The Role of Global Longitudinal Strain in the Follow-Up of Asymptomatic Patients with Chronic Primary Mitral Regurgitation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Echocardiography
2.3. Study Follow-Up
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. GLS at Baseline and during Follow-Up
3.3. Clinical Outcomes and Follow-Up
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease: Developed by the Task Force for the management of valvular heart disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2022, 43, 561–632. [Google Scholar] [CrossRef] [PubMed]
- Rosenhek, R.; Rader, F.; Klaar, U.; Gabriel, H.; Krejc, M.; Kalbeck, D.; Schemper, M.; Maurer, G.; Baumgartner, H. Outcome of watchful waiting in asymptomatic severe mitral regurgitation. Circulation 2006, 113, 2238–2244. [Google Scholar] [CrossRef] [PubMed]
- Suri, R.M.; Vanoverschelde, J.L.; Grigioni, F.; Schaff, H.V.; Tribouilloy, C.; Avierinos, J.-F.; Barbieri, A.; Pasquet, A.; Huebner, M.; Rusinaru, D.; et al. Association between early surgical intervention vs watchful waiting and outcomes for mitral regurgitation due to flail mitral valve leaflets. JAMA 2013, 310, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.H.; Park, S.J.; Sun, B.J.; Cho, E.J.; Kim, D.-H.; Yun, S.-C.; Song, J.-M.; Park, S.W.; Chung, C.-H.; Song, J.-K.; et al. Early surgery versus conventional treatment for asymptomatic severe mitral regurgitation: A propensity analysis. J. Am. Coll. Cardiol. 2014, 63, 2398–2407. [Google Scholar] [CrossRef]
- Yazdchi, F.; Koch, C.G.; Mihaljevic, T.; Hachamovitch, R.; Lowry, A.M.; He, J.; Gillinov, A.M.; Blackstone, E.H.; Sabik, J.F. Increasing disadvantage of “watchful waiting” for repairing degenerative mitral valve disease. Ann. Thorac. Surg. 2015, 99, 1992–2000. [Google Scholar] [CrossRef]
- Magne, J.; Pibarot, P. Left ventricular systolic function in ischemic mitral regurgitation: Time to look beyond ejection fraction. J. Am. Soc. Echocardiogr. 2013, 26, 1130–1134. [Google Scholar] [CrossRef]
- Kalam, K.; Otahal, P.; Marwick, T.H. Prognostic implications of global LV dysfunction: A systematic review and meta-analysis of global longitudinal strain and ejection fraction. Heart 2014, 100, 1673–1680. [Google Scholar] [CrossRef]
- Marwick, T.H.; Leano, R.L.; Brown, J.; Sun, J.P.; Hoffmann, R.; Lysyansky, P.; Becker, M.; Thomas, J.D. Myocardial strain measurement with 2-dimensional speckle-tracking echocardiography: Definition of normal range. JACC Cardiovasc. Imaging 2009, 2, 80–84. [Google Scholar] [CrossRef]
- Kamperidis, V.; Marsan, N.A.; Delgado, V.; Bax, J.J. Left ventricular systolic function assessment in secondary mitral regurgitation: Left ventricular ejection fraction vs. speckle tracking global longitudinal strain. Eur. Heart J. 2016, 37, 811–816. [Google Scholar] [CrossRef]
- Namazi, F.; van der Bijl, P.; Hirasawa, K.; Kamperidis, V.; van Wijngaarden, S.E.; Mertens, B.; Leon, M.B.; Hahn, R.T.; Stone, G.W.; Narula, J.; et al. Prognostic Value of Left Ventricular Global Longitudinal Strain in Patients with Secondary Mitral Regurgitation. JACC 2020, 75, 750–758. [Google Scholar] [CrossRef]
- Obadia, J.F.; Messika-Zeitoun, D.; Leurent, G.; Iung, B.; Bonnet, G.; Piriou, N.; Lefèvre, T.; Piot, C.; Rouleau, F.; Carrié, D.; et al. Percutaneous repair or medical treatment for secondary mitral regurgitation. N. Engl. J. Med. 2018, 379, 2297–2306. [Google Scholar] [CrossRef] [PubMed]
- Stone, G.W.; Lindenfeld, J.; Abraham, W.T.; Kar, S.; Lim, D.S.; Mishell, J.M.; Whisenant, B.; Grayburn, P.A.; Rinaldi, M.; Kapadia, S.R.; et al. Transcatheter mitral-valve repair in patients with heart failure. N. Engl. J. Med. 2018, 379, 2307–2318. [Google Scholar] [CrossRef]
- Zho, D.; Ito, S.; Miranda, W.R.; Nkomo, V.T.; Pislaru, S.V.; Villaraga, H.R.; Pellikka, P.A.; Crusan, D.J.; Oh, J.K. Left ventricular global longitudinal strain is associated with long term outcomes in moderate aortic stenosis. Circ. Cardiovasc. Imaging 2020, 13, e09958. [Google Scholar] [CrossRef]
- Stassen, J.; Pio, S.M.; Ewe, S.H.; Singh, G.K.; Hirasawa, K.; Butcher, S.C.; Marsan, N.A.; Delgado, V.; Bax, J.J. Prognostic value of left ventricular global longitudinal strain in patients with moderate aortic stenosis. EHJ–Cardiovasc. Imaging 2022, 23, jeab289.212. [Google Scholar] [CrossRef]
- Alashi, A.; Mentias, A.; Abdallah, A.; Feng, K.; Gillinov, A.M.; Rodriguez, L.L.; Johnston, D.R.; Svensson, L.G.; Popovic, Z.B.; Griffin, B.P.; et al. Incremental Prognostic Utility of Left Ventricular Global Longitudinal Strain in Asymptomatic Patients with Significant Chronic Aortic Regurgitation and Preserved Left Ventricular Ejection Fraction. JACC Cardiovasc. Imaging 2018, 11, 673–682. [Google Scholar] [CrossRef] [PubMed]
- Kusunose, K.; Agarwal, S.; Marwick, T.H.; Griffin, B.P.; Popović, Z.B. Decision making in asymptomatic aortic regurgitation in the era of guidelines incremental values of resting and exercise cardiac dysfunction. Circ. Cardiovasc. Imaging 2014, 7, 352–362. [Google Scholar] [CrossRef] [PubMed]
- Ewe, S.H.; Haeck, M.L.; Ng, A.C.; Witkowski, T.G.; Auger, D.; Leong, D.P.; Abate, E.; Marsan, N.A.; Holman, E.R.; Schalij, M.J.; et al. Detection of subtle left ventricular systolic dysfunction in patients with significant aortic regurgitation and preserved left ventricular ejection fraction: Speckle tracking echocardiographic analysis. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 992–999. [Google Scholar] [CrossRef]
- Olsen, N.T.; Sogaard, P.; Larsson, H.B.; Goetze, J.P.; Jons, C.; Mogelvang, R.; Nielsen, O.W.; Fritz-Hansen, T. Speckle-tracking echocardiography for predicting outcome in chronic aortic regurgitation during conservative management and after surgery. JACC Cardiovasc. Imaging 2011, 4, 223–230. [Google Scholar] [CrossRef]
- Verseckaite, R.; Mizariene, V.; Montvilaite, A.; Auguste, I.; Bieseviciene, M.; Laukaitiene, J.; Jonkaitiene, R.; Jurkevicius, R. The predictive value of left ventricular myocardium mechanics evaluation in asymptomatic patients with aortic regurgitation and preserved left ventricular ejection fraction. A long-term speckle-tracking echocardiographic study. Echocardiography 2018, 35, 1277–1288. [Google Scholar] [CrossRef]
- Kislitsina, O.N.; Thomas, J.D.; Crawford, E.; Michel, E.; Kruse, J.; Liu, M.; Andrei, A.C.; Cox, J.L.; McCarthy, P.M. Predictors of Left Ventricular Dysfunction after Surgery for Degenerative Mitral Regurgitation. Ann. Thorac. Surg. 2020, 109, 669–677. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.M.; Cho, G.Y.; Hwang, I.C.; Choi, H.M.; Park, J.B.; Yoon, Y.E.; Kim, H.K. Myocardial Strain in Prediction of Outcomes After Surgery for Severe Mitral Regurgitation. JACC Cardiovasc. Imaging 2018, 11, 1235–1244. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Popovic, Z.; Bhonsale, A.; Smedira, N.G.; Tan, C.; Rodriguez, E.R.; Thamilarasan, M.; Lytle, B.W.; Lever, H.M.; Desai, M.Y. Association between septal strain rate and histopathology in symptomatic hypertrophic cardiomyopathy patients undergoing septal myectomy. Am. Heart J. 2013, 166, 503. [Google Scholar] [CrossRef]
- Almaas, V.M.; Haugaa, K.H.; Strom, E.H.; Scott, H.; Smith, H.-J.; Dahl, C.P.; Geiran, O.R.; Endresen, K.; Aakhus, S.; Amlie, J.P.; et al. Noninvasive assessment of myocardial fibrosis in patients with obstructive hypertrophic cardiomyopathy. Heart 2014, 100, 631. [Google Scholar] [CrossRef] [PubMed]
- Popovic, Z.B.; Kwon, D.H.; Mishra, M.; Buakhamsri, A.; Greenberg, N.L.; Thamilarasan, M.; Flamm, S.D.; Thomas, J.D.; Lever, H.M.; Desai, M.Y. Association between regional ventricular function and myocardial fibrosis in hypertrophic cardiomyopathy assessed by speckle tracking echocardiography and delayed hyperenhancement magnetic resonance imaging. J. Am. Soc. Echocardiogr. 2008, 21, 1299. [Google Scholar] [CrossRef]
- Raafs, A.G.; Boscutti, A.; Henkens, M.T.H.M.; van den Broek, W.W.A.; Verdonschot, J.A.J.; Weerts, J.; Stolfo, D.; Nuzzi, V.; Manca, P.; Hazebroek, M.R.; et al. Global Longitudinal Strain is Incremental to Left Ventricular Ejection Fraction for the Prediction of Outcome in Optimally Treated Dilated Cardiomyopathy Patients. J. Am. Heart Assoc. 2022, 11, e024505. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mentias, A.; Naji, P.; Gillinov, A.M.; Rodriguez, L.L.; Reed, G.; Mihaljevic, T.; Suri, R.M.; Sabik, J.F.; Svensson, L.G.; Grimm, R.A.; et al. Strain echocardiography and functional capacity in asymptomatic primary mitral regurgitation with preserved ejection fraction. J. Am. Coll. Cardiol. 2016, 68, 1974–1986. [Google Scholar] [CrossRef] [PubMed]
- Hiemstra, Y.L.; Tomsic, A.; van Wijngaarden, S.E.; Palmen, M.; Klautz, R.J.M.; Bax, J.J.; Delgado, V.; Marsan, N.A. Prognostic value of global longitudinal strain and etiology after surgery for primary mitralregurgitation. JACC Cardiovasc. Imaging 2020, 13 Pt 2, 577–585. [Google Scholar] [CrossRef]
- Santoro, C.; Galderisi, M.; Esposito, R.; Buonauro, A.; Monteagudo, J.M.; Sorrentino, R.; Lembo, M.; Fernandez-Golfin, C.; Trimarco, B.; Zamorano, J.L. Global longitudinal strain is a hallmark of cardiac damage in mitral regurgitation: The Italian arm of the European Registry of mitral regurgitation (EuMiClip). Cardiovasc. Ultrasound. 2019, 17, 28. [Google Scholar] [CrossRef]
- Florescu, M.; Benea, D.C.C.M.; Rimbas, R.C.; Cerin, G.; Diena, M.; Lanzzillo, G.; Enescu, O.A.; Cinteza, M.; Vinereanu, D. Myocardial systolic velo-cities and deformation assessed by speckle tracking for early detection of left ventricular dysfunction in asymptomatic patients with severe primary mitral regurgitation. Echocardiogr. Mt Kisco N. 2012, 29, 326–333. [Google Scholar] [CrossRef]
- Donal, E.; Mascle, S.; Brunet, A.; Thebault, C.; Corbineau, H.; Laurent, M.; Leguerrier, A.; Mabo, P. Prediction of left ventricular ejection fraction 6 months after surgical correction of organic mitral regurgita-tion: The value of exercise echocardiography and deformation imaging. Eur. Heart J. Cardiovasc. Imaging 2012, 13, 922–930. [Google Scholar] [CrossRef]
- Mascle, S.; Schnell, F.; Thebault, C.; Corbineau, H.; Laurent, M.; Hamonic, S.; Veillard, D.; Mabo, P.; Leguerrier, A.; Donal, E. Predictive value of global longitudinal strain in a surgical population of organic mitral regurgitation. J. Am. Soc. Echocardiogr. 2012, 25, 766–772. [Google Scholar] [CrossRef] [PubMed]
- Voigt, J.-U.; Pedrizzetti, G.; Lysyansky, P.; Marwick, T.H.; Houle, H.; Baumann, R.; Pedri, S.; Ito, Y.; Abe, Y.; Metz, S.; et al. Definitions for a common standard for 2D speckle tracking echocardiography: Consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. J. Am. Soc. Echocardiogr. 2015, 28, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Marwick, T.H.; Fukuda, N.; Oe, H.; Saito, M.; Thomas, J.D.; Negishi, K. Improvement in strain con-cordance between two major vendors after the strain standardiza-tion initiative. J. Am. Soc. Echocardiogr. 2015, 28, 642–648. [Google Scholar] [CrossRef] [PubMed]
- Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P., 3rd; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; McLeod, C.; et al. 2020 ACC/AHA Guideline for the Management of Patients with Valvular Heart Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2021, 143, e35–e71, Erratum in: Circulation 2021, 143, e228; Erratum in Circulation 2021, 143, e784. [Google Scholar] [CrossRef] [PubMed]
- Reisner, S.A.; Lysyansky, P.; Agmon, Y.; Mutlak, D.; Lessick, J.; Friedman, Z. Global longitudinal strain: A novel index of left ventricular systolic function. J. Am. Soc. Echocardiogr. 2004, 17, 630–633. [Google Scholar] [CrossRef] [PubMed]
- Potter, E.; Marwick, T.H. Assessment of Left Ventricular Function by Echocardiography: The Case for Routinely Adding Global Longitudinal Strain to Ejection Fraction. JACC Cardiovasc. Imaging 2018, 11 Pt 1, 260–274. [Google Scholar] [CrossRef] [PubMed]
- Alashi, A.; Mentias, A.; Patel, K.; Gillinov, A.M.; Sabik, J.F.; Popović, Z.B.; Mihaljevic, T.; Suri, R.M.; Rodriguez, L.L.; Svensson, L.G.; et al. Synergistic utility of brain natriuretic peptide and left ventricular global longitudinal strain in asymptomatic patients with significant primary mitral regurgitation and preserved systolic function undergoing mitral valve surgery. Circ. Cardiovasc. Imaging 2016, 9, e004451. [Google Scholar] [CrossRef]
- Cho, E.J.; Park, S.J.; Yun, H.R.; Jeong, D.S.; Lee, S.-C.; Park, S.W.; Park, P.W. Predicting left ventricular dysfunction after surgery in patients with chronic mitral regurgitation: Assessment of myocardial deformation by 2-dimensional multilayer speckle tracking echocardiography. Korean Circ. J. 2016, 46, 213–221. [Google Scholar] [CrossRef]
- Witkowski, T.G.; Thomas, J.D.; Debonnaire, P.J.; Delgado, V.; Hoke, U.; Ewe, S.H.; Versteegh, M.I.M.; Holman, E.R.; Schalij, M.J.; Bax, J.J.; et al. Global longitudinal strain predicts left ventricular dysfunction after mitral valve repair. Eur. Heart J. Cardiovasc. Imaging 2013, 14, 69–76. [Google Scholar] [CrossRef]
- Pandis, D.; Sengupta, P.P.; Castillo, J.G.; Caracciolo, G.; Fischer, G.W.; Narula, J.; Anyanwu, A.; Adams, D.H. Assessment of longitudinal myocardial mechanics in patients with degenerative mitral valve regurgitation predicts postoperative worsening of left ventricular systolic function. J. Am. Soc. Echocardiogr. 2014, 27, 627–638. [Google Scholar] [CrossRef]
- Lancellotti, P.; Cosyns, B.; Zacharakis, D.; Attena, E.; Van Camp, G.; Gach, O.; Radermecker, M.; Piérard, L.A. Importance of left ventricular longitudinal function and functional reserve in patients with degenerative mitral regurgitation: Assessment by two-dimensional speckle tracking. J. Am. Soc. Echocardiogr. 2008, 21, 1331–1336. [Google Scholar] [CrossRef]
- Ternacle, J.; Berry, M.; Alonso, E.; Kloeckner, M.; Couetil, J.-P.; Randé, J.-L.D.; Gueret, P.; Monin, J.-L.; Lim, P. Incremental value of global longitudinal strain for predicting early outcome after cardiac surgery. Eur. Heart J. Cardiovasc. Imaging 2013, 14, 77–84. [Google Scholar] [CrossRef]
- Muraru, D.; Cucchini, U.; Mihăilă, S.; Miglioranza, M.H.; Aruta, P.; Cavalli, G.; Cecchetto, A.; Padayattil-Josè, S.; Peluso, D.; Iliceto, S.; et al. Left ventricular myocardial strain by three-dimensional speckle-tracking echocardiography in healthy subjects: Reference values and analysis of their physiologic and technical determinants. J. Am. Soc. Echocardiogr. 2014, 27, 858–871. [Google Scholar] [CrossRef] [PubMed]
- Mirea, O.; Pagourelias, E.D.; Duchenne, J.; Bogaert, J.; Thomas, J.D.; Badano, L.P.; Voigt, J.-U.; Badano, L.P.; Thomas, J.D.; Hamilton, J.; et al. Variability and reproducibility of segmental longitudinal strain measurement: A report from the EACVI-ASE Strain Standardization Task Force. J. Am. Coll. Cardiol. Img. 2018, 11, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Andre, F.; Steen, H.; Matheis, P.; Westkott, M.; Breuninger, K.; Sander, Y.; Kammerer, R.; Galuschky, C.; Giannitsis, E.; Korosoglou, G.; et al. Age- and gender-related normal left ventricular deformation assessed by cardiovascular magnetic resonance feature tracking. J. Cardiovasc. Magn. Reson. 2015, 17, 25. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, B.; Neil, D.A.H.; Premchand, M.; Bhabra, M.; Patel, R.; Barker, T.; Nikolaidis, N.; Billing, J.S.; Treibel, T.A.; Moon, J.C.; et al. Myocardial fibrosis in asymptomatic and symptomatic chronic severe primary mitral regurgitation and relationship to tissue characterisation and left ventricular function on cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 2020, 22, 86. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Leader, C.J.; Moharram, M.; Coffey, S.; Sammut, I.A.; Wilkins, G.W.; Walker, R.J. Myocardial global longitudinal strain: An early indicator of cardiac interstitial fibrosis modified by spironolactone, in a unique hypertensive rat model. PLoS ONE 2019, 14, e0220837. [Google Scholar] [CrossRef]
- Badau Riebel, C.I.; Agoston-Coldea, L. Left Ventricular Fibrosis by Cardiac Magnetic Resonance Tissue Characterization in Chronic Mitral Regurgitation Patients. J. Clin. Med. 2024, 13, 3877. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, S.; Nguyen, N.U.H.; Xiao, F.; Menendez-Montes, I.; Nakada, Y.; Tan, W.L.W.; Anene-Nzelu, C.G.; Foo, R.S.; Thet, S.; Cardoso, A.C.; et al. Mechanism of eccentric cardiomyocyte hypertrophy secondary to severe mitral regurgitation. Circulation 2020, 141, 1787–1799. [Google Scholar] [CrossRef]
- Plana, J.C.; Galderisi, M.; Barac, A.; Ewer, M.S.; Ky, B.; Scherrer-Crosbie, M.; Ganame, J.; Sebag, I.A.; Agler, D.A.; Badano, L.P.; et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: A report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2014, 15, 1063–1093. [Google Scholar] [CrossRef]
Mild MR | Moderate MR | Severe MR | |
---|---|---|---|
Qualitative parameters | |||
Mitral valve morphology | normal/modified | normal/modified | mitral valve severe prolapse/flail papillary muscle rupture or perforation |
MR jet-Color Doppler | small, central | Intermediate | large, central/ eccentric |
Proximal convergence area | Absent/small | Intermediate | Large |
Continuous wave Doppler | low signal, parabolic shape | parabolic shape | high intensity, triangular shape |
Semiquantitative parameters | |||
Vena contracta (mm) | <3 | 3–6 | ≥7 |
Pulmonary venous flow | Dominant S wave | Low velocity S wave(S < D) | systolic flow reversal |
Mitral Doppler inflow | dominant A wave | Variable | Dominant E wave (>1.5 m/s) |
Mitral VTI/Aortic VTI | <1 | Intermediate | >1.4 |
Quantitative parameters | |||
EORA (mm2) | <20 | 20–39 | ≥40 |
RVol (ml) | <30 | 30–59 | ≥60 |
Clinical Data | Mild MR (n = 70) | Moderate MR (n = 76) | Severe MR (n = 72) | p Value (Mild vs. Moderate MR/Mild vs. Severe MR) |
---|---|---|---|---|
Age (years), mean, SD | 62.1 ± 10.9 | 63.9 ± 11.7 | 64.2 ± 9.4 | 0.615/0.714 |
Male sex, n (%) | 36 (51.4) | 41(53.9) | 38 (52.7) | 0.391/0.281 |
Body mass index (kg/m2), SD | 24.3, 4.6 | 25.2, 4.9 | 25.6, 4.7 | 0.416/0.522 |
NYHA Class I/II/III | 58/12/0 | 45/31/0 | 38/34/0 | 0.218/0.194 |
Comorbidities | ||||
Hypertension, n (%) | 34 (48.5) | 39 (51.3) | 38 (52.7) | 0.291/0.398 |
Diabetes | 22 (30.5) | 25 (32.8) | 24 (33.3) | 0.335/0.571 |
Atrial fibrillation | 5 (7.1) | 9 (11.8) | 12 (13.8) | 0.033/0.039 |
Chronic kidney disease | 8 (11.4) | 10 (13.1) | 11 (15.2) | 0.173/0.357 |
Blood tests | ||||
Hemoglobin (g/dL) | 12.8 ± 1.7 | 12.7 ± 1.4 | 12.7 ± 1.6 | 0.877/0.819 |
NT-proBNP (pg/mL), SD | 75 ± 11.8 | 148 ± 12.7 | 387 ± 15.9 | 0.006/0.005 |
eGFR (mL/min/1.73 m2), SD | 80 ± 11.7 | 77 ± 13.1 | 78 ± 12.2 | 0.199/0.185 |
Medication | ||||
ACEIs/ARBs/ARNI, n (%) | 33 (47.1) | 37 (48.6) | 34 (37.2) | 0.186/0.374 |
β-blockers, n (%) | 38 (54.2) | 40 (52.6) | 41 (56.9) | 0.381/0.412 |
SGLT2 inhibitors | 17 (14.2) | 24 (31.5) | 27 (37.5) | 0.028/0.021 |
MRAs | 9 (12.8) | 12 (15.7) | 16 (22.2) | 0.217/0.181 |
Diuretics | 10 (14.2) | 11 (14.4) | 13 (18.0) | 0.411/0.429 |
Parameters Transthoracic Echocardiography | Mild MR (n = 70) | Moderate MR (n = 76) | Severe MR (n = 72) | p Value (Mild vs. Moderate MR/Mild vs. Severe MR) |
---|---|---|---|---|
LVEDD, mm | 45 ± 11.2 | 47 ± 12.2 | 51 ± 8.1 | 0.187/0.119 |
LVESD, mm | 26 ± 7.7 | 29 ± 10.8 | 33 ± 12.6 | 0.201/0.168 |
LVEDV, mL | 137 ± 23.1 | 158 ± 18.3 1 | 195 ± 22.7 | 0.097/0.81 |
LVESV, mL | 65 ± 14.3 | 78 ± 11.7 | 86 ± 12.8 | 0.092/0.086 |
LVEDDi, mm/m2 | 26 ± 6.3 | 35 ± 10.4 | 37 ± 11.2 | 0.168/0.116 |
LVESDi, mm/m2 | 14 ± 8.1 | 16 ± 9.6 | 17 ± 8.5 | 0.374/0.276 |
LVEDVi mL/m2 | 68 ± 13.1 | 71.6 ± 12.7 | 85.3 ± 14.1 | 0.031/0.028 |
LVESVi mL/m2 | 35 ± 7.8 | 39 ± 11.2 | 42 ± 10.3 | 0.199/0.082 |
LVEF % | 68 ± 7 | 67 ± 5 | 67 ± 8 | 0.817/0.837 |
LVS GLS, % | 22. 3 ± 2.1 | 19.5 ± 3.1 | 19.1 ± 3.7 | 0.024/0.019 |
LAVoli, mL/m2 | 29 ± 12.1 | 38 ± 14.4 | 45 ± 13.8 | 0.019/0.014 |
EROA, cm2 | 0.12 ± 0.05 | 0.24 ± 0.04 | 0.38 ± 0.07 | 0.015/0.012 |
RVol, mL | 12.1 ± 4.7 | 33 ± 9.5 | 47 ± 11.1 | 0.027/0.016 |
RF, % | 11.9 ± 4.2 | 32 ± 7.9 | 48 ± 9.3 | 0.001/0.001 |
PSAP, mmHg | 26 ± 5.2 | 32 ± 8.1 | 37 ± 10.4 | 0.008/0.007 |
TAPSE, mm | 31 ± 3.8 | 29 ± 4.1 | 29 ± 3.8 | 0.277/0.2.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riebel, C.I.B.; Ilie Orzan, R.; Negru, A.; Agoston-Coldea, L. The Role of Global Longitudinal Strain in the Follow-Up of Asymptomatic Patients with Chronic Primary Mitral Regurgitation. J. Clin. Med. 2024, 13, 5304. https://doi.org/10.3390/jcm13175304
Riebel CIB, Ilie Orzan R, Negru A, Agoston-Coldea L. The Role of Global Longitudinal Strain in the Follow-Up of Asymptomatic Patients with Chronic Primary Mitral Regurgitation. Journal of Clinical Medicine. 2024; 13(17):5304. https://doi.org/10.3390/jcm13175304
Chicago/Turabian StyleRiebel, Catalina Ileana Badau, Rares Ilie Orzan, Andra Negru, and Lucia Agoston-Coldea. 2024. "The Role of Global Longitudinal Strain in the Follow-Up of Asymptomatic Patients with Chronic Primary Mitral Regurgitation" Journal of Clinical Medicine 13, no. 17: 5304. https://doi.org/10.3390/jcm13175304
APA StyleRiebel, C. I. B., Ilie Orzan, R., Negru, A., & Agoston-Coldea, L. (2024). The Role of Global Longitudinal Strain in the Follow-Up of Asymptomatic Patients with Chronic Primary Mitral Regurgitation. Journal of Clinical Medicine, 13(17), 5304. https://doi.org/10.3390/jcm13175304