.; Petrillo, A. Analysis of a monocentric computed tomography dosimetric database using a radiation dose index monitoring software: Dose levels and alerts before and after the implementation of the adaptive statistical iterative reconstruction on CT images. Radiol. Med. 2022, 127, 733–742. [Google Scholar] [CrossRef]
- Lenga, L.; Trapp, F.; Albrecht, M.H.; Wichmann, J.L.; Johnson, A.A.; Yel, I.; D’Angelo, T.; Booz, C.; Vogl, T.J.; Martin, S.S. Single- and dual-energy CT pulmonary angiography using second- and third-generation dual-source CT systems: Comparison of radiation dose and image quality. Eur. Radiol. 2019, 29, 4603–4612. [Google Scholar] [CrossRef]
- Floridi, C.; Cacioppa, L.M.; Valeri, T.; Rossini, N.; Rosati, M.; Vento, V.; Felicioli, A.; Macchini, M.; Candelari, R.; Carotti, M.; et al. The Clinical Utility of Lower Extremity Dual-Energy CT Angiography in the Detection of Bone Marrow Edema in Diabetic Patients with Peripheral Artery Disease. J. Clin. Med. 2024, 13, 1536. [Google Scholar] [CrossRef]
- Chen, C.Y.; Hsu, J.S.; Jaw, T.S.; Shih, M.C.; Lee, L.J.; Tsai, T.H.; Liu, G.C. Split-Bolus Portal Venous Phase Dual-Energy CT Urography: Protocol Design, Image Quality, and Dose Reduction. AJR Am. J. Roentgenol. 2015, 205, W492–W501. [Google Scholar] [CrossRef]
- Guerrini, S.; Bagnacci, G.; Perrella, A.; Di Meglio, N.; Sica, C.; Mazzei, M.A. Dual Energy CT in oncology: Benefits for both patients and radiologists from an emerging quantitative and functional diagnostic technique. Semin. Ultrasound CT MRI 2023, 44, 205–213. [Google Scholar] [CrossRef]
- Floridi, C.; Cacioppa, L.M.; Agliata, G.; Cellina, M.; Rossini, N.; Valeri, T.; Curzi, M.; Felicioli, A.; Bruno, A.; Rosati, M.; et al. True Non-Contrast Phase versus Virtual-Non Contrast: “Lights and Shadows” of Dual Energy CT Angiography in Peripheral Arterial Disease. Appl. Sci. 2023, 13, 7134. [Google Scholar] [CrossRef]
- Sanghavi, P.S.; Jankharia, B.G. Applications of dual energy CT in clinical practice: A pictorial essay. Indian J. Radiol. Imaging 2019, 29, 289–298. [Google Scholar] [CrossRef]
KDIGO Clinical Practice Guidelines for Acute Kidney Injury (AKI) | |
---|---|
Diagnostic Criteria for AKI | |
| |
AKI Staging | |
AKI stage I |
|
AKI stage II |
|
AKI stage III |
|
Inclusion and Exclusion Criteria | |
---|---|
Inclusion Criteria | |
Study Design | Observational case-control studies:
|
Population | Case populations of patients submitted to contrast-enhanced DECT with a low-dose CM protocol, having as a control group patients submitted to contrast-enhanced SECT examination with a standard-dose CM protocol. |
Indicator | Studies reporting results of qualitative and quantitative image quality assessment of both DECT and SECT examinations. |
Comparison | Studies comparing DECT and SECT imaging. |
Exclusion Criteria | |
Studies that met any of the following criteria were excluded:
|
Author (Year) n. of Patients | Purpose of CT Examination | n. of Patients (SECT vs. DECT) | CT Scanner (SECT vs. DECT) | CT Scan Protocol (SECT vs. DECT) | Contrast Protocol (SECT vs. DECT) | Dose (SECT vs. DECT) CTDIvol (mGy) DLP (mGy/cm) | |
---|---|---|---|---|---|---|---|
1 | Raju et al. (2014) [27] n = 102 (57) | Coronary art. | 53 vs. 49 | SSrs 64-MDCT | 100 (BMI < 30)/120 (BMI > 30) kVp, ATCM, NI 28, ASIR 40% vs. 80/140 kVp, 600 mA; 1.25 mm, 0.5 s, table feed/rotation 0.984 mm, prospective ECG-gating, test bolus | Iodixanol 320, 80 mL vs. 35 mL, 5.5 mL/s | 164.79 (84.49) vs. 159.41 (46.73) |
2 | Carrascosa et al. (2015) [30] n = 36 (27) | Coronary art. | 36 * | SSrs 64-MDCT | 100 (BMI < 30)/120 (BMI > 30) kVp, mA based on BMI vs. 80/140 kVp, 600–640 mA, ASIR 40%; collim. 0.625 mm, 0.625/0.625 mm, 0.350 s, prospective ECG-gating | Iobitridol 350, BMIx0.9 mL, 4.5–5.0 mL/s vs. 50% of iodine dose, 4–5 mL/s | N/A |
3 | Oda et al. (2019) [28] n = 60 (35) | Coronary art., asc. aorta | 30 vs. 30 | SSdl 128-MDCT | 120 kVp, ATCM, DRI 36, 0.67/0.33, 0.27 s, pitch 0.16, iDose 3 vs. Spectral level 0, retrospective ECG gating, bolus track (100 HU in asc. aorta +6 s) | Iopamidol 370, 280 mg/kg vs. 140 mg/kg, rate adjusted for 16 s IT | 36.5 (8.2) vs. 33.3 (8.1) |
4 | Rotzinger et al. (2021) [29] n = 203 (114) | Coronary art. | 103 vs. 100 | SSdl 128-MDCT | 120 kVp, ATCM (max 220 mA), collim. 0.625 mm, 0.9 mm, 0.27 s, iDose 3, retrospective ECG gating, bolus track. (130 HU in desc. Aorta) | Iomeprol 400, 1 mL/kg (max 90 mL), 5 mL/s vs. 0.5 mL/kg (max 45 mL), 2.5 mL/s | 23 (13.5) vs. 21.6 (13.6); 430.7 (266.1) vs. 392.8 (251.7) |
5 | Yuan et al. (2012) [32] n = 94 (55) | Pulmonary art. | 46 vs. 48 | SSrs 64-MDCT | 100 (BMI < 30)/120 (BMI < 30) kVp, ATCM, NI 28, ASIR 40%, vs. 80/140 kVp, 600 mA; 1.25 mm, 0.5 s, table feed/rotation 0.984 mm, test bolus | Ioversol 320 vs. 50%-diluted ioversol 320, CV = inj. rate * (preparation delay + scan time −6), 4–5 mL/s (based on BMI) | 400.8 (208.7) vs. 412.5 (34.1) |
6 | Dong et al. (2013) [31] n = 86 (46) | Pulmonary art. | 41 vs. 45 | SSrs 64-MDCT | 120 kVp, 300 mA, ASIR 30% vs. 80/140 kVp, ATCM (550 mA); 1.25 mm, 0.5 s, pitch 1.375:1, bolus track. (peak in main pulm. art.) | Iopamidol 370, 50 mL vs. 20 mL, 5 mL/s | 7.06 (1.06) vs. 12.72 †; 195.1 (35.4) vs. 337.5 (29.9) † |
7 | Delesalle et al. (2013) [33] n = 110 (78) | Pulmonary art. and v., desc. aorta | 30 vs. 80 | DS 128-MDCT | 120 kVp, 90 mA, 0.28 s, pitch 1.5 vs. 80/140 kVp, ATCM (250/149 mA), 0.33 s, pitch 1, FBP; collim. 2 × 0.6 mm, 1.0 mm, bolus track. (100 HU in asc. Aorta) | Iohexol 350, 90 mL vs. iohexol 170, 120 mL, 4 mL/s | 166.13 (45.46) vs. 272.3 (59.24) ‡ |
8 | Clark et al. (2015) [34] n = 24 (13) | Liver, pancreas, abd. aorta | 24 * | 16 or 40-MDCT vs. SSrs 64-MDCT | 120 kVp, 100–600 or 250 mA, collim. 1.25 mm, 1.25/2.5 mm or 2.5/2.5 mm, 0.8 or 0.7 s, pitch 1.375:1 or 0.906; vs. 80/140 kVp, 600 mA, collim. 0.625 mm, 0.625/0.625 and 2.5/2.5 mm, 0.8 s, pitch 1.375:1/55.00, ASIR 40%; HAP (bolus track., aortic peak +15 s), PP (35 s), PVP (60–70 s), EP (180 s) | iohexol 350 or iopamidol 370, 104–200 mL or 98–200 (based on BW) vs. 70–133 or 55–90 mL (based on BW), rate adjusted for 30 s IT | 1335 (562) vs. 1421 (564) |
9 | Ma et al. (2016) [40] n = 50 (28) | Portal v. | 25 vs. 25 | SSrs 64-MDCT | 120 kVp, NI 10 vs. 80/140 kVp; ATCM, collim. 0.625 mm, 5.0/1.25 mm, 0.8 s, pitch 1.375:1, ASIR 50%, PVP (65 s) | Iopromide 370, 500 mgI/kg vs. 350 mgI/kg, rate adjusted for 25 s IT | 13.1 (2.3) vs. 10.4 (4.0); 410.1 (141.9) vs. 387.5 (128.7) |
10 | Lv et al. (2017) [39] n = 160 (90) | Liver, portal v., abd. aorta | 80 vs. 80 | SSrs 64-MDCT | 120 kVp, 101–480 mA, NI 10, 1.5/1.0 mm, 0.7 s, pitch 1.375:1 vs. 80/140 kVp, 260–600 mA, 5.0/1.25 mm, 0.5–1.0 s, pitch 1.375:1, ASIR 50%; AP (30 s), PVP (60 s) | Iohexol 350, 450 mgI/kg vs. 300 mgI/kg, rate based on BW | 12.52 (4.85) vs. 11.95 (4.21); 354.53 (124.27) vs. 332.70 (119.67) |
11 | Li et al. (2018) [38] n = 62 (24) | Liver | 31 vs. 31 | SSrs 64-MDCT | 120 kVp, 150–650 mA, NI 10, 0.7 s vs. 80/140 kVp, 260–640 mA, 0.5–1.0 s; 1.25/1.25 mm, pitch 1.375:1, ASIR 30% vs. 30% or 50%, AP (bolus track., 150 HU in abd. aorta +5.6 s), PVP (+30 s), EP (+300 s) | Iopamidol 370, 450 mgI/kg vs. Iodixanol 270, 270 mgI/kg, 4 mL/s | 19.31 (4.11) vs. 11.27 (3.68) †; 528.49 (181.10) vs. 368.00 (104.83) † |
12 | Nagayama et al. (2018) [41] n = 90 (60) | Liver, abd. aorta | 45 vs. 45 | 64-MDCT vs. SSdl 128-MDCT | 120 kVp, 140–266 mA vs. 80–201 mA, collim. 0.625, 5.0/5.0 mm, 0.5 s, pitch 0.798, iDose 3 vs. Spectral level 3, HAP (bolus track., 150 HU in abd. aorta, +18 s), PVP (+55 s), EP (+160 s) | Iohexol 300 or iopamidol 370, 600 mgI/kg vs. 300 mgI/kg, rate adjusted for 30 s IT | 13.4 (2.3) vs. 12.3 (2.3) † |
13 | Kim et al. (2019) [36] n = 94 (75) | Liver, portal v., pancreas, abd. aorta | 94 * | DS 128-MDCT | 100 kVp (ATVM), 180 mA, collim. 0.6 mm, 3.0 mm, 0.5 s, pitch 0.75 vs. 80/140 kVp, 230/89 mA, collim. 2 × 0.6 mm, 3.0/2.0 mm, 0.33 s, pitch 0.7, SAFIRE 2/5; HAP (bolus track., 100 HU in abd. aorta, +17 s), PVP (60–65 s), DP (180 s) | Iopromide 370 vs. 30%-diluted iopromide 370, 1.5 mL/kg, rate adjusted for 30 s IT | 25.4 vs. 27.0 944.9 vs. 973.2 |
14 | Han et al. (2019) [35] n = 41 (28) | Portal v. | 21 vs. 20 | SSrs 64-MDCT | 120 kVp, NI 10, 0.6 s, pitch 1.375 vs. 80/140 kVp, 0.5 s, pitch 1.375:1; ATCM, collim. 0.625 mm, 1.25 mm, ASIR 40%, PVP (60 s) | Ioversol350, 0.6 gI/kg vs. 0.3 gI/kg, rate adjusted for 30 s IT | 12.76 (4.83) vs. 14.47 (4.81); 395.05 (149.64) vs. 324.18 (101.41) |
15 | Shuman et al. (2019) [21] n = 62 (40) | Kidneys, urinary tract, renal art. and v. | 31 vs. 31 | SSrs 64-MDCT | 120 kVp, ATCM (290–800 mA), NI 36, 0.5–0.8 s vs. 80/140 kVp, 500–640 mA, 0.5–1.0 s; collim. 0.625, 2.5/2.5 mm, pitch 1.375, ASIR 70%, NP (90 s), DP (10 min) | Iohexol 350, 125 mL, 3 mL/s vs. iodixanol 270, 81 mL, 2 mL/s | 13.1 (6) vs. 14.7 (4) |
16 | Lennartz et al. (2020) [37] n = 78 (48) | Liver, portal v., pancreas, kidneys, abd. aorta | 37 vs. 41 | SSdl 128-MDCT | 120 kVp, ATCM, collim. 0.625 mm, 2.0/2.0 mm, 0.33 s, pitch 0.7, PVP (bolus track., 150 HU in desc. aorta +50 s) | iohexol350, 100 mL vs. 50 mL, 3.5 mL/s | 10.4 (2.4) vs. 10.3 (2.3) |
17 | Carrascosa et al. (2014) [43] n = 80 (56) | Thoraco-abd. aorta | 20 vs. 20 vs. 20 vs. 20 | SSrs 64-MDCT | 120 kVp, 250–350 mA, 2.0/1.0 mm, ASIR 40% vs. 80/140 kVp, 250–375 mA; 2.0/1.0 mm, 0.350 s, bolus track. | Iobitridol 350, 60–100 mL (based on BMI), 4–4.5 mL/s vs. 50/40/30% of standard dose, 2.5–4 mL/s | N/A |
18 | Liu et al. (2016) [45] n = 127 (81) | Abd. aorta | 58 vs. 69 | SSrs 64-MDCT | 120 kVp, ATCM, NI 10 vs. 80/140 kVp, 375 mA; 5.0/1.25 mm, pitch 1.2, ASIR50%, AP bolus track., 150 HU in abd. aorta +5.6 s) | Iohexol 350 vs. iodixanol 270, 100 mL, 5 mL/s | 20.10 (4.99) vs. 10.76 (0.00) †; 882.93 290.71) vs. 573.58 (57.39) † |
19 | Agrawal et al. (2016) [42] n = 66 (52) | Abd. aorta | 64 * | 16 o 64-MDCT vs. SSrs 64-MDCT | 120 kVp, ATCM, NI 15–30, collim. 0.625 mm, 1.5/1.0 mm, 0.5 s, pitch 1.375, ASIR30–60%, AP (bolus track.), DP (120 s) vs. 80/140 kVp, 600 mA, collim. 0.625 mm, 1.5/1.0 mm, 0.5 (<91 kg)/0.8 s (≥91 kg); pitch 1.375, AP (bolus track.), DP (70 s) | Iopamidol 370, 80 or 100 mL, 3.5 mL/s vs. iodixanol 270 or 320, 80–100 or 75 mL, 3 or 2.8 mL/s | 14.4 (3) vs. 15.2 (2); 781 (237) vs. 814 (176) |
20 | Hou et al. (2017) [44] n = 120 (86) | Asc. and desc. aorta, celiac, renal and iliac art. | 40 vs. 40 vs. 40 | SSrs 64-MDCT | 120 kVp, ATCM (max 600 mA), NI 12, ASIR 40% vs. 80/140 kVp, 360 mA, ASIR50%; 1.25/1.25 mm, 0.6 s, pitch 1.375:1, bolus track. (50 HU in asc. aorta, +0.6 s) | Iohexol 350, 70 mL, 5 mL/s vs. 0.6 or 0.4 mL/kg, rate = CV/(delay time + exposure time) | 9.3 (2.8) vs. 7.4 vs. 7.4 †; 653.0 (219.1) vs. 505.8 (22.9) vs. 490.3 (26.3) † |
21 | Patino et al. (2019) [46] n = 52 (45) | Abd. aorta | 52 vs. 26 vs. 26 | 16 or 64 or 128-MDCT vs. SSrs 64-MDCT | 120 kVp, ATCM (75–550 mA, NI 15–18) or QRM 220 mA, collim. 0.625 mm, 2.5/2.5 or 2 mm, 0.5 s, 1.375/1, ASIR 30–50% or SAFIRE 3, bolus track. (80/100 HU in desc. aorta, +12 s [AP]), DP (120 s) vs. 80/140 kVp, fixed 550/630 mA, 2.5/2.5 mm, pitch 1.531, ASIR70%, AP (bolus track., 80/100 HU in desc. Aorta +12 s), DP (60 s) | Iopamidol 370, 80 mL (≤91 kg)/90 mL (>91 kg), 3.5 mL/s vs. iodixanol 270, 60 mL, 3 mL/s or iodixanol 320, 50 mL, 2.8 mL/s | 12.8 (5.7) vs. 15.1 ± 2.2 ‡; 1114 (468) vs. 788 (166) † |
22 | Sugawara et al. (2019) [47] n = 21 (10) | Abd. aorta, celiac and sup. mesenteric art. | 21 * | SSrs 64-MDCT | 120 kVp, NI 12, 0.4 s vs. 80/140 kVp; ATCM, collimation 0.625 mm, 1.25/1.25 mm, pitch 1.375, ASIR40%, AP (40 s) | Iopamidol 300, 600 mgI/kg vs. 300 mgI/kg, rate adjusted for 30 s IT | 9.84 (4.31) vs. 13.40 (4.58) ‡; 577.7 (279.6) vs. 920.0 (358.1) † |
Coronary Arteries | |||||
---|---|---|---|---|---|
Author (year) | % iodine reduction | VMIs (keV) | CNR (SECT vs. DECT) | SNR (SECT vs. DECT) | Subjective image quality assessment (SECT vs. DECT) |
Raju et al. (2014) [27] | 56 | 60 | 16.9 (4.8) vs. 16.8 (5.2) | 13.8 (3.9) vs. 12.0 (3.9) | 5-point scale, good or excellent vs. moderate or good overall image quality † |
Carrascosa et al. (2015) | 50 | 60 | 18.0 (11.5) vs. 15.5 (9.6) ‡ | 14.5 (8.9) vs. 11.6 (7.1) † | 5-point scale, good or excellent overall image quality |
Oda et al. (2019) [28] | 50 | 50 | Asc. aorta 20.5 (5.0) vs. 29.3 (8.5) † LMA, 19.8 (4.8) vs. 27.2 (7.7) †; Proximal RCA, 19.6 (4.4) vs. 26.9 (6.6) †; Distal LAD 8.3 (4.6) vs. 23.9 (6.7) †; Distal LCX 18.4 (4.8) vs. 26.0 (9.9) †; Distal RCA 19.1 (4.1) vs. 25.8 (6.1) † | N/A | 4-point scale, good or excellent overall image quality; not interfering or minimal or absent noise |
Rotzinger et al. (2021) [29] | 40 | 55 | Lumen-fat 19.3 (11.6) vs. 24.9 (19.7) †; lumen-muscle 12.2 (8.5) vs. 14.3 (12.4) †; lumen-bone 6.8 (7.3) vs. 6.7 (8.9) | N/A | 4-point scale, good or excellent overall image quality (average image quality score |
Pulmonary Arteries and Veins | |||||
---|---|---|---|---|---|
Author (year) | % iodine reduction | VMIs (keV) | CNR (SECT vs. DECT) | SNR (SECT vs. DECT) | Subjective image quality assessment (SECT vs. DECT) |
Yuan et al. (2012) [32] | 50 | 50 | 12.2 (3.6) vs. 14.7 (6.5) ‡ | 14.5 (3.7) vs. 17.4 (7.1) ‡ | 5-point scale, excellent vs. limited or good overall image quality ‡ |
Dong et al. (2013) [31] | 50 | 48–54 | 14.4 (6.4) vs. 19.2 (6.3) † | 16.2 (6.5) vs. 21.3 (6.3) † | 5-point scale, highest overall image quality and lowest noise for DECT † |
Delesalle et al. (2013) [33] | 30 | 60 | Pulmonary art, 24.44 (6.7) vs. 13.90 (5.68) †; pulmonary v., 20.43 (6.5) vs. 13.20 (4.75) †; desc. aorta, 17.88 (4.7) vs. 11.97 (4.24) † | Pulmonary art, 27.95 (6.8) vs. 15.86 (6.0) †; pulmonary v., 23.94 (7.0) vs. 15.15 (5.25) †; desc. aorta, 21.39 (4.97) vs. 13.94 (4.77) † | 3-point scale, absent or acceptable noise |
Abdomen | |||||
---|---|---|---|---|---|
Author (year) | % iodine reduction | VMIs (keV) | CNR (SECT vs. DECT) | SNR (SECT vs. DECT) | Subjective image quality assessment (SECT vs. DECT) |
Clark et al. (2015) [34] | 37 | 52 | Liver, 1.1 (0.8) vs. 0.70 (0.8); pancreas, 2.6 (1.9) vs. 2.3 (1.7); abd. aorta, 14.5 (5.8) vs. 13.4 (5.6) | N/A | 5-point scale, acceptable or good overall image quality, higher or similar noise |
Ma et al. 2016) [40] | 25 | 60 | Portal v., intrahepatic, 3.0 (2.1) vs. 4.2 (1.1) ‡; extrahepatic, 5.9 (1.6) vs. 5.9 (1.4) | N/A | 5-point scale, good or excellent overall image quality |
Lv et al. (2017) [39] | 33 | 40 | Liver, HAP, 1.0 (0.8) vs. 1.3 (1.2); PVP, 2.7 (1.9) vs. 4.5 (2.3) †; Portal v., PVP, 5.23 (3.4) vs. 10.2 (2.9) †; Abd. aorta, AP, 12.7 (4.4) vs. 21.2 (6.5) † | N/A | 5-point scale, moderate overall image quality and noise |
Li et al. (2018) [38] | 41 | 52 | Lesion-to-liver, HAP, 15.77 (5.93) vs. 19.51 (6.29) ‡; PVP, 8.19 (3.04) vs. 9.96 (2.18) ‡ | N/A | 4-point scale, moderate noise and above average diagnostic acceptability; better lesion conspicuity for 50 keV VMIs † |
Nagayama et al. (2018) [41] | 50 | 40 | Liver, PVP, 6 vs. 10 †; EP, 3 vs. 5 †; Tumor-to-liver, HAP, 3.4 (1.2) vs. 8.3 (3.1) †; PVP, −1.9 (1.1) vs. −2.4 (2.0); EP, −2.1 (0.9) vs. −2.9 (1.7); abd. aorta, HAP, 22 vs. 55 † | N/A | 5-point scale, average or above average vs. above average or excellent overall image quality †; moderate or minor noise |
Kim et al. (2019) [36] | 30 | 40 | Hyper-enhancing lesion-to-liver, 1.11 (0.61–1.47) vs. 3.77 (3.11–5.02) †; hypo-enhancing lesion-to-liver 2.98 (1.12) vs. 2.72 (1.41) | Liver, HAP, 3.91 (0.74) vs. 3.08 (0.80) †; PVP, 6.66 (1.05) vs. 6.40 (1.21); Portal v., PVP, 10.99 (10.02–11.50) vs. 12.87 (2.04) †; pancreas, HAP, 7.20 (1.60) vs. 7.50 (1.80); PVP, 5.58 (0.90) vs. 5.88 (0.96); Abd. aorta, HAP, 20.24 (3.99) vs. 23.54 (4.74) †; | 6-point scale, 50 keV VMIs superior to SECT |
Han et al. (2019) [35] | 50 | 50 | Portal v., intrahepatic, 3.15 (1.29) vs. 3.16 (1.19); extrahepatic 6.83 (1.66) vs. 5.75 (2.28) | N/A | 5-point scale, good or excellent |
Shuman et al. (2019) [21] | 50 | 50 | Kidneys, NP, 21 (9) vs. 26 (8) ‡; renal art. and v.; NP, 13 (6) and 13 (8) vs. 13 (4) and 13 (5); calyces and pelvis, DP, 166 (112) vs. 255 (201) ‡; ureters 172 (96) vs. 195 (131); bladder, 113 (62) vs. 182 (141) ‡ | N/A | 4-point scale, moderate or good overall image quality and minor noise |
Lennartz et al. (2020) [37] | 50 | 40 | Lymph nodes/Aorta, 15.2 (4.9) vs. 23.7 (8.9) ‡; Lymph nodes/Portal v., 17.5 (4.9) vs. 25.4 (9.0) ‡ | Liver, 10.0 (3.0) vs. 9.1 (3.9); pancreas, 8.0 (2.3) vs. 8.3 (3.5); Portal v., 14.8 (4.2) vs. 16.9 (6.4); kidneys, 15.8 (4.8) vs. 17.7 (6.7); abd. aorta, 13.8 (4.0) vs. 16.1 (6.6) | 4-point scale, excellent vs. proper overall image quality ‡; minimal vs. little noise ‡ |
Aorta | |||||
Carrascosa et al. (2014) [43] | 50 or 60 or 70 | 40 | N/A | Thoraco-abd. aorta, 15.7 (8.7) vs. 15.3 (5.9) or 16.2 (8.3) or 14.1 (5.6) | 10-point scale, very good quality and minimal noise; good quality with some noise for 70% reduction |
Liu et al. (2016) [45] | 23 | 65 | Abd. aorta, 12.59 (2.64) vs. 16.14 (4.31) ‡ | N/A | 5-point scale |
Agrawal et al. (2016) [42] | 28 | 40 | 15.4 (6) vs. 19.3 (7.3) ‡ | 18 (6.6) vs. 21.1 (7.6) ‡ | 5-point scale, good overall image quality; minimal vs. moderate noise |
Hou et al. (2017) [44] | 40 or 59 | 60 or 55 | Asc. aorta, 14.6 (2.7) vs. 24.3 (8.2) † or 16.8 (3.5); desc. aorta, 13.9 (2.9) vs. 22.8 (7.5) † or 17.0 (4.0); celiac art, 14.2 (3.0) vs. 22.1 (6.9) † or 16.0 (2.9); renal art, 14.5 (3.3) vs. 21.9 (6.5) † or 16.5 (3.3); iliac art, 14.3 (3.1) vs. 23.5 (7.0) † or 16.9 (3.5) | N/A | 5-point scale, good overall image quality with low noise |
Patino et al. (2019) [46] | 52 | 40 | Abd. Aorta, 18 (7) vs. 19 (5) | N/A | 5-point scale, good or excellent overall image quality |
Sugawara et al. (2019) [47] | 50 | 52 | Abd. aorta, 13.5 (2.6) vs. 16.8 ± 4.5 ‡; celiac art, 13.2 (2.7) vs. 16.3 ± 4.4 ‡; sup. mesenteric art, 13.3 (2.8) vs. 15.6 ± 4.0 | N/A | 4-point scale, completely visible |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerrini, S.; Zanoni, M.; Sica, C.; Bagnacci, G.; Mancianti, N.; Galzerano, G.; Garosi, G.; Cacioppa, L.M.; Cellina, M.; Zamboni, G.A.; et al. Dual-Energy CT as a Well-Established CT Modality to Reduce Contrast Media Amount: A Systematic Review from the Computed Tomography Subspecialty Section of the Italian Society of Radiology. J. Clin. Med. 2024, 13, 6345. https://doi.org/10.3390/jcm13216345
Guerrini S, Zanoni M, Sica C, Bagnacci G, Mancianti N, Galzerano G, Garosi G, Cacioppa LM, Cellina M, Zamboni GA, et al. Dual-Energy CT as a Well-Established CT Modality to Reduce Contrast Media Amount: A Systematic Review from the Computed Tomography Subspecialty Section of the Italian Society of Radiology. Journal of Clinical Medicine. 2024; 13(21):6345. https://doi.org/10.3390/jcm13216345
Chicago/Turabian StyleGuerrini, Susanna, Matteo Zanoni, Cristian Sica, Giulio Bagnacci, Nicoletta Mancianti, Giuseppe Galzerano, Guido Garosi, Laura Maria Cacioppa, Michaela Cellina, Giulia A. Zamboni, and et al. 2024. "Dual-Energy CT as a Well-Established CT Modality to Reduce Contrast Media Amount: A Systematic Review from the Computed Tomography Subspecialty Section of the Italian Society of Radiology" Journal of Clinical Medicine 13, no. 21: 6345. https://doi.org/10.3390/jcm13216345
APA StyleGuerrini, S., Zanoni, M., Sica, C., Bagnacci, G., Mancianti, N., Galzerano, G., Garosi, G., Cacioppa, L. M., Cellina, M., Zamboni, G. A., Minetti, G., Floridi, C., & Mazzei, M. A. (2024). Dual-Energy CT as a Well-Established CT Modality to Reduce Contrast Media Amount: A Systematic Review from the Computed Tomography Subspecialty Section of the Italian Society of Radiology. Journal of Clinical Medicine, 13(21), 6345. https://doi.org/10.3390/jcm13216345