Role of WT1 in Measurable Residual Disease Follow-Up in the Post Allogeneic Stem Cell Transplant Setting
Abstract
:1. Introduction
2. Methods
2.1. Patients and Data
2.2. Laboratory Evaluations
2.2.1. Flow Cytometry
2.2.2. WT1 RT-PCR
2.2.3. Chimerism Analysis
2.2.4. Bone Marrow Evaluation (Morphological Assessment of Blast Count)
2.3. Statistical Analyses
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Call, K.M.; Ito, C.Y.; Lindberg, C.; Memisoglu, A.; Petrou, C.; Glaser, T.; Jones, C.; Housman, D.E. Mapping and characterization of 129 cosmids on human chromosome 11p. Somat. Cell Mol. Genet. 1992, 18, 463–475. [Google Scholar] [CrossRef]
- Lazzarotto, D.; Candoni, A. The Role of Wilms’ Tumor Gene (WT1) Expression as a Marker of Minimal Residual Disease in Acute Myeloid Leukemia. J. Clin. Med. 2022, 11, 3306. [Google Scholar] [CrossRef]
- Rossi, G.; Minervini, M.M.; Carella, A.M.; Melillo, L.; Cascavilla, N. Wilms’ Tumor Gene (WT1) Expression and Minimal Residual Disease in Acute Myeloid Leukemia. In Wilms Tumor; van den Heuvel-Eibrink, M.M., Ed.; Codon Publications: Brisbane, Australia, 2016; Chapter 16. Available online: https://www.ncbi.nlm.nih.gov/books/NBK373357/ (accessed on 5 June 2024). [CrossRef]
- Reddy, J.C.; Hosono, S.; Licht, J.D. The transcriptional effect of WT1 is modulated by choice of expression vector. J. Biol. Chem. 1995, 270, 29976–29982. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Qui, Q.Q.; Huang, J.; Gurrieri, M.; Deuel, T.F. Products of alternatively spliced transcripts of the Wilms’ tumor suppressor gene, wt1, have altered DNA binding specificity and regulate transcription in different ways. Oncogene 1995, 10, 415–422. [Google Scholar]
- Cilloni, D.; Gottardi, E.; De Micheli, D.; Serra, A.; Volpe, G.; Messa, F.; Rege-Cambrin, G.; Guerrasio, A.; Divona, M.; Coco, F.L.; et al. Quantitative assessment of WT1 expression by real time quantitative PCR may be a useful tool for monitoring minimal residual disease in acute leukemia patients. Leukemia 2002, 16, 2115–2121. [Google Scholar] [CrossRef]
- Jongen-Lavrencic, M.; Grob, T.; Hanekamp, D.; Kavelaars, F.G.; al Hinai, A.; Zeilemaker, A.; Erpelinck-Verschueren, C.A.; Gradowska, P.L.; Meijer, R.; Cloos, J.; et al. Molecular minimal residual disease in acute myeloid leukemia. N. Engl. J. Med. 2018, 378, 1189–1199. [Google Scholar] [CrossRef]
- Hosen, N.; Sonoda, Y.; Oji, Y.; Kimura, T.; Minamiguchi, H.; Tamaki, H.; Kawakami, M.; Asada, M.; Kanato, K.; Motomura, M.; et al. Very low frequencies of human normal CD34+ haematopoietic progenitor cells express the Wilms’ tumour gene WT1 at levels similar to those in leukaemia cells. Br. J. Haematol. 2002, 116, 409–420. [Google Scholar] [CrossRef]
- Baird, P.N.; Simmons, P.J. Expression of the Wilms’ tumor gene (WT1) in normal hemopoiesis. Exp. Hematol. 1997, 25, 312–320. [Google Scholar]
- Schuurhuis, G.J.; Heuser, M.; Freeman, S.; Béné, M.-C.; Buccisano, F.; Cloos, J.; Grimwade, D.; Haferlach, T.; Hills, R.K.; Hourigan, C.S.; et al. Minimal/measurable residual disease in AML: A consensus document from the European LeukemiaNet MRD Working Party. Blood 2018, 131, 1275–1291. [Google Scholar] [CrossRef]
- Hourigan, C.S.; Gale, R.P.; Gormley, N.J.; Ossenkoppele, G.J.; Walter, R.B. Measurable residual disease testing in acute myeloid leukaemia. Leukemia 2017, 31, 1482–1490. [Google Scholar]
- Cho, B.S.; Min, G.J.; Park, S.S.; Shin, S.H.; Yahng, S.A.; Jeon, Y.W.; Yoon, J.H.; Lee, S.E.; Eom, K.S.; Kim, Y.J. WT1 Measurable Residual Disease Assay in Patients with Acute Myeloid Leukemia Who Underwent Allogeneic Hematopoietic Stem Cell Transplantation: Optimal Time Points, Thresholds, and Candidates. Biol. Blood Marrow Transplant. 2019, 25, 1925–1932. [Google Scholar] [CrossRef]
- Döhner, H.; Wei, A.H.; Appelbaum, F.R.; Craddock, C.; DiNardo, C.D.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Godley, L.A.; Hasserjian, R.P.; et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood 2022, 140, 1345–1347. [Google Scholar] [CrossRef] [PubMed]
- Kwon, M.; Martínez-Laperche, C.; Infante, M.; Carretero, F.; Balsalobre, P.; Serrano, D.; Gayoso, J.; Pérez-Corral, A.; Anguita, J.; Díez-Martín, J.L.; et al. Evaluation of Minimal Residual Disease by Real-Time Quantitative PCR of Wilms’ Tumor 1 Expression in Patients with Acute Myelogenous Leukemia after Allogeneic Stem Cell Transplantation: Correlation with Flow Cytometry and Chimerism. Biol. Blood Marrow Transplant. 2012, 18, 1235–1242. [Google Scholar] [CrossRef]
- Menssen, H.D.; Renkl, H.J.; Rodeck, U.; Kari, C.; Schwartz, S.; Thiel, E. Detection by monoclonal antibodies of the Wilms’ tumor (WT1) nuclear protein in patients with acute leukemia. Int. J. Cancer 1997, 70, 518–523. [Google Scholar] [CrossRef]
- Miwa, H.; Beran, M.; Saunders, G.F. Expression of the Wilms’ tumor gene (WT1) in human leukemias. Leukemia 1992, 6, 405–409. [Google Scholar]
- Qin, Y.Z.; Wang, Y.; Xu, L.P.; Zhang, X.H.; Zhao, X.S.; Liu, K.Y.; Huang, X.J. Subgroup Analysis Can Optimize the Relapse-Prediction Cutoff Value for WT1 Expression After Allogeneic Hematologic Stem Cell Transplantation in Acute Myeloid Leukemia. J. Mol. Diagn. 2020, 22, 188–195. [Google Scholar] [CrossRef]
- Ogawa, H.; Tamaki, H.; Ikegame, K.; Soma, T.; Kawakami, M.; Tsuboi, A.; Kim, E.H.; Hosen, N.; Murakami, M.; Fujioka, T.; et al. The usefulness of monitoring WT1 gene transcripts for the prediction and management of relapse following allogeneic stem cell transplantation in acute type leukemia. Blood 2003, 101, 1698–1704. [Google Scholar] [CrossRef]
- Cilloni, D.; Renneville, A.; Hermitte, F.; Hills, R.K.; Daly, S.; Jovanovic, J.V.; Gottardi, E.; Fava, M.; Schnittger, S.; Weiss, T.; et al. Real-time quantitative polymerase chain reaction detection of minimal residual disease by standardized WT1 assay to enhance risk stratification in acute myeloid leukemia: A European Leukemia Net Study. J. Clin. Oncol. 2009, 27, 5195–5201. [Google Scholar] [CrossRef]
- Rossi, G.; Minervini, M.M.; Carella, A.M.; de Waure, C.; di Nardo, F.; Melillo, L.; D’arena, G.; Zini, G.; Cascavilla, N. Comparison between multiparameter flow cytometry and WT1-RNA quantification in monitoring minimal residual disease in acute myeloid leukemia without specific molecular targets. Leuk. Res. 2012, 36, 401–406. [Google Scholar] [PubMed]
- Rossi, G.; Carella, A.M.; Minervini, M.M.; di Nardo, F.; de Waure, C.; Greco, M.M.; Merla, E.; de Cillis, G.P.; Di Renzo, N.; Melpignano, A.; et al. Optimal time-points for minimal residual disease monitoring change on the basis of the method used in patients with acute myeloid leukemia who underwent allogeneic stem cell transplantation: A comparison between multiparameter flow cytometry and Wilms’ tumor 1 expression. Leuk. Res. 2015, 39, 138–143. [Google Scholar] [PubMed]
- Lambert, J.; Lambert, J.; Thomas, X.; Marceau-Renaut, A.; Micol, J.B.; Renneville, A.; Clappier, E.; Hayette, S.; Récher, C.; Raffoux, E.; et al. Early detection of WT1 measurable residual disease identifies high-risk patients, independent of transplantation in AML. Blood Adv. 2021, 5, 5258–5268. [Google Scholar] [CrossRef]
- Malagola, M.; Skert, C.; Ruggeri, G.; Turra, A.; Ribolla, R.; Cancelli, V.; Cattina, F.; Alghisi, E.; Bernardi, S.; Perucca, S.; et al. Peripheral blood WT1 expression predicts relapse in AML patients undergoing allogeneic stem cell transplantation. Biomed. Res. Int. 2014, 2014, 123079. [Google Scholar] [CrossRef] [PubMed]
- Rautenberg, C.; Lauseker, M.; Kaivers, J.; Jäger, P.; Fischermanns, C.; Pechtel, S.; Haas, R.; Kobbe, G.; Germing, U.; Schroeder, T. Prognostic impact of pretransplant measurable residual disease assessed by peripheral blood WT1-mRNA expression in patients with AML and MDS. Eur. J. Haematol. 2021, 107, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Marani, C.; Clavio, M.; Grasso, R.; Colombo, N.; Guolo, F.; Kunkl, A.; Ballerini, F.; Giannoni, L.; Ghiggi, C.; Fugazza, G.; et al. Integrating post induction WT1 quantification and flow-cytometry results improves minimal residual disease stratification in acute myeloid leukemia. Leuk. Res. 2013, 37, 1606–1611. [Google Scholar] [CrossRef] [PubMed]
- Malagola, M.; Skert, C.; Borlenghi, E.; Chiarini, M.; Cattaneo, C.; Morello, E.; Cancelli, V.; Cattina, F.; Cerqui, E.; Pagani, C.; et al. Post remission sequential monitoring of minimal residual disease by WT1 Q-PCR and multiparametric flow cytometry assessment predicts relapse and may help to address risk-adapted therapy in acute myeloid leukemia patients. Cancer Med. 2016, 5, 265–274. [Google Scholar] [CrossRef]
- Rossi, G.; Carella, A.M.; Minervini, M.M.; Savino, L.; Fontana, A.; Pellegrini, F.; Greco, M.M.; Merla, E.; Quarta, G.; Loseto, G.; et al. Minimal residual disease after allogeneic stem cell transplant: A comparison among multiparametric flow cytometry, Wilms tumor 1 expression and chimerism status (Complete chimerism versus Low Level Mixed Chimerism) in acute leukemia. Leuk. Lymphoma 2013, 54, 2660–2666. [Google Scholar] [CrossRef]
Parameters | N = 58, %100 |
---|---|
Age (median, min–max) | 40 (17–62) |
Gender (M/F) | 34 (58.6%)/24 (41.4%) |
WBC at diagnosis (109/L) (median, min–max) | 10.5 (0.69–361.9) |
AML Type | |
AML, NOS | 41 (70.7%) |
AML with recurrent abnormalities | 8 (13.8%) |
Therapy-related myeloid neoplasms | 7 (12%) |
Myeloid sarcoma | 2 (3.4%) |
Frequency of AML genetic abnormalities | |
Isolated WT1 (+) | 17 (29.3%) |
FLT 3 (+) | 21 (36.2%) |
NPM1 (+) | 9 (15.5%) |
Inv 16 (+) | 3 (5.2%) |
t(8;21) + | 4 (6.9%) |
Karyotypic abnormalities | 13 (22.4%) |
Other cytogenetic abnormalities | 5 (8.6%) |
Cytogenetic risk group | |
Favorable | 1 (1.7%) |
Intermediate | 23 (39.7%) |
Adverse | 34 (58.6%) |
Response to 1st induction | |
CR | 46 (79.3%) |
REF | 12 (20.7%) |
Disease status at transplant | |
CR1 | 42 (72.4%) |
CR2 | 8 (13.8%) |
Ref | 8 (13.8%) |
Donor type | |
MRD (10/10–9/10) | 35 (60.3%) |
MUD (10/10–9/10) | 21 (36.2%) |
MMD (≥2) | 2 (3.4%) |
Donor gender incompatibility (male patient–female donor) | 12 (20.7%) |
Stem cell source (PBSC) | 58 (100%) |
HCT-CI comorbidity score (≥2) | 4 (6.9%) |
Conditioning regimen | |
Busulfan based | 32(55.2%) |
Treosulfan based | 23 (39.6%) |
Others | 3 (5.2%) |
Conditioning regimen (MA/RIC) | 48 (82.8%)/10 (17.2%) |
CD34 (×106 cell/kg) | 6.96 (3.2–8.47) |
Follow-up duration (months) (median, min–max) | 21 (2–99) |
Measurement Time (Median, Min–Max) | WT1 Assay (Copies/104 ABL) | MFC | BME | Chimerism |
---|---|---|---|---|
At diagnosis | 548 (4.5–9854) | 49 (5–96) | 70 (15–100) | N/A |
Post-induction | 11.6 (0–9356) | 1.5 (0–75) | 2 (0–90) | N/A |
Pre-allo-SCT | 7.91 (0–1453) | 0.4 (0.01–75) | 1 (0–90) | N/A |
Post-allo-SCT 1st month | 7.5 (0–721) | 0.25 (0–4.5) | 1 (0–6) | 99.9 (90–99.9) |
Post-allo-SCT 3rd month | 8.41 (0–122) | 0.27 (0–12) | 1 (0–10) | 99.1 (34.4–99.9) |
Relapse | 330 (22.9–2907) | 20 (7–77) | 30 (6–100) | 90.7 (38.4–99.9) |
Parameters | Correlation Coefficient | p-Value |
---|---|---|
WT1 * MFC | 0.578 | <0.001 |
WT1high * MFC | 0.537 | <0.001 |
WT1 * BME | 0.533 | <0.001 |
WT1high * BME | 0.565 | <0.001 |
MFC * BME | 0.758 | <0.001 |
WT1 * Chimerism | −0.080 | 0.42 |
WT1high * Chimerism | −0.637 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Namdaroğlu, S.; Başcı, S.; Aslan Candır, B.; Yaman, S.; Yiğenoğlu, T.N.; Bahsi, T.; Özcan, N.; Dal, M.S.; Kızıl Çakar, M.; Altuntaş, F. Role of WT1 in Measurable Residual Disease Follow-Up in the Post Allogeneic Stem Cell Transplant Setting. J. Clin. Med. 2024, 13, 5145. https://doi.org/10.3390/jcm13175145
Namdaroğlu S, Başcı S, Aslan Candır B, Yaman S, Yiğenoğlu TN, Bahsi T, Özcan N, Dal MS, Kızıl Çakar M, Altuntaş F. Role of WT1 in Measurable Residual Disease Follow-Up in the Post Allogeneic Stem Cell Transplant Setting. Journal of Clinical Medicine. 2024; 13(17):5145. https://doi.org/10.3390/jcm13175145
Chicago/Turabian StyleNamdaroğlu, Sinem, Semih Başcı, Burcu Aslan Candır, Samet Yaman, Tuğçe Nur Yiğenoğlu, Taha Bahsi, Nurgül Özcan, Mehmet Sinan Dal, Merih Kızıl Çakar, and Fevzi Altuntaş. 2024. "Role of WT1 in Measurable Residual Disease Follow-Up in the Post Allogeneic Stem Cell Transplant Setting" Journal of Clinical Medicine 13, no. 17: 5145. https://doi.org/10.3390/jcm13175145
APA StyleNamdaroğlu, S., Başcı, S., Aslan Candır, B., Yaman, S., Yiğenoğlu, T. N., Bahsi, T., Özcan, N., Dal, M. S., Kızıl Çakar, M., & Altuntaş, F. (2024). Role of WT1 in Measurable Residual Disease Follow-Up in the Post Allogeneic Stem Cell Transplant Setting. Journal of Clinical Medicine, 13(17), 5145. https://doi.org/10.3390/jcm13175145