The Effects of Sarcopenia on Overall Survival and Postoperative Complications of Patients Undergoing Hepatic Resection for Primary or Metastatic Liver Cancer: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Selection
2.2. Inclusion and Exclusion Criteria
2.3. Definition
2.4. Data Extraction
2.5. Risk of Bias and Quality Assessment
2.6. Meta-Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hamaguchi, Y.; Kaido, T.; Okumura, S.; Ito, T.; Fujimoto, Y.; Ogawa, K.; Mori, A.; Hammad, A.; Hatano, E.; Uemoto, S. Preoperative intramuscular adipose tissue content is a novel prognostic predictor after hepatectomy for hepatocellular carcinoma. J. Hepato-Biliary-Pancreat Sci. 2015, 22, 475–485. [Google Scholar] [CrossRef] [PubMed]
- Harimoto, N.; Shirabe, K.; Yamashita, Y.-I.; Ikegami, T.; Yoshizumi, T.; Soejima, Y.; Ikeda, T.; Maehara, Y.; Nishie, A.; Yamanaka, T. Sarcopenia as a predictor of prognosis in patients following hepatectomy for hepatocellular carcinoma. Br. J. Surg. 2013, 100, 1523–1530. [Google Scholar] [CrossRef]
- Hayashi, H.; Shimizu, A.; Kubota, K.; Notake, T.; Masuo, H.; Yoshizawa, T.; Hosoda, K.; Sakai, H.; Yasukawa, K.; Soejima, Y. Combination of sarcopenia and prognostic nutritional index to predict long-term outcomes in patients undergoing initial hepatectomy for hepatocellular carcinoma. Asian J. Surg. 2023, 46, 816–823. [Google Scholar] [CrossRef]
- Kobayashi, A.; Kaido, T.; Hamaguchi, Y.; Okumura, S.; Shirai, H.; Kamo, N.; Yagi, S.; Taura, K.; Okajima, H.; Uemoto, S. Impact of Visceral Adiposity as Well as Sarcopenic Factors on Outcomes in Patients Undergoing Liver Resection for Colorectal Liver Metastases. World J. Surg. 2018, 42, 1180–1191. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-W.; Lu, C.-C.; Chang, C.-D.; Lee, K.-C.; Chen, H.H.; Yeh, W.S.; Hu, W.-H.; Tsai, K.-L.; Yeh, C.-H.; Wee, S.-Y.; et al. Prognostic value of sarcopenia in patients with colorectal liver metastases undergoing hepatic resection. Sci. Rep. 2020, 10, 6459. [Google Scholar] [CrossRef] [PubMed]
- Hamaguchi, Y.; Kaido, T.; Okumura, S.; Kobayashi, A.; Fujimoto, Y.; Ogawa, K.; Mori, A.; Hammad, A.; Hatano, E.; Uemoto, S. Muscle Steatosis is an Independent Predictor of Postoperative Complications in Patients with Hepatocellular Carcinoma. World J. Surg. 2016, 40, 1959–1968. [Google Scholar] [CrossRef] [PubMed]
- Berardi, G.; Antonelli, G.; Colasanti, M.; Meniconi, R.; Guglielmo, N.; Laurenzi, A.; Ferretti, S.; Sandri, G.B.L.; Spagnoli, A.; Moschetta, G.; et al. Association of Sarcopenia and Body Composition with Short-term Outcomes After Liver Resection for Malignant Tumors. JAMA Surg. 2020, 155, e203336. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, K.; Haruki, K.; Taniai, T.; Hamura, R.; Shirai, Y.; Yasuda, J.; Shiozaki, H.; Onda, S.; Gocho, T.; Ikegami, T. Osteosarcopenia is a potential predictor for the prognosis of patients who underwent hepatic resection for colorectal liver metastases. Ann. Gastroenterol. Surg. 2021, 5, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Runkel, M.; Diallo, T.D.; Lang, S.A.; Bamberg, F.; Benndorf, M.; Fichtner-Feigl, S. The Role of Visceral Obesity, Sarcopenia and Sarcopenic Obesity on Surgical Outcomes After Liver Resections for Colorectal Metastases. World J. Surg. 2021, 45, 2218–2226. [Google Scholar] [CrossRef]
- Marasco, G.; Serenari, M.; Renzulli, M.; Alemanni, L.V.; Rossini, B.; Pettinari, I.; Dajti, E.; Ravaioli, F.; Golfieri, R.; Cescon, M.; et al. Clinical impact of sarcopenia assessment in patients with hepatocellular carcinoma undergoing treatments. J. Gastroenterol. 2020, 55, 927–943. [Google Scholar] [CrossRef]
- Harimoto, N.; Hoshino, H.; Muranushi, R.; Hagiwara, K.; Yamanaka, T.; Ishii, N.; Tsukagoshi, M.; Igarashi, T.; Watanabe, A.; Kubo, N.; et al. Skeletal Muscle Volume and Intramuscular Adipose Tissue Are Prognostic Predictors of Postoperative Complications After Hepatic Resection. Anticancer Res. 2018, 38, 4933–4939. [Google Scholar] [CrossRef] [PubMed]
- Yasuta, S.; Sugimoto, M.; Kudo, M.; Kobayashi, S.; Takahashi, S.; Konishi, M.; Gotohda, N. Early postoperative decrease of skeletal muscle mass predicts recurrence and poor survival after surgical resection for perihilar cholangiocarcinoma. BMC Cancer 2022, 22, 1358. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.E.; Han, D.H.; Koo, B.N.; Kim, J. Effect of sarcopenia on postoperative ICU admission and length of stay after hepatic resection for Klatskin tumor. Front. Oncol. 2023, 13, 1136376. [Google Scholar] [CrossRef]
- Yang, J.; Chen, K.; Zheng, C.; Chen, K.; Lin, J.; Meng, Q.; Chen, Z.; Deng, L.; Yu, H.; Deng, T.; et al. Impact of sarcopenia on outcomes of patients undergoing liver resection for hepatocellular carcinoma. J. Cachexia Sarcopenia Muscle 2022, 13, 2383–2392. [Google Scholar] [CrossRef]
- Yoon, S.B.; Choi, M.H.; Song, M.; Lee, J.H.; Lee, I.S.; Lee, M.A.; Hong, T.H.; Jung, E.S.; Choi, M.G. Impact of preoperative body compositions on survival following resection of biliary tract cancer. J. Cachexia Sarcopenia Muscle 2019, 10, 794–802. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Yang, J.; Yu, H.; Bo, Z.; Chen, K.; Wang, D.; Xie, Y.; Wang, Y.; Chen, G. Effect of Sarcopenia on Survival and Health-Related Quality of Life in Patients with Hepatocellular Carcinoma after Hepatectomy. Cancers 2022, 14, 6144. [Google Scholar] [CrossRef]
- Eriksson, S.; Nilsson, J.H.; Strandberg Holka, P.; Eberhard, J.; Keussen, I.; Sturesson, C. The impact of neoadjuvant chemotherapy on skeletal muscle depletion and preoperative sarcopenia in patients with resectable colorectal liver metastases. HPB 2017, 19, 331–337. [Google Scholar] [CrossRef]
- Bernardi, L.; Roesel, R.; Vagelli, F.; Majno-Hurst, P.; Cristaudi, A. Imaging based body composition profiling and outcomes after oncologic liver surgery. Front. Oncol. 2022, 12, 1007771. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Fielding, R.A.; Vellas, B.; Evans, W.J.; Bhasin, S.; Morley, J.E.; Newman, A.B.; van Kan, G.A.; Andrieu, S.; Bauer, J.; Breuille, D.; et al. Sarcopenia: An Undiagnosed Condition in Older Adults. Current Consensus Definition: Prevalence, Etiology, and Consequences. International Working Group on Sarcopenia. J. Am. Med. Dir. Assoc. 2011, 12, 249–256. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.-P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [PubMed]
- Muscaritoli, M.; Anker, S.D.; Argiles, J.; Aversa, Z.; Bauer, J.M.; Biolo, G.; Boirie, Y.; Bosaeus, I.; Cederholm, T.; Costelli, P.; et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: Joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin. Nutr. 2010, 29, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Wells, G.A.; Shea, B.; O’Connell, D.; Pereson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. Published Online 2000. Available online: https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 12 March 2024).
- Bajrić, T.; Kornprat, P.; Faschinger, F.; Werkgartner, G.; Mischinger, H.J.; Wagner, D. Sarcopenia and primary tumor location influence patients outcome after liver resection for colorectal liver metastases. Eur. J. Surg. Oncol. 2022, 48, 615–620. [Google Scholar] [CrossRef] [PubMed]
- Kroh, A.; Uschner, D.; Lodewick, T.; Eickhoff, R.M.; Schöning, W.; Ulmer, F.T.; Neumann, U.P.; Binnebösel, M. Impact of body composition on survival and morbidity after liver resection in hepatocellular carcinoma patients. Hepatobil. Pancreat Dis. Int. 2019, 18, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Lodewick, T.M.; van Nijnatten, T.J.; van Dam, R.M.; van Mierlo, K.; Dello, S.A.W.G.; Neumann, U.P.; Damink, S.W.M.O.; Dejong, C.H.C. Are sarcopenia, obesity and sarcopenic obesity predictive of outcome in patients with colorectal liver metastases? HPB 2015, 17, 438–446. [Google Scholar] [CrossRef] [PubMed]
- Peng, P.D.; van Vledder, M.G.; Tsai, S.; de Jong, M.C.; Makary, M.; Ng, J.; Edil, B.H.; Wolfgang, C.L.; Schulick, R.D.; Choti, M.A.; et al. Sarcopenia negatively impacts short-term outcomes in patients undergoing hepatic resection for colorectal liver metastasis. HPB 2011, 13, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Van Vledder, M.G.; Levolger, S.; Ayez, N.; Verhoef, C.; Tran, T.C.K.; IJzermans, J.N.M. Body composition and outcome in patients undergoing resection of colorectal liver metastases19. Br. J. Surg. 2012, 99, 550–557. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.-H.; Liao, C.-Y.; Wang, D.-F.; Huang, L.; Li, G.; Chen, J.-Z.; Wang, L.; Lin, T.-S.; Lai, J.-L.; Zhou, S.-Q.; et al. Textbook outcomes of hepatocellular carcinoma patients with sarcopenia: A multicenter analysis. Eur. J. Surg. Oncol. 2023, 49, 802–810. [Google Scholar] [CrossRef]
- Yabusaki, N.; Fujii, T.; Yamada, S.; Suzuki, K.; Sugimoto, H.; Kanda, M.; Nakayama, G.; Koike, M.; Fujiwara, M.; Kodera, Y. Adverse impact of low skeletal muscle index on the prognosis of hepatocellular carcinoma after hepatic resection. Int. J. Surg. 2016, 30, 136–142. [Google Scholar] [CrossRef]
- Yang, J.; Wang, D.; Ma, L.; An, X.; Hu, Z.; Zhu, H.; Zhang, W.; Chen, K.; Ma, J.; Yang, Y.; et al. Sarcopenia negatively affects postoperative short-term outcomes of patients with non-cirrhosis liver cancer. BMC Cancer 2023, 23, 212. [Google Scholar] [CrossRef]
- Kim, H.; Choi, H.Z.; Choi, J.M.; Kang, B.M.; Lee, J.W.; Hwang, J.W. Sarcopenia with systemic inflammation can predict survival in patients with hepatocellular carcinoma undergoing curative resection. J. Gastrointest. Oncol. 2022, 13, 744–753. [Google Scholar] [CrossRef] [PubMed]
- Hou, G.; Jiang, C.; Du, J.; Yuan, K. Sarcopenia predicts an adverse prognosis in patients with combined hepatocellular carcinoma and cholangiocarcinoma after surgery. Cancer Med. 2022, 11, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Bao, H.; Zeng, Q.; Hu, W.; Zhang, Q. Sarcopenia as a prognostic factor in hepatolithiasis-associated intrahepatic cholangiocarcinoma patients following hepatectomy: A retrospective study. Int. J. Clin. Exp. Med. 2015, 8, 18245–18254. [Google Scholar] [PubMed]
- Van Wijk, L.; Van Duinhoven, S.; Liem, M.S.L.; Bouman, D.E.; Viddeleer, A.R.; Klaase, J.M. Risk factors for surgery-related muscle quantity and muscle quality loss and their impact on outcome. Eur. J. Med. Res. 2021, 26, 36. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Wu, Y.; Hu, H.; Kang, W.; Li, Y.; Jin, P.; Shao, X.; Li, W.; Tian, Y. Prognostic Significance of Preoperative Sarcopenia in Patients with Gastric Cancer Liver Metastases Receiving Hepatectomy. Front. Nutr. 2022, 9, 878791. [Google Scholar] [CrossRef] [PubMed]
- Pessia, B.; Romano, L.; Carlei, F.; Lazzari, S.; Vicentini, V.; Giuliani, A.; Schietroma, M. Preoperative sarcopenia predicts survival after hepatectomy for colorectal metastases: A prospective observational study. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 5619–5624. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Jing, Y.; Zhao, C.; Zhang, Q.; Zhao, X.; Yang, J.; Wu, L.; Yang, Y. Preoperative computed tomography-assessed skeletal muscle index is a novel prognostic factor in patients with hepatocellular carcinoma following hepatectomy: A meta-analysis. J. Gastrointest. Oncol. 2020, 11, 1040–1053. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, R.M.; O’Neill, M.; Ó Ríordáin, M.G.; Ó Súilleabháin, C.B.; O’Sullivan, A.W. Sarcopaenia, obesity, sarcopaenic obesity and outcomes following hepatic resection for colorectal liver metastases: A systematic review and meta-analysis. HPB 2022, 24, 1844–1853. [Google Scholar] [CrossRef] [PubMed]
- Kong, Q.; Gao, Q.; Li, W.; Chen, Z. The Impact of Imaging-Diagnosed Sarcopenia on Long-term Prognosis After Curative Resection for Hepatocellular Carcinoma: A Systematic Review and Meta-analysis. Acad. Radiol. 2024, 31, 1272–1283. [Google Scholar] [CrossRef]
- Thormann, M.; Omari, J.; Pech, M.; Damm, R.; Croner, R.; Perrakis, A.; Strobel, A.; Wienke, A.; Surov, A. Low skeletal muscle mass and post-operative complications after surgery for liver malignancies: A meta-analysis. Langenbecks Arch. Surg. 2022, 407, 1369–1379. [Google Scholar] [CrossRef]
- Martin, D.; Maeder, Y.; Kobayashi, K.; Schneider, M.; Koerfer, J.; Melloul, E.; Halkic, N.; Hübner, M.; Demartines, N.; Becce, F.; et al. Association between CT-Based Preoperative Sarcopenia and Outcomes in Patients That Underwent Liver Resections. Cancers 2022, 14, 261. [Google Scholar] [CrossRef] [PubMed]
- Kamarajah, S.K.; Bundred, J.; Tan, B.H.L. Body composition assessment and sarcopenia in patients with gastric cancer: A systematic review and meta-analysis. Gastric Cancer 2019, 22, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.Y.; Hou, L.; Zha, P.; Huang, K.L.; Peng, L. Sarcopenia is an independent unfavorable prognostic factor of non-small cell lung cancer after surgical resection: A comprehensive systematic review and meta-analysis. Eur. J. Surg. Oncol. 2019, 45, 728–735. [Google Scholar] [CrossRef]
- Levolger, S.; Van Vugt, J.L.A.; De Bruin, R.W.F.; IJzermans, J.N.M. Systematic review of sarcopenia in patients operated on for gastrointestinal and hepatopancreatobiliary malignancies. Br. J. Surg. 2015, 102, 1448–1458. [Google Scholar] [CrossRef]
- Trejo-Avila, M.; Bozada-Gutiérrez, K.; Valenzuela-Salazar, C.; Herrera-Esquivel, J.; Moreno-Portillo, M. Sarcopenia predicts worse postoperative outcomes and decreased survival rates in patients with colorectal cancer: A systematic review and meta-analysis. Int. J. Colorectal Dis. 2021, 36, 1077–1096. [Google Scholar] [CrossRef] [PubMed]
- Simonsen, C.; de Heer, P.; Bjerre, E.D.; Suetta, C.; Hojman, P.; Pedersen, B.K.; Svendsen, L.B.; Christensen, J.F. Sarcopenia and Postoperative Complication Risk in Gastrointestinal Surgical Oncology: A Meta-analysis. Ann. Surg. 2018, 268, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Hamaguchi, Y.; Kaido, T.; Okumura, S.; Kobayashi, A.; Shirai, H.; Yagi, S.; Kamo, N.; Okajima, H.; Uemoto, S. Impact of Skeletal Muscle Mass Index, Intramuscular Adipose Tissue Content, and Visceral to Subcutaneous Adipose Tissue Area Ratio on Early Mortality of Living Donor Liver Transplantation. Transplantation 2017, 101, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Martin, L.; Birdsell, L.; MacDonald, N.; Reiman, T.; Clandinin, M.T.; McCargar, L.J.; Murphy, R.; Ghosh, S.; Sawyer, M.B.; Baracos, V.E. Cancer Cachexia in the Age of Obesity: Skeletal Muscle Depletion Is a Powerful Prognostic Factor, Independent of Body Mass Index. J. Clin. Oncol. 2013, 31, 1539–1547. [Google Scholar] [CrossRef]
- Prado, C.M.; Lieffers, J.R.; McCargar, L.J.; Reiman, T.; Sawyer, M.B.; Martin, L.; Baracos, V.E. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: A population-based study. Lancet Oncol. 2008, 9, 629–635. [Google Scholar] [CrossRef]
- Miyamoto, Y.; Baba, Y.; Sakamoto, Y.; Ohuchi, M.; Tokunaga, R.; Kurashige, J.; Hiyoshi, Y.; Iwagami, S.; Yoshida, N.; Watanabe, M.; et al. Negative Impact of Skeletal Muscle Loss after Systemic Chemotherapy in Patients with Unresectable Colorectal Cancer. PLoS ONE 2015, 10, e0129742. [Google Scholar] [CrossRef]
- March, C.; Omari, J.; Thormann, M.; Pech, M.; Wienke, A.; Surov, A. Prevalence and role of low skeletal muscle mass (LSMM) in hepatocellular carcinoma. A systematic review and meta-analysis. Clin. Nutr. ESPEN 2022, 49, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.T.; Lo, C.M.; Lai, E.; Chu, K.M.; Liu, C.L.; Wong, J. Perioperative Nutritional Support in Patients Undergoing Hepatectomy for Hepatocellular Carcinoma. N. Engl. J. Med. 1994, 331, 1547–1552. [Google Scholar] [CrossRef] [PubMed]
- Perisetti, A.; Goyal, H.; Yendala, R.; Chandan, S.; Tharian, B.; Thandassery, R.B. Sarcopenia in hepatocellular carcinoma: Current knowledge and future directions. World J. Gastroenterol. 2022, 28, 432–448. [Google Scholar] [CrossRef] [PubMed]
Study | Selection | Comparability | Outcomes | Total | |||||
---|---|---|---|---|---|---|---|---|---|
Representativeness of the Exposed Cohort | Selection of the Non-Exposed Cohort | Ascertainment of Exposure | Outcome of Interest Not Present at the Start of the Study | Assessment of Outcome | Length of Follow-Up | Adequacy of Follow-Up | [24] | ||
Bajric et al. [24] | * | * | * | * | * | * | * | * | 8/8 |
Harimoto et al. [2] | * | * | * | * | * | * | * | 7/8 | |
Harimoto et al. [11] | * | * | * | * | 4/8 | ||||
Hayashi et al. [3] | * | * | * | * | * | * | * | * | 8/8 |
Hu et al. [16] | * | * | * | * | * | * | * | 7/8 | |
Kobayashi et al. [4] | * | * | * | * | * | * | 6/8 | ||
Kroh et al. [25] | * | * | * | * | * | * | * | * | 8/8 |
Lodewick et al. [26] | * | * | * | * | * | * | 6/8 | ||
Peng et al. [27] | * | * | * | * | * | 5/8 | |||
Runkel et al. [9] | * | * | * | * | 4/8 | ||||
VanVledder et al. [28] | * | * | * | * | * | * | * | * | 8/8 |
Wu et al. [29] | * | * | * | * | * | * | 6/8 | ||
Yabusaki et al. [30] | * | * | * | * | * | * | * | * | 8/8 |
Yang et al. [14] | * | * | * | * | * | * | 6/8 | ||
Yang et al. [31] | * | * | * | * | * | * | 6/8 | ||
Berardi et al. [7] | * | * | * | * | * | * | 6/8 | ||
Kim et al. [32] | * | * | * | * | * | 5/8 | |||
Marasco et al. [10] | * | * | * | * | * | * | * | * | 8/8 |
Hou et al. [33] | * | * | * | * | * | * | * | 7/8 | |
Zhou et al. [34] | * | * | * | * | * | * | 6/8 | ||
Wijk et al. [35] | * | * | * | * | * | 5/8 | |||
Liu et al. (2020) [5] | * | * | * | * | * | * | * | 7/8 | |
Xiong et al. [36] | * | * | * | * | * | * | * | 7/8 | |
Pessia et al. [37] | * | * | * | * | * | * | * | * | 8/8 |
Xu et al. [38] | * | * | * | * | * | * | * | * | 8/8 |
Furukawa et al. [8] | * | * | * | * | * | * | * | * | 8/8 |
Author | Population | Groups | Sex | Age (mean) | BMI (mg/m2) | SMI | Primary Tumor Location | Tumor Stage | Neoadjuvant Chemotherapy |
---|---|---|---|---|---|---|---|---|---|
Bajric et al. [24] | 315 | Sarcopenic, n = 78 (24.7%); non- sarcopenic, n = 237 (75.3%) | 135 M, 220 F | 68 (60–74) | 25.5 (23.3–28.7) | NA | Colorectal cancer | IV (100%) | NA |
Harimoto et al. [2] | 186 | Sarcopenic, n = 75 (40.3%); non-sarcopenic, n = 111 (59.7%) | 145 M, 41 F | 66 (55–77) | Sarcopenic, 20.5 (18.1); non-sarcopenic, 24 (21.2–26.8); p < 0.001 | Sarcopenic, 37.8; non-sarcopenic, 49.7; p < 0.001 | Liver | Sarcopenic, I n = 11 (14.7%), II n = 38 (50.7%), III n = 20 (26.6%), IV n = 6 (8%); non-sarcopenic, I n = 18 (16.2%), II n = 57 (51.3%), III n = 29 (26.2%), IV n = 7 (6.3%) | NA |
Harimoto et al. [11] | 146 | Sarcopenic, n = 146 | 106 M, 40 F | 68 (28–89) | 22.7 (14.8–31.4) | 36.8 | Liver | NA | NA |
Hayashiet al. [3] | 303 | Sarcopenic, n = 106 (34.9%); non-sarcopenic n = 197 (65.1%) | Sarcopenic, 96 M/10 F; non-sarcopenic, 125 M/72 F | Sarcopenic, 72 (38–89); non-sarcopenic, 70 (36–85) | Sarcopenic, n = 21.9 (13.4–32.5); non-sarcopenic, 23.8 (16.5–45.2); p < 0.001 | NA | Liver | Sarcopenic, I n = 20 (18.9%), II n = 41 (38.7%), III n = 34 (32.1%), IV n = 11 (10.3%); non-sarcopenic, I n = 49 (24.9%), II n = 84 (42.6%), III n = 50 (25.4%), IV n = 14 (7.1%) | NA |
Hu et al. [16] | 153 | Sarcopenic, n = 45 (29.4%); non-sarcopenic, n = 108 (70.6%) | 133 M, 45 F | 60 (51–66) | <25, n = 109; >25, n = 44 | Sarcopenic: 41.84; non-sarcopenic: 49.20 (p < 0.001) | Liver | I n = 95 (62.1%), II–IV n = 58 (37.9%) | NA |
Kobayashi et al. [4] | 124 | Sarcopenic, n = 24 (19.3%); non-sarcopenic, n = 100 (80.7%) | 78 M, 46 F | 65 (59–70) | 22.7 (20.3–24.7) | NA | Colon, n = 69; Rectum, n = 55 | I/II, n = 28 (24%); III/IV, n = 91 (76%) | 52% |
Kroh et al. [25] | 70 | Sarcopenic, n = 33 (47.1%); non-sarcopenic, n = 37 (52.9%) | 49 M, 21 F | 67 (54–80) | 26.64 (22.02–31.26) | 47.98 | Liver | T1, n = 22 (31.5%) T2, n = 25 (35.7%) T3, n = 23 (32.8%) * | NA |
Lodewick et al. [26] | 80 | Sarcopenic, n = 31 (38.7%); non-sarcopenic, n = 49 (61.3%) | 51 M, 29 F | 66 (28–82) | 24.9 (18.7–46.4) | NA | Colorectal/HBC | NA | NA |
Peng et al. [27] | 259 | Sarcopenic, n = 41 (15.8%); non-sarcopenic, n = 218 (84.2%) | 155 M, 104 F | 58 (46–70) | <30, n = 191; ≥30, n = 68 | NA | Colon, n = 191; Rectum, n = 68 | T1/T2, n = 41 (15.8%) T3/T4, n = 218 (84.2%) * | NA |
Runkel et al. [9] | 94 | Sarcopenic, n = 94 | 58 M, 36 F | 61 (34–83) | 26 (13.8–45.6) | NA | Colorectal cancer | IV (100%) | 62.8% |
VanVledder et al. [28] | 196 | Sarcopenic, n = 38 (19.4%); non-sarcopenic, n = 158 (80.6%) | 120 M, 76 F | 64.5 (31–86) | Sarcopenic, 23.7 (20.7–26.7); non-sarcopenic, 26.7 (23.2–30.2) | NA | Colon, n = 116; Rectum, n = 80 | T2 n = 25 (13.2%), T3 n = 148 (78.3%), T4 n = 16 (8.5%) * | Sarcopenic, 47%; non-sarcopenic, 46.2% |
Wu et al. [29] | 1172 | Sarcopenic, n = 421 (35.9%); non-sarcopenic, n = 751 (65.1%) | Sarcopenic: <65, n = 329; ≥65, n = 92; non-sarcopenic: <65, n = 613; ≥65, n = 138 | Sarcopenic, 25.47 (21.77–26.32); non-sarcopenic, 22.94 (20.76–25.63) p < 0.001 | Sarcopenic, 37.84; non-sarcopenic, 46.68 p < 0.001 | HCC | Sarcopenic, I n = 191 (45.3%), II n = 100 (23.7%), III n = 121 (28.8%), IV n = 9 (2.2%); non-sarcopenic, I n = 342 (45.6%), II n = 180 (23.9%), III n = 217 (28.9%), IV n = 12 (1.6%) | None | |
Yabusaki et al. [30] | 195 | Sarcopenic, n = 89 (45.6%); non-sarcopenic, n = 106 (54.4%) | 157 M, 38 F | 66 (22–80) | 23.2 (14.3–37.3) | NA | HCC | I, n = 20 (10.3%) II, n = 112 (57.4%) III, n = 42 (21.5%) IVA, n = 19 (9.7%) IVB, n = 2 (1.1%) | NA |
Yang et al. [14] | 155 | Sarcopenic, n = 89 (57.4%); non-sarcopenic, n = 66 (42.6%) | 135 M, 20 F | 60 (51–66) | 23.37 (23.14–23.6) | 47.05 | HCC | I–II, n = 138 (89.1%) III–IV, n = 17 (10.9%) | NA |
Yang et al. [31] | 171 | Sarcopenic, n = 86 (50.2%); non-sarcopenic, n = 85 (49.8%) | 99 M, 72 F | 59 (50–67) | 22.86 (20.94–25.08) | 42.22 | HCC, n = 47 CLM, n = 44 Other HBC **, n = 80 | NA | NA |
Berardi et al. [7] | 234 | Sarcopenic, n = 143 (61.2%); non-sarcopenic, n = 91 (38.8%) | 158 M, 76 F | 66 (58–74) | 27.12 (23,28–29,55) | 46.22 | HCC, n = 101; Colorectal cancer, n = 96 | NA | Sarcopenic, 36.4%; non-sarcopenic, 39.5% |
Kim et al. [32] | 159 | Sarcopenic, n = 74 (46.5%); non-sarcopenic, n = 85 (53.5%) | 133 M, 26 F | 59 (49–69) | 24.8 (21.1–28.42) | 51.08 | HCC | I–II, n = 65 (40.9%); III–IV, n = 94 (59.1%) | NA |
Marasco et al. [10] | 159 | Sarcopenic, n = 82 (51.6%); non-sarcopenic, n = 77 (48.4%) | 128 M, 31 F | 68 (58–75) | Sarcopenic, 25.6 (23.8–27.8); non-sarcopenic, 27.5 (25.6–29.4) | F: 39.2; M: 48.9 | HCC | NA | NA |
Hou et al. [33] | 153 | Sarcopenic, n = 77 (50.3%); non-sarcopenic, n = 76 (49.7%) | 128 M, 25 F | >55, n = 68; ≤55, n = 85 | Sarcopenic, 21.64 (19.73–23.78); non-sarcopenic, 24.27 (21.93–25.62) | NA | Combined HCC–CC | HCC: Stage I n = 21 (13.7%), stage II n = 18 (11.8%), stage III n = 92 (60.1%), stage IV n = 22 (14.4%); CC: Stage I n = 22 (14.4%), stage II n = 23 (15%), stage III n = 108 (70.6%) | NA |
Zhou et al. [34] | 67 | Sarcopenic, n = 33 (49.3%); non-sarcopenic, n = 34 (50.7%) | 22 M, 45 F | 61 (47–81) | 22.2 (24.4–28.7) | 41.2 | IHCC | I–II, n = 44 (65.7%); III–IV, n = 23 (34.3%) | None |
Wijk et al. [35] | 128 | Sarcopenic, n = 83 (64.8%); non-sarcopenic, n = 45 (35.2%) | 89 M, 39 F | 65.5 (57–74) | 25.6 (22.5–28.7) | NA | Colorectal cancer | NA | NA |
Liu et al. [5] | 182 | Sarcopenic, n = 48 (26.4%); non-sarcopenic, n = 134 (73.6%) | 106 M, 76 F | 59.5 (28–85) | 24.3 (20.7–27.9) | NA | Colorectal cancer | T1 n = 3 (1.6%), T2 n = 22 (12.1%), T3 n = 73 (40.1%), T4 n = 84 (46.2%) * | Sarcopenic, 21%; non-sarcopenic, 19% |
Xiong et al. [36] | 114 | Sarcopenic, n = 58 (50.8%); non-sarcopenic, n = 56 (49.2%) | 91 M, 23 F | 62.5 (57–70) | <18.5, n = 20; ≥18.5, n = 94 | Sarcopenic, 34.2; non-sarcopenic, 42.7 | Gastric cancer | NA | Sarcopenic, 53.5%; non-sarcopenic, 58.9% |
Pessia et al. [37] | 74 | Sarcopenic, n = 48 (64.8%); non-sarcopenic, n = 26 (35.2%) | NA | NA | Sarcopenic, 24.2; non-sarcopenic, 27.6 | Sarcopenic, 39.3; non-sarcopenic, 52.7 | Colorectal cancer | NA | 100% |
Xu et al. [38] | 1420 | Sarcopenic, n = 458 (32.2%); non-sarcopenic, n = 962 (67.8%) | NA | NA | Sarcopenic, 24.2; non-sarcopenic, 27.6 | Sarcopenic, 39.3; non-sarcopenic, 52.7 | HCC | NA | NA |
Furukawa et al. [8] | 63 | Sarcopenic, n = 33 (52.3%); non-sarcopenic, n = 30 (47.7%) | 31 M, 37 F | 67.5 (28–90) | NA | NA | Colorectal cancer | NA | Sarcopenic, 37%; non-sarcopenic, 34% |
Study | Population | Complication Rate | Follow-Up (Months) | |
---|---|---|---|---|
Bajric et al. [24] | 315 | 30 | ||
Sarcopenic | 78 (24.7%) | 24.9% | ||
Non-sarcopenic | 237 (75.3%) | 9.7% | ||
p = 0.01 | ||||
Harimoto et al. [2] | 186 | NA | ||
Sarcopenic | 75 (40.3%) | 32% | ||
Non-sarcopenic | 111 (59.7%) | 50.5% | ||
p = 0.613 | ||||
Harimoto et al. [11] | 146 | NA | ||
Sarcopenic | 146 | 8.2% | ||
Non-sarcopenic | 0 | - | ||
- | ||||
Hayashi et al. [3] | 303 | 60 | ||
Sarcopenic | 106 (34.9%) | 58% | ||
Non-sarcopenic | 197 (65.1%) | 60% | ||
p = 0.812 | ||||
Hu et al. [16] | 153 | 12 | ||
Sarcopenic | 45 (29.4%) | 62.3% | ||
Non-sarcopenic | 108 (70.6%) | 47.2% | ||
p = 0.162 | ||||
Kroh et al. [25] | 70 | 60 | ||
Sarcopenic | 33 (47.1%) | 24% | ||
Non-sarcopenic | 37 (52.9%) | 27% | ||
p = 1 | ||||
Peng et al. [27] | 249 | 23% | NA | |
Sarcopenic | 41 (15.8%) | - | ||
Non-sarcopenic | 218 (84.2%) | - | ||
- | ||||
Runkel et al. [9] | 94 | NA | ||
Sarcopenic | 94 | 62.8% | ||
Non-sarcopenic | 0 | - | ||
- | ||||
Wu et al. [29] | 1172 | NA | ||
Sarcopenic | 421 (35.9%) | Significantly higher | ||
Non-sarcopenic | 751 (65.1%) | - | ||
p < 0.001 | ||||
Yabusaki et al. [30] | 195 | 37 | ||
Sarcopenic | 89 (45.6%) | 20.2% | ||
Non-sarcopenic | 106 (54.4%) | 21.7% | ||
p = 0.8 | ||||
Yang et al. [14] | 155 | NA | ||
Sarcopenic | 89 (57%) | 40.9% | ||
Non-sarcopenic | 66 (43%) | 6.06% | ||
p < 0.001 | ||||
Yang et al. [31] | 171 | NA | ||
Sarcopenic | 86 (50.2%) | 26.1% | ||
Non-sarcopenic | 85 (49.8% | 4.5% | ||
p = 0.032 | ||||
Berardi et al. [7] | 234 | 30.3% | 3 | |
Sarcopenic | 91 (38.8%) | - | ||
Non-sarcopenic | 143 (61.2%) | - | ||
Marasco et al. [10] | 159 | 30 | ||
Sarcopenic | 82 (51.6%) | 11.8% | ||
Non-sarcopenic | 77 (48.4%) | 0 | ||
p = 0.032 | ||||
Wijk et al. [35] | 128 | 40.6% | NA | |
Sarcopenic | 83 (64.8%) | - | ||
Non-sarcopenic | 45 (35.2%) | - | ||
- | ||||
Kim et al. [32] | 159 | 41.5% | 1 | |
Sarcopenic | - | |||
Non-sarcopenic | - | |||
- | ||||
Liu et al. [5] | 182 | 33% | 32.5 | |
Sarcopenic | 38.3% | |||
Non-sarcopenic | 27.7% | |||
- | ||||
Xiong et al. [36] | 114 | 29.3% | 60 | |
Sarcopenic | 43.7% | |||
Non-sarcopenic | 33.6% | |||
- |
Complications after Hepatectomy | |||
---|---|---|---|
Complication | Number of Cases | Complication | Number of Cases |
Bile leakage | 83 | Liver failure | 109 |
Ascites | 8 | Pleural effusion | 80 |
Pneumonia | 4 | Surgical site infection | 50 |
Intra-abdominal abscess | 62 | Postoperative bleeding | 10 |
Brain infarction | 1 | Hepatic encephalopathy | 1 |
Obstruction of blood dialysis shunt | 1 | Reintubation | 1 |
Biloma | 2 | Sepsis | 1 |
Portal vein thrombosis | 1 | Cardiopulmonary | 3 |
Gastrointestinal | 2 | Hematological | 3 |
Bacteremia | 2 | Miscellaneous infections | 6 |
Study | Population | 5-Year Overall Survival | Mortality (30 Days) | Follow-Up (Months) | |
---|---|---|---|---|---|
Bajric et al. [24] | 315 | 30 | |||
Sarcopenic | 78 (25%) | 20.3% | 38.2% | ||
Non-sarcopenic | 237 (75%) | 23.1% | 34.3% | ||
p = 0.01 | p > 0.05 | ||||
Harimoto et al. [2] | 186 | NA | |||
Sarcopenic | 75 (40.3%) | 71% | - | ||
Non-sarcopenic | 111 (59.7%) | 83.7% | - | ||
p = 0.001 | |||||
Hayashi et al. [3] | 303 | 60 | |||
Sarcopenic | 106 (34.9%) | - | 0 | ||
Non-sarcopenic | 197 (65.1%) | - | 0.5% | ||
p = 0.023 | p = 0.353 | ||||
Hu et al. [16] | 153 | 12 | |||
Sarcopenic | 45 (29.4%) | 91.1% | 2.2% | ||
Non-sarcopenic | 108 (70.6%) | 99.1% | 0 | ||
p = 0.043 | - | ||||
Kobayashi et al. [4] | 124 | NA | |||
Sarcopenic | 24 (19.3%) | - | - | ||
Non-sarcopenic | 100 (80.7%) | - | - | ||
p = 0.343 | p = 0.946 | ||||
Kroh et al. [25] | 70 | 60 | |||
Sarcopenic | 33 (47.1%) | 45% | 3% | ||
Non-sarcopenic | 37 (52.9%) | 13.6% | 8% | ||
p = 0.035 | p = 0.616 | ||||
Lodewick et al. [26] | 80 | - | - | 3 | |
Sarcopenic | 31 (39%) | - | 10.5% | ||
Non-sarcopenic | 49 (61%) | - | 3.5% | ||
- | - | ||||
Peng et al. [27] | 259 | 40% | 0.8% | NA | |
Sarcopenic | 41 (16%) | - | - | ||
Non-sarcopenic | 218 (84%) | - | - | ||
- | - | ||||
Vledder et al. [28] | 196 | - | - | 29 | |
Sarcopenic | 38 (19%) | 20% | 42.9% | ||
Non-sarcopenic | 158 (81%) | 49.9% | - | ||
p < 0.001 | - | ||||
Wu et al. [29] | 1172 | NA | |||
Sarcopenic | 421 (35.9%) | (Significantly worse) | - | ||
Non-sarcopenic | 751 (65.1%) | - | - | ||
p < 0.001 | - | ||||
Yabusaki et al. [30] | 195 | 37 | |||
Sarcopenic | 89 (45.6%) | 85.3 months | 2.2% | ||
Non-sarcopenic | 106 (54.4%) | 96.3 months | 2.8% | ||
p = 0.72 | p = 0.8 | ||||
Berardi et al. [7] | 234 | - | - | 3 | |
Sarcopenic | 91 (38.8%) | - | 1.3% | ||
Non-sarcopenic | 85 (53.5.%) | - | 0 | ||
- | - | ||||
Kim et al. [32] | 159 | 70.2% | 27% | 1 | |
Sarcopenic | 74 (46.5%) | - | - | ||
Non-sarcopenic | 85 (53.5%) | - | - | ||
- | - | ||||
Hou et al. [33] | 153 | 21.4% | 71.2% | 41.3 | |
Sarcopenic | 77 (50.3%) | - | - | ||
Non-sarcopenic | 76 (49.7%) | - | - | ||
- | - | ||||
Zhou et al. [34] | 195 | - | 79.1% | NA | |
Sarcopenic | 89 (45.6%) | 21 months | - | ||
Non-sarcopenic | 106 (54.4%) | 6 months | - | ||
p < 0.001 | - | ||||
Liu et al. [5] | 182 | 63% | - | 32.5 | |
Sarcopenic | 48 (26.4%) | - | - | ||
Non-sarcopenic | 134 (73.6%) | - | - | ||
- | - | ||||
Xiong et al. [36] | 114 | 34.3% | 60 | ||
Sarcopenic | 58 (50.8%) | - | - | ||
Non-sarcopenic | 56 (49.2%) | - | - | ||
- | - | ||||
Pessia et al. [37] | 74 | 32 | |||
Sarcopenic | 48 (64.8%) | Significantly worse | - | ||
Non-sarcopenic | 26 (35.2%) | - | - | ||
p = 0.0297 | - | ||||
Xu et al. [38] | 1420 | 12 | |||
Sarcopenic | 458 (32.2%) | Significantly worse | - | ||
Non-sarcopenic | 962 (67.8%) | - | - | ||
p = 0.002 | - | ||||
Furukawa et al. [8] | 63 | 36 | |||
Sarcopenic | 33 (52.3%) | 63.9% | - | ||
Non-sarcopenic | 30 (47.7%) | 77.7% | - | ||
p = 0.02 | - |
Studies | Patients | Right Colon | Left Colon | Odds Ratio | Lower 95% CI | Upper 95% CI |
---|---|---|---|---|---|---|
Bajric et al. (2022) [24] | 355 | 180 | 175 | 4 | 3.2083 | 6.1028 |
Kobayashi et al. (2017) [4] | 124 | 69 | 55 | 0.5555 | 0.2993 | 1.031 |
Lodewick et al. (2015) [26] | 80 | 24 | 1.8452 | 0.9799 | 3.4748 | |
Peng et al. (2011) [27] | 259 | 191 | 68 | 0.8176 | 0.5317 | 1.2572 |
Runkel et al. (2021) [9] | 94 | 60 | 34 | 1.751 | 0.9954 | 3.081 |
Vledder et al. (2012) [28] | 196 | 116 | 80 | 0.8026 | 0.5121 | 1.2578 |
Berardi et al. (2020) [7] | 234 | 96 | 1.5511 | 1.0884 | 2.2106 | |
Wijk et al. (2021) [35] | 128 | 58 | 70 | 2.6167 | 1.678 | 4.0806 |
Liu et al. (2020) [5] | 182 | 82 | 100 | 1.0654 | 0.6918 | 1.6406 |
Pessia et al. (2021) [37] | 74 | 34 | 40 | 2.6118 | 1.4566 | 4.6831 |
Furukawa et al. (2021) [8] | 118 | 48 | 70 | 1.3345 | 0.7948 | 2.2407 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giakoustidis, A.; Papakonstantinou, M.; Chatzikomnitsa, P.; Gkaitatzi, A.D.; Bangeas, P.; Loufopoulos, P.D.; Louri, E.; Myriskou, A.; Moschos, I.; Antoniadis, D.; et al. The Effects of Sarcopenia on Overall Survival and Postoperative Complications of Patients Undergoing Hepatic Resection for Primary or Metastatic Liver Cancer: A Systematic Review and Meta-Analysis. J. Clin. Med. 2024, 13, 3869. https://doi.org/10.3390/jcm13133869
Giakoustidis A, Papakonstantinou M, Chatzikomnitsa P, Gkaitatzi AD, Bangeas P, Loufopoulos PD, Louri E, Myriskou A, Moschos I, Antoniadis D, et al. The Effects of Sarcopenia on Overall Survival and Postoperative Complications of Patients Undergoing Hepatic Resection for Primary or Metastatic Liver Cancer: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine. 2024; 13(13):3869. https://doi.org/10.3390/jcm13133869
Chicago/Turabian StyleGiakoustidis, Alexandros, Menelaos Papakonstantinou, Paraskevi Chatzikomnitsa, Areti Danai Gkaitatzi, Petros Bangeas, Panagiotis Dimitrios Loufopoulos, Eleni Louri, Athanasia Myriskou, Ioannis Moschos, Diomidis Antoniadis, and et al. 2024. "The Effects of Sarcopenia on Overall Survival and Postoperative Complications of Patients Undergoing Hepatic Resection for Primary or Metastatic Liver Cancer: A Systematic Review and Meta-Analysis" Journal of Clinical Medicine 13, no. 13: 3869. https://doi.org/10.3390/jcm13133869
APA StyleGiakoustidis, A., Papakonstantinou, M., Chatzikomnitsa, P., Gkaitatzi, A. D., Bangeas, P., Loufopoulos, P. D., Louri, E., Myriskou, A., Moschos, I., Antoniadis, D., Giakoustidis, D., & Papadopoulos, V. N. (2024). The Effects of Sarcopenia on Overall Survival and Postoperative Complications of Patients Undergoing Hepatic Resection for Primary or Metastatic Liver Cancer: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine, 13(13), 3869. https://doi.org/10.3390/jcm13133869