The Effect of Revascularization on Lower Limb Circulation Parameters in Symptomatic Peripheral Arterial Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Patient Selection, and Clinical Assessment
2.2. Circulation Parameters and Data Acquisition
2.2.1. Macrocirculation
2.2.2. Microcirculation
2.3. Follow-Up
2.4. Statistics
3. Results
3.1. Clinical Characteristics
3.2. Baseline Circulation Values
3.3. Effect of Revascularization
3.4. Follow-Up
4. Discussion
- At baseline, SO2 in the elevated leg position was significantly lower in patients with CLTI than in those with IC (p = 0.019), whereas the ABI values were not significantly different.
- Patients with diabetes mellitus had higher flow than those without in the horizontal leg position (p = 0.016) but not in the elevated leg position.
- After successful revascularization, the flow immediately and significantly increased in both positions, whereas SO2, rHb, and ABI did not.
4.1. Microcirculation during Rest and under Provocation
4.2. Controversy of Microcirculation in Diabetes Mellitus
4.3. Microvascular Changes Following Revascularization
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update from the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef] [PubMed]
- Schramm, K.M.; DeWitt, P.E.; Dybul, S.; Rochon, P.J.; Patel, P.; Hieb, R.A.; Rogers, R.K.; Ryu, R.K.; Wolhauer, M.; Hong, K.; et al. Recent Trends in Clinical Setting and Provider Specialty for Endovascular Peripheral Artery Disease Interventions for the Medicare Population. J. Vasc. Interv. Radiol. 2020, 31, 614–621.e612. [Google Scholar] [CrossRef] [PubMed]
- Frank, U.; Nikol, S.; Belch, J.; Boc, V.; Brodmann, M.; Carpentier, P.H.; Chraim, A.; Canning, C.; Dimakakos, E.; Gottsäter, A.; et al. ESVM Guideline on peripheral arterial disease. Vasa 2019, 48, 1–79. [Google Scholar] [CrossRef] [PubMed]
- Forsythe, R.O.; Apelqvist, J.; Boyko, E.J.; Fitridge, R.; Hong, J.P.; Katsanos, K.; Mills, J.L.; Nikol, S.; Reekers, J.; Venermo, M.; et al. Effectiveness of revascularisation of the ulcerated foot in patients with diabetes and peripheral artery disease: A systematic review. Diabetes Metab. Res. Rev. 2020, 36 (Suppl. S1), e3279. [Google Scholar] [CrossRef] [PubMed]
- Beckman, J.A.; Duncan, M.S.; Damrauer, S.M.; Wells, Q.S.; Barnett, J.V.; Wasserman, D.H.; Bedimo, R.J.; Butt, A.A.; Marconi, V.C.; Sico, J.J. Microvascular disease, peripheral artery disease, and amputation. Circulation 2019, 140, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Hamburg, N.M.; Creager, M.A. Pathophysiology of Intermittent Claudication in Peripheral Artery Disease. Circ. J. 2017, 81, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Wermelink, B.; Ma, K.F.; Haalboom, M.; El Moumni, M.; de Vries, J.P.M.; Geelkerken, R.H. A Systematic Review and Critical Appraisal of Peri-Procedural Tissue Perfusion Techniques and their Clinical Value in Patients with Peripheral Arterial Disease. Eur. J. Vasc. Endovasc. Surg. 2021, 62, 896–908. [Google Scholar] [CrossRef] [PubMed]
- Frank, K.H.; Kessler, M.; Appelbaum, K.; Dümmler, W. The Erlangen micro-lightguide spectrophotometer EMPHO I. Phys. Med. Biol. 1989, 34, 1883–1900. [Google Scholar] [CrossRef]
- Kashetsky, N.; Sachdeva, M.; Lu, J.D.; Mufti, A.; Kim, P.; Bagit, A.; Sibbald, R.G. Diagnostic Accuracy of Ankle-Brachial Pressure Index Compared with Doppler Arterial Waveforms for Detecting Peripheral Arterial Disease: A Systematic Review. Adv. Skin. Wound Care 2022, 35, 195–201. [Google Scholar] [CrossRef]
- Gyldenløve, T.; Jørgensen, L.P.; Schroeder, T.V. Micro-Lightguide Spectrophotometry (O2C) for Lower Limb Perfusion: Effects of Exercise Walking in Claudicants. Int. J. Angiol. 2019, 28, 161–166. [Google Scholar] [CrossRef]
- Rother, U.; Krenz, K.; Lang, W.; Horch, R.E.; Schmid, A.; Heinz, M.; Meyer, A.; Regus, S. Immediate changes of angiosome perfusion during tibial angioplasty. J. Vasc. Surg. 2017, 65, 422–430. [Google Scholar] [CrossRef]
- Gerken, A.L.H.; Hattemer, M.A.; Weiß, C.; Sigl, M.; Zach, S.; Keese, M.; Nowak, K.; Reißfelder, C.; Rahbari, N.N.; Schwenke, K. The impact of class I compression stockings on the peripheral microperfusion of the lower limb: A prospective pilot study. J. Vasc. Nurs. 2023, 41, 212–218. [Google Scholar] [CrossRef]
- Ma, K.F.; Nijboer, T.S.; Kleiss, S.F.; El Moumni, M.; Bokkers, R.P.H.; Schuurmann, R.C.L.; de Vries, J.P.M. Determination of Changes in Tissue Perfusion at Home with Hyperspectral and Thermal Imaging in the First Six Weeks after Endovascular Therapy in Patients with Peripheral Arterial Disease. Diagnostics 2022, 12, 2489. [Google Scholar] [CrossRef]
- Argarini, R.; McLaughlin, R.A.; Joseph, S.Z.; Naylor, L.H.; Carter, H.H.; Yeap, B.B.; Jansen, S.J.; Green, D.J. Optical coherence tomography: A novel imaging approach to visualize and quantify cutaneous microvascular structure and function in patients with diabetes. BMJ Open Diabetes Res. Care 2020, 8, e001479. [Google Scholar] [CrossRef]
- Harrison, D.K.; McCollum, P.T.; Newton, D.J.; Hickman, P.; Jain, A.S. Amputation level assessment using lightguide spectrophotometry. Prosthet. Orthot. Int. 1995, 19, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Frank, K.H.; Kessler, M.; Appelbaum, K.; Dümmler, W.; Zündorf, J.; Höper, J.; Klövekorn, W.P.; Sebening, F. Oxygen supply of the myocardium. Adv. Exp. Med. Biol. 1989, 248, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Rümenapf, G.; Abilmona, N.; Morbach, S.; Sigl, M. Peripheral Arterial Disease and the Diabetic Foot Syndrome: Neuropathy Makes the Difference! A Narrative Review. J. Clin. Med. 2024, 13, 2141. [Google Scholar] [CrossRef] [PubMed]
- Edmonds, M. Vascular disease in the lower limb in type 1 diabetes. Cardiovasc. Endocrinol. Metab. 2019, 8, 39–46. [Google Scholar] [CrossRef]
- Sandeman, D.D.; Shore, A.C.; Tooke, J.E. Relation of skin capillary pressure in patients with insulin-dependent diabetes mellitus to complications and metabolic control. N. Engl. J. Med. 1992, 327, 760–764. [Google Scholar] [CrossRef]
- Parving, H.H.; Viberti, G.C.; Keen, H.; Christiansen, J.S.; Lassen, N.A. Hemodynamic factors in the genesis of diabetic microangiopathy. Metabolism 1983, 32, 943–949. [Google Scholar] [CrossRef]
- Jörneskog, G. Why critical limb ischemia criteria are not applicable to diabetic foot and what the consequences are. Scand. J. Surg. 2012, 101, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.C.; Ding, H.J.; Chen, Y.W.; Huang, W.T.; Kao, A. Usefulness of thallium-201 muscle perfusion scan to investigate perfusion reserve in the lower limbs of Type 2 diabetic patients. J. Diabetes Complicat. 2004, 18, 233–236. [Google Scholar] [CrossRef] [PubMed]
- Normahani, P.; Khosravi, S.; Sounderajah, V.; Aslam, M.; Standfield, N.J.; Jaffer, U. The Effect of Lower Limb Revascularization on Flow, Perfusion, and Systemic Endothelial Function: A Systematic Review. Angiology 2021, 72, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Rother, U.; Kapust, J.; Lang, W.; Horch, R.E.; Gefeller, O.; Meyer, A. The Angiosome Concept Evaluated on the Basis of Micro-perfusion in Critical Limb Ischemia Patients-an Oxygen to See Guided Study. Microcirculation 2015, 22, 737–743. [Google Scholar] [CrossRef] [PubMed]
- Lapi, D.; Colantuoni, A. Remodeling of Cerebral Microcirculation after Ischemia-Reperfusion. J. Vasc. Res. 2015, 52, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Jokuszies, A.; Niederbichler, A.; Meyer-Marcotty, M.; Lahoda, L.U.; Reimers, K.; and Vogt, P.M. Influence of transendothelial mechanisms on microcirculation: Consequences for reperfusion injury after free flap transfer. Previous, current, and future aspects. J. Reconstr. Microsurg. 2006, 22, 513–518. [Google Scholar] [CrossRef]
- Wagner, H.-J.; Schmitz, R.; Alfke, H.; Klose, K.-J. Influence of Percutaneous Transluminal Angioplasty on Transcutaneous Oxygen Pressure in Patients with Peripheral Arterial Occlusive Disease. Radiology 2003, 226, 791–797. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarczyk, P.; Maga, P.; Niżankowski, R.; Januszek, R.; Frołow, M.; Maga, M.; Kościelniak, J.; Belowski, A. The relationship between pulse waveform analysis indices, endothelial function and clinical outcomes in patients with peripheral artery disease treated using percutaneous transluminal angioplasty during a one-year follow-up period. Cardiol. J. 2020, 27, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Ruemenapf, G.; Morbach, S.; Sigl, M. Therapeutic Alternatives in Diabetic Foot Patients without an Option for Revascularization: A Narrative Review. J. Clin. Med. 2022, 11, 2155. [Google Scholar] [CrossRef]
- Valentini, J.; Sigl, M.; Dunckel, C.; Krisam, J.; Amendt, K.; Greten, H.J. Can acupuncture increase microcirculation in peripheral artery disease and diabetic foot syndrome?—A pilot study. Front. Med. 2024, 11, 1371056. [Google Scholar] [CrossRef]
Age (Years) | 68 ± 9 |
---|---|
Male | 21 (72) |
Peripheral arterial disease level | |
Aortoiliac | 7 (24) |
Femoro-popliteal | 13 (45) |
Cruropedal | 9 (31) |
Crural run-off * | |
One-vessel | 6 (29) |
Two-vessel | 6 (29) |
Three-vessel | 9 (42) |
Rutherford clinical category | |
2–3 (IC) | 15 (52) |
4–5 (CLTI) | 14 (48) |
Prior amputation (ipsilateral + contralateral) | 4 (14) |
Type of revascularization | |
Bypass | 19 (66) |
Aorto(bi)iliac | 6 |
Aorto(bi)femoral | 4 |
Iliac-popliteal | 1 |
Femoro-popliteal | 3 |
Femoro-crural/pedal | 5 |
Endarteriectomy | 5 (17) |
Endovascular (PTA/stent) | 3 (10) |
Endarteriectomy + endovascular | 2 (7) |
Target limb ankle–brachial index a | |
ADP | 0.53 ± 0.3 |
ATP | 0.52 ± 0.3 |
Cardiovascular comorbidities and risk factors | |
Cerebral vascular disease b | 8 (28) |
Coronary artery disease c | 19 (66) |
Congestive heart failure (stages) | |
Preserved | 10 (34) |
Mid-range | 6 (21) |
Reduced | 3 (10) |
Tobacco consumption | |
Previous smokers | 8 (28) |
Current smokers | 18 (62) |
Diabetes mellitus | 10 (35) |
Arterial hypertension | 25 (86) |
Dyslipidemia | 25 (86) |
Chronic inflammatory disorders d | 0 (0) |
Other comorbidities | |
Peripheral neuropathy | 5 (17) |
Preoperative anemia e | 14 (48) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerken, A.L.H.; Sigl, M.; Israel, E.; Weiß, C.; Reißfelder, C.; Schwenke, K. The Effect of Revascularization on Lower Limb Circulation Parameters in Symptomatic Peripheral Arterial Disease. J. Clin. Med. 2024, 13, 3991. https://doi.org/10.3390/jcm13133991
Gerken ALH, Sigl M, Israel E, Weiß C, Reißfelder C, Schwenke K. The Effect of Revascularization on Lower Limb Circulation Parameters in Symptomatic Peripheral Arterial Disease. Journal of Clinical Medicine. 2024; 13(13):3991. https://doi.org/10.3390/jcm13133991
Chicago/Turabian StyleGerken, Andreas L. H., Martin Sigl, Elisa Israel, Christel Weiß, Christoph Reißfelder, and Kay Schwenke. 2024. "The Effect of Revascularization on Lower Limb Circulation Parameters in Symptomatic Peripheral Arterial Disease" Journal of Clinical Medicine 13, no. 13: 3991. https://doi.org/10.3390/jcm13133991
APA StyleGerken, A. L. H., Sigl, M., Israel, E., Weiß, C., Reißfelder, C., & Schwenke, K. (2024). The Effect of Revascularization on Lower Limb Circulation Parameters in Symptomatic Peripheral Arterial Disease. Journal of Clinical Medicine, 13(13), 3991. https://doi.org/10.3390/jcm13133991