An Increasing Triglyceride–Glucose Index Is Associated with a Pro-Inflammatory and Pro-Oxidant Phenotype
Abstract
:1. Introduction
2. Patients and Methods
Statistical Analysis
3. Results
MFI-Mean Fluorescence Intensity
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr.; et al. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr.; et al. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute: American Heart Association: World Heart Federation; International Atherosclerosis Society; and International Association for the study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar]
- Reaven, G.M. Role of insulin resistance in human disease (syndrome X): An expanded definition. Annu. Rev. Med. 1993, 44, 121–131. [Google Scholar] [CrossRef] [PubMed]
- De Fronzo, R.A. Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: The missing links. The Claude Bernard Lecture 2009. Diabetologia 2010, 53, 1270–1287. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guerrero-Romero, F.; Simental-Mendía, L.E.; González-Ortiz, M.; Martínez-Abundis, E.; Ramos-Zavala, M.G.; Hernández-González, S.O.; Jacques-Camarena, O.; Rodríguez-Morán, M. The product of triglycerides and glucose, a simple measure of insulin sensitivity. Comparison with the euglycemic-hyperinsulinemic clamp. J. Clin. Endocrinol. Metab. 2010, 95, 3347–3351. [Google Scholar] [CrossRef] [PubMed]
- Vasques, A.C.; Novaes, F.S.; de Oliveira Mda, S.; Souza, J.R.; Yamanaka, A.; Pareja, J.C.; Tambascia, M.A.; Saad, M.J.; Geloneze, B. TyG index performs better than HOMA in a Brazilian population: A hyperglycemic clamp validated study. Diabetes Res. Clin. Pract. 2011, 93, e98–e100. [Google Scholar] [CrossRef] [PubMed]
- Simental-Mendía, L.E.; Rodríguez-Morán, M.; Guerrero-Romero, F. The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab. Syndr Relat. Disord. 2008, 6, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Son, D.H.; Lee, H.S.; Lee, Y.J.; Lee, J.H.; Han, J.H. Comparison of triglyceride-glucose index and HOMA-IR for predicting prevalence and incidence of metabolic syndrome. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 596–604. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Li, Q.; Cui, M.; Yin, Z.; Li, L.; Zhong, T.; Huo, Y.; Xie, P. Clinical surrogate markers for predicting metabolic syndrome in middle-aged and elderly Chinese. J. Diabetes Investig. 2018, 9, 411–418. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Park, H.M.; Lee, H.S.; Lee, Y.J.; Lee, J.H. The triglyceride-glucose index is a more powerful surrogate marker for predicting the prevalence and incidence of type 2 diabetes mellitus than the homeostatic model assessment of insulin resistance. Diabetes Res. Clin. Pract. 2021, 180, 109042. [Google Scholar] [CrossRef] [PubMed]
- Nabipoorashrafi, S.A.; Seyedi, S.A.; Rabizadeh, S.; Ebrahimi, M.; Ranjbar, S.A.; Reyhan, S.K.; Meysamie, A.; Nakhjavani, M.; Esteghamati, A. The accuracy of triglyceride-glucose (TyG) index for the screening of metabolic syndrome in adults: A systematic review and meta-analysis. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 2677–2688. [Google Scholar] [CrossRef] [PubMed]
- Adams-Huet, B.; Zubirán, R.; Remaley, A.T.; Jialal, I. The triglyceride-glucose index is superior to homeostasis model assessment of insulin resistance in predicting metabolic syndrome in an adult population in the United States. J. Clin. Lipidol. 2024, in press. [CrossRef] [PubMed]
- Moon, J.H.; Kim, Y.; Oh, T.J.; Moon, J.H.; Kwak, S.H.; Park, K.S.; Jang, H.C.; Choi, S.H.; Cho, N.H. Triglyceride-Glucose Index Predicts Future Atherosclerotic Cardiovascular Diseases: A 16-Year Follow-up in a Prospective, Community-Dwelling Cohort Study. Endocrinol. Metab. 2023, 38, 406–417. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tao, L.C.; Xu, J.N.; Wang, T.T.; Hua, F.; Li, J.J. Triglyceride-glucose index as a marker in cardiovascular diseases: Landscape and limitations. Cardiovasc Diabetol. 2022, 21, 68. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lopez-Jaramillo, P.; Gomez-Arbelaez, D.; Martinez-Bello, D.; Abat, M.E.M.; Alhabib, K.F.; Avezum, Á.; Barbarash, O.; Chifamba, J.; Diaz, M.L.; Gulec, S.; et al. Association of the triglyceride glucose index as a measure of insulin resistance with mortality and cardiovascular disease in populations from five continents (PURE study): A prospective cohort study. Lancet Healthy Longev. 2023, 4, e23–e33. [Google Scholar] [CrossRef] [PubMed]
- D’Elia, L.; Masulli, M.; Virdis, A.; Casiglia, E.; Tikhonoff, V.; Angeli, F.; Barbagallo, C.M.; Bombelli, M.; Cappelli, F.; Cianci, R.; et al. Triglyceride-glucose Index and Mortality in a Large Regional-based Italian Database (Urrah Project). J. Clin. Endocrinol. Metab. 2024, in press. [CrossRef] [PubMed]
- Wang, Z.; Qian, H.; Zhong, S.; Gu, T.; Xu, M.; Yang, Q. The relationship between triglyceride-glucose index and albuminuria in United States adults. Front. Endocrinol. 2023, 14, 1215055. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Libby, P. Inflammation during the life cycle of the atherosclerotic plaque. Cardiovasc. Res. 2021, 117, 2525–2536. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xiao, S.; Wang, X.; Zhang, G.; Tong, M.; Chen, J.; Zhou, Y.; Ji, Q.; Liu, N. Association of Systemic Immune Inflammation Index with Estimated Pulse Wave Velocity, Atherogenic Index of Plasma, Triglyceride-Glucose Index, and Cardiovascular Disease: A Large Cross-Sectional Study. Mediat. Inflamm. 2023, 2023, 1966680. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bremer, A.A.; Devaraj, S.; Afify, A.; Jialal, I. Adipose tissue dysregulation in patients with metabolic syndrome. J. Clin. Endocrinol. Metab. 2011, 96, E1782–E1788. [Google Scholar] [CrossRef]
- Jialal, I.; Huet, B.A.; Kaur, H.; Chien, A.; Devaraj, S. Increased toll-like receptor activity in patients with metabolic syndrome. Diabetes Care 2012, 35, 900–904. [Google Scholar] [CrossRef] [PubMed]
- Jialal, I.; Devaraj, S.; Adams-Huet, B.; Chen, X.; Kaur, H. Increased cellular and circulating biomarkers of oxidative stress in nascent metabolic syndrome. J. Clin. Endocrinol. Metab. 2012, 97, E1844–E1850. [Google Scholar] [CrossRef] [PubMed]
- Jialal, I.; Devaraj, S.; Kaur, H.; Adams-Huet, B.; Bremer, A.A. Increased chemerin and decreased omentin-1 in both adipose tissue and plasma in nascent metabolic syndrome. J. Clin. Endocrinol. Metab. 2013, 98, E514–E517. [Google Scholar] [CrossRef] [PubMed]
- Jialal, I.; Adams-Huet, B.; Pahwa, R. Selective increase in monocyte p38 mitogen-activated protein kinase activity in metabolic syndrome. Diabetes Vasc. Dis. Res. 2016, 13, 93–96. [Google Scholar] [CrossRef] [PubMed]
- Adams-Huet, B.; Devaraj, S.; Siegel, D.; Jialal, I. Increased adipose tissue insulin resistance in metabolic syndrome: Relationship to circulating adipokines. Metab. Syndr. Relat. Disord. 2014, 12, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression, 2nd ed; Wiley and Sons, Inc.: Hoboken, NJ, USA, 2000; pp. 156–164. [Google Scholar]
- Falck-Hansen, M.; Kassiteridi, C.; Monaco, C. Toll-like receptors in atherosclerosis. Int. J. Mol. Sci. 2013, 14, 14008–14023. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Welsh, C.; Celis-Morales, C.A.; Brown, R.; Mackay, D.F.; Lewsey, J.; Mark, P.B.; Gray, S.R.; Ferguson, L.D.; Anderson, J.J.; Lyall, D.M.; et al. Comparison of Conventional Lipoprotein Tests and Apolipoproteins in the Prediction of Cardiovascular Disease. Circulation 2019, 140, 542–552. [Google Scholar] [CrossRef] [PubMed]
- Raja, V.; Aguiar, C.; Alsayed, N.; Chibber, Y.S.; El Badawi, H.; Ezhov, M.; Hermans, M.P.; Pandey, R.C.; Ray, K.K.; Tokgözoglu, L.; et al. Non-HDL-cholesterol in dyslipidemia: Review of the state-of-the-art literature and outlook. Atherosclerosis 2023, 383, 117312. [Google Scholar] [CrossRef] [PubMed]
- Martemucci, G.; Fracchiolla, G.; Muraglia, M.; Tardugno, R.; Dibenedetto, R.S.; D’Alessandro, A.G. Metabolic Syndrome: A Narrative Review from the Oxidative Stress to the Management of Related Diseases. Antioxidants 2023, 12, 2091. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Reddy, P.; Lent-Schochet, D.; Ramakrishnan, N.; McLaughlin, M.; Jialal, I. Metabolic syndrome is an inflammatory disorder: A conspiracy between adipose tissue and phagocytes. Clin. Chim. Acta 2019, 496, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Alemany, M. The Metabolic Syndrome, a Human Disease. Int. J. Mol. Sci. 2024, 25, 2251. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shi, H.; Kokoeva, M.V.; Inouye, K.; Tzameli, I.; Yin, H.; Flier, J.S. TLR4 links innate immunity and fatty acid-induced insulin resistance. J. Clin. Investig. 2006, 116, 3015–3025. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lopez-Yus, M.; Hörndler, C.; Borlan, S.; Bernal-Monterde, V.; Arbones-Mainar, J.M. Unraveling Adipose Tissue Dysfunction: Molecular Mechanisms, Novel Biomarkers, and Therapeutic Targets for Liver Fat Deposition. Cells 2024, 13, 380. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tan, L.; Lu, X.; Danser, A.H.J.; Verdonk, K. The Role of Chemerin in Metabolic and Cardiovascular Disease: A Literature Review of Its Physiology and Pathology from a Nutritional Perspective. Nutrients 2023, 15, 2878. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bobbert, T.; Schwarz, F.; Fischer-Rosinsky, A.; Maurer, L.; Möhlig, M.; Pfeiffer, A.F.; Mai, K.; Spranger, J. Chemerin and prediction of Diabetes mellitus type 2. Clin. Endocrinol. 2015, 82, 838–843. [Google Scholar] [CrossRef] [PubMed]
Variable | Tertile 1 n = 34 | Tertile 2 n = 34 | Tertile 3 n = 34 | p-Value * |
---|---|---|---|---|
Female/Male, n (%) | 27/7 (79/21) | 27/7 (79/21) | 24/10 (71/29) | 0.39 |
Control/MetS, n (%) | 29/5 (85/15) | 11/23 (32/68) | 3/31 (9/91) | <0.0001 |
TyG index | 7.9 (7.7–8.2) | 8.5 (8.4–8.6) | 9.1 (8.9–9.3) | <0.0001 |
Age (years) | 46 (41–56) | 53 (45–61) | 54 (48–60) | 0.03 |
Waist (cm) | 87 (81–99) | 103 (95–117) | 107 (97–117) | <0.0001 |
Weight (kg) | 80.5 (71.4–91.8) | 98.2 (84.1–111.4) | 92.7 (82.7–112.3) | 0.003 |
BMI (kg/m2) | 29.0 (25.8–32.4) | 34.3 (31.9–41.0) | 33.8 (28.5–39.2) | 0.002 |
Systolic BP (mmHg) | 120 (108–132) | 132 (116–139) | 129 (122–136) | 0.009 |
Diastolic BP (mmHg) | 74 (66–82) | 80 (72–86) | 79 (75–86) | 0.007 |
Glucose (mg/dL) | 88 (83–95) | 95 (88–102) | 100 (94–109) | <0.0001 |
Insulin (mU/L) | 6.0 (3.8–10.2) | 10.6 (7.2–17.1) | 13.0 (9.4–21.1) | <0.0001 |
Total cholesterol (mg/dL) | 177 (159–198) | 198 (183–213) | 208 (188–224) | 0.0008 |
HDL cholesterol (mg/dL) | 54 (43–64) | 47 (35–50) | 35 (31–41) | <0.0001 |
Non-HDL cholesterol (mg/dL) | 122 (108–147) | 154 (136–161) | 159 (152–181) | <0.0001 |
Triglycerides (mg/dL) | 62 (50–70) | 107 (97–122) | 174 (156–211) | <0.0001 |
hsCRP (mg/L) | 1.1 (0.4–4.0) | 3.4 (1.3–5.4) | 2.6 (1.7–4.6) | 0.006 |
HOMA-IR | 1.4 (0.8–2.3) | 2.6 (1.6–3.7) | 3.5 (2.2–5.7) | <0.0001 |
FFA (umol/L) | 320 (180–440) | 580 (400–760) | (780(670–950) | 0.0001 |
Adipo-IR (mmol/pmol) | 11 (6–36) | 42 (27–69) | 91 (55–106) | <0.0001 |
Variable | Tertile 1 | Tertile 2 | Tertile 3 | * p-Value Jonckheere-Terpstra Test |
---|---|---|---|---|
Oxidative stress: | ||||
Oxidized LDL (U/L) | 25.4 (21.3–40.3) | 43.9 (36.1–50.0) | 45.2 (34.8–58.5) | 0.0002 |
Nitrotyrosine (nM/L) | 10.0 (5.9–24.2) | 28.2 (10.9–64.2) | 23.2 (13.7–102.9) | 0.03 |
Inflammation: | ||||
Endotoxin (EU/mL) | 4.1 (3.5–4.7) | 7.0 (3.7–10.6) | 13.7 (11.5–17.7) | 0.0004 |
IL-6 (pg/mL) | 1326 (402–1775 | 1693 (565–2146) | 1696 (1346–2018) | 0.007 |
IL-8 (pg/mL) | 768 (626–1113) | 807 (588–1456) | 897 (648–1488) | 0.20 |
IL-1-beta (pg/mL) | 818 (421–943) | 844 (532–1187) | 879 (563–987) | 0.25 |
TLR-2 (MFI/106 cells) | 24 (18–31) | 24 (21–51) | 29 (20–45) | 0.12 |
TLR-4 (MFI/106 cells) | 21 (19–29) | 26 (21–29) | 31 (25–54) | 0.002 |
pP38MAP Kinase | 0.07 (0.04–0.09) | 0.14 (0.09–0.24) | 0.23 (0.14–0.36) | <0.0001 |
NFkB activity | 0.05 (0.04–0.07) | 0.24 (0.07–0.27) | 0.24 (0.12–0.26) | <0.0001 |
Adipokines: | ||||
RBP4 (μg/mL) | 38.2 (34.1–44.6) | 44.6 (36.3–56.6) | 48.9 (39.3–55.8) | 0.009 |
Leptin (ng/mL) | 35.0 (24.1–55.4) | 67.4 (36.6–105.3) | 65.9 (38.8–83.8) | 0.06 |
Adiponectin (μg/mL) | 7.8 (5.7–11.3) | 5.6 (3.9–8.4) | 5.1 (3.9–12.0) | 0.10 |
Chemerin (ng/mL) | 279 (234–333) | 319 (273–387) | 370 (311–408) | 0.009 |
Variable | rho | p |
---|---|---|
Oxidative stress | ||
Oxidized LDL | 0.57 | <0.0001 |
Nitrotyrosine | 0.30 | 0.04 |
Inflammation | ||
Endotoxin | 0.64 | <0.0001 |
Interleukin-6 | 0.28 | 0.005 |
Interleukin-8 | 0.15 | 0.16 |
Interleukin-1-beta | 0.19 | 0.07 |
Monocyte–Toll-like receptor-2 | 0.23 | 0.04 |
Monocyte–Toll-like receptor-4 | 0.32 | 0.003 |
Monocyte–NFkB activity | 0.43 | <0.0001 |
Monocyte–pP38MAP Kinase activity | 0.58 | <0.0001 |
Adipokines | ||
Retinol binding protein 4 | 0.36 | 0.001 |
Leptin | 0.24 | 0.03 |
Adiponectin | −0.13 | 0.26 |
Chemerin | 0.42 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adams-Huet, B.; Jialal, I. An Increasing Triglyceride–Glucose Index Is Associated with a Pro-Inflammatory and Pro-Oxidant Phenotype. J. Clin. Med. 2024, 13, 3941. https://doi.org/10.3390/jcm13133941
Adams-Huet B, Jialal I. An Increasing Triglyceride–Glucose Index Is Associated with a Pro-Inflammatory and Pro-Oxidant Phenotype. Journal of Clinical Medicine. 2024; 13(13):3941. https://doi.org/10.3390/jcm13133941
Chicago/Turabian StyleAdams-Huet, Beverley, and Ishwarlal Jialal. 2024. "An Increasing Triglyceride–Glucose Index Is Associated with a Pro-Inflammatory and Pro-Oxidant Phenotype" Journal of Clinical Medicine 13, no. 13: 3941. https://doi.org/10.3390/jcm13133941
APA StyleAdams-Huet, B., & Jialal, I. (2024). An Increasing Triglyceride–Glucose Index Is Associated with a Pro-Inflammatory and Pro-Oxidant Phenotype. Journal of Clinical Medicine, 13(13), 3941. https://doi.org/10.3390/jcm13133941