Fetal Growth Velocity—A Breakthrough in Intrauterine Growth Assessment?
Abstract
:1. Introduction
2. Fetal Growth Restriction—Different Criteria and One Diagnosis?
3. Growth Velocity—A New Concept of Abnormal Fetal Growth Diagnosis
4. Undiagnosed Growth Pathologies among Appropriate-for-Gestational Age Fetuses
5. Abnormal Fetal Growth Velocity—A Revolutionary Parameter in the Diagnostic Process
Issue | What is Measured | Main Assumptions | References |
---|---|---|---|
Fetal growth velocity standards |
| Establishing international fetal growth velocity standards allows for a more nuanced understanding of fetal development, enhancing global monitoring of fetal health. | (Ohuma et al., 2020) [24] |
Impact of PM2.5 exposure on fetal growth velocity |
| Prenatal exposure to PM2.5 is detrimental to fetal growth velocity, especially during critical development windows, emphasizing the need for environmental health policies and calls for public health interventions to mitigate exposure to pollutants. | (Cao et al., 2021) [36] |
Diagnostic accuracy of growth charts |
| The selection of fetal growth charts significantly affects the diagnosis of FGR, underscoring the importance of accurate, population-specific references. | (Melamed et al., 2021) [37] |
Fetal growth velocity and birth outcomes |
| Accelerated fetal growth velocities in the third trimester are linked to increased shoulder dystocia risks, advocating for more vigilant prenatal monitoring and tailored delivery planning. | (MacDonald et al., 2021) [5] |
Growth velocity and placental insufficiency |
| Reduced antenatal growth velocity in AGA fetuses is a significant indicator of placental insufficiency, highlighting the need for enhanced monitoring strategies, such as a routine 36-week ultrasound. | (Kennedy et al., 2020) [25] |
Key Points | Key Argument | |
---|---|---|
Fetal growth velocity standards | 1. Peak velocity for head circumference and femur length around 16 weeks. 2. Steady growth velocity for abdominal circumference. 3. Rapid slowdown in velocity towards term for most biometrics. 4. Variability in growth velocity among different populations, notably Chinese. 5. Potential utility in predicting adverse perinatal outcomes. | Provides a basis for evaluating fetal health and development. |
Impact of environmental factors | 1. Exposure to particulate matter reduces fetal growth velocity. 2. Critical exposure window identified between 22 and 32 weeks. 3. Decrease in biometric measurement velocity linked to PM2.5. 4. Sensitive period for fetal development affected by external pollution. 5. Potential for tailored prenatal interventions. | Highlights the environmental impacts on fetal development. |
Fetal growth predictors of neonatal outcomes | 1. Reduced velocity associated with antepartum fetal death. 2. Discrepancies in growth velocity predictive of SGA neonates. 3. Velocity analysis improves SGA prediction over single measurements. 4. Consistent reduced velocity linked to placental insufficiency. 5. Early detection through velocity monitoring can guide clinical decisions. | Suggests monitoring growth velocity for early intervention. |
Advancements in ultrasound technology | 1. BiometryNet offers automated, reliable fetal biometry. 2. Dynamic Orientation Determination enhances measurement accuracy. 3. Reduction in operator dependency for ultrasound measurements. 4. Potential for widespread clinical adoption due to robust validation. 5. Supports non-expert use in varied clinical settings. | Improves the accuracy and efficiency of fetal biometry. |
Challenges in ultrasound measurement | 1. Variability due to sonographer skill level. 2. Difficulty in consistent landmark detection. 3. Challenges in measuring rapidly growing fetal structures. 4. Need for improved training and standardization. 5. Development of automated tools to reduce human error. | Stresses the need for standardized and improved ultrasound training. |
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gardosi, J.; Francis, A. Adverse pregnancy outcome and association with small for gestational age birthweight by customized and population-based percentiles. Am. J. Obstet. Gynecol. 2009, 201, 28.e1–28.e8. [Google Scholar] [CrossRef] [PubMed]
- Nardozza, L.M.M.; Caetano, A.C.R.; Zamarian, A.C.P.; Mazzola, J.B.; Silva, C.P.; Marçal, V.M.G.; Lobo, T.F.; Peixoto, A.B.; Júnior, E.A. Fetal growth restriction: Current knowledge. Arch. Gynecol. Obstet. 2017, 295, 1061–1077. [Google Scholar] [CrossRef] [PubMed]
- Wielgos, M.; Bomba-Opoń, D.; Breborowicz, G.H.; Czajkowski, K.; Debski, R.; Leszczynska-Gorzelak, B.; Oszukowski, P.; Radowicki, S.; Zimmer, M. Recommendations of the Polish Society of Gynecologists and Obstetricians regarding caesarean sections. Ginekol. Pol. 2018, 89, 644–657. [Google Scholar] [CrossRef] [PubMed]
- Doty, M.S.; Chen, H.-Y.; Sibai, B.M.; Chauhan, S.P. Maternal and Neonatal Morbidity Associated with Early Term Delivery of Large-for-Gestational-Age but Nonmacrosomic Neonates. Obstet. Gynecol. 2019, 133, 1160–1166. [Google Scholar] [CrossRef]
- MacDonald, T.M.; Hui, L.; Tong, S.; Robinson, A.J.; Dane, K.M.; Middleton, A.L.; Walker, S.P. Reduced growth velocity across the third trimester is associated with placental insufficiency in fetuses born at a normal birthweight: A prospective cohort study. BMC Med. 2017, 15, 164. [Google Scholar] [CrossRef] [PubMed]
- Stampalija, T.; Wolf, H.; Mylrea-Foley, B.; Marlow, N.; Stephens, K.J.; Shaw, C.J.; Lees, C.C.; Arabin, B.; Berger, A.; Bergman, E.; et al. Reduced fetal growth velocity and weight loss are associated with adverse perinatal outcome in fetuses at risk of growth restriction. Am. J. Obstet. Gynecol. 2023, 228, 71.e1–71.e10. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Shastri, S.; Sharma, P. Intrauterine Growth Restriction: Antenatal and Postnatal Aspects. Clin. Med. Insights Pediatr. 2016, 10, 67–83. [Google Scholar] [CrossRef]
- Deinichenko, O.V.; Siusiuka, V.G.; Krut, Y.Y.; Pavlyuchenko, M.I.; Puchkov, V.A.; Shevchenko, A.O.; Kolokot, N.G. Clinical and pathogenetic mechanisms of formation of fetal growth retardation. Reprod. Health Woman 2023, 3, 24–28. [Google Scholar] [CrossRef]
- Jaiman, S.; Romero, R.; Pacora, P.; Jung, E.; Bhatti, G.; Yeo, L.; Kim, Y.M.; Kim, B.; Kim, C.J.; Kim, J.S.; et al. Disorders of placental villous maturation in fetal death. J. Perinat. Med. 2020, 48, 345–368. [Google Scholar] [CrossRef]
- Kajdy, A.; Modzelewski, J.; Cymbaluk-Płoska, A.; Kwiatkowska, E.; Bednarek-Jędrzejek, M.; Borowski, D.; Stefańska, K.; Rabijewski, M.; Torbé, A.; Kwiatkowski, S. Molecular Pathways of Cellular Senescence and Placental Aging in Late Fetal Growth Restriction and Stillbirth. Int. J. Mol. Sci. 2021, 22, 4186. [Google Scholar] [CrossRef] [PubMed]
- Melamed, N.; Baschat, A.; Yinon, Y.; Athanasiadis, A.; Mecacci, F.; Figueras, F.; Berghella, V.; Nazareth, A.; Tahlak, M.; McIntyre, H.D.; et al. FIGO (International Federation of Gynecology and Obstetrics) initiative on fetal growth: Best practice advice for screening, diagnosis, and management of fetal growth restriction. Int. J. Gynecol. Obstet. 2021, 152, 3–57. [Google Scholar] [CrossRef] [PubMed]
- Papageorghiou, A.T.; Kennedy, S.H.; Salomon, L.J.; Altman, D.G.; Ohuma, E.O.; Stones, W.; Gravett, M.G.; Barros, F.C.; Victora, C.; Purwar, M.; et al. The INTERGROWTH-21st fetal growth standards: Toward the global integration of pregnancy and pediatric care. Am. J. Obstet. Gynecol. 2018, 218, S630–S640. [Google Scholar] [CrossRef]
- Alves, A.L.D.F.; Carvalho, A.A.V.D.; Carvalho, J.A.B.D.; Figueiredo, I., Jr. Evaluation of the adequacy of Hadlock’s reference chart for identification of fetuses with growth restriction. J. Matern. Fetal Neonatal Med. 2018, 31, 967–971. [Google Scholar] [CrossRef] [PubMed]
- Kiserud, T.; Benachi, A.; Hecher, K.; Perez, R.G.; Carvalho, J.; Piaggio, G.; Platt, L.D. The World Health Organization fetal growth charts: Concept, findings, interpretation, and application. Am. J. Obstet. Gynecol. 2018, 218, S619–S629. [Google Scholar] [CrossRef] [PubMed]
- Grantz, K.L.; Hediger, M.L.; Liu, D.; Louis, G.M.B. Fetal growth standards: The NICHD fetal growth study approach in context with INTERGROWTH-21st and the World Health Organization Multicentre Growth Reference Study. Am. J. Obstet. Gynecol. 2018, 218, S641–S655.e28. [Google Scholar] [CrossRef] [PubMed]
- Kajdy, A.; Modzelewski, J.; Herman, K.; Muzyka-Placzynska, K.; Rabijewski, M. Growth charts and prediction of abnormal growth—What is known, what is not known and what is misunderstood. Ginekol Pol. 2019, 90, 717–721. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, E.J.; Hiscock, R.J.; Robinson, A.J.; Hui, L.; Tong, S.; Dane, K.M.; Middleton, A.L.; Walker, S.P.; MacDonald, T.M. Appropriate-for-gestational-age infants who exhibit reduced antenatal growth velocity display postnatal catch-up growth. PLoS ONE 2020, 15, e0238700. [Google Scholar] [CrossRef] [PubMed]
- Grantz, K.L.; Kim, S.; Grobman, W.A.; Newman, R.; Owen, J.; Skupski, D.; Grewal, J.; Chien, E.K.; Wing, D.A.; Wapner, R.J.; et al. Fetal growth velocity: The NICHD fetal growth studies. Am. J. Obstet. Gynecol. 2018, 219, 285.e1–285.e36. [Google Scholar] [CrossRef]
- Sovio, U.; White, I.R.; Dacey, A.; Pasupathy, D.; Smith, G.C.S. Screening for fetal growth restriction with universal third trimester ultrasonography in nulliparous women in the Pregnancy Outcome Prediction (POP) study: A prospective cohort study. Lancet 2015, 386, 2089–2097. [Google Scholar] [CrossRef]
- Guihard-Costa, A.M.; Larroche, J.C. Growth velocity of some fetal parameters. II. Body weight, body length and head circumference. Biol. Neonate. 1992, 62, 317–324. [Google Scholar] [CrossRef]
- Guihard-Costa, A.M.; Larroche, J.C. Growth velocity of some fetal parameters. I. Brain weight and brain dimensions. Biol. Neonate. 1992, 62, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Guihard-Costa, A.-M.; Droullé, P.; Larroche, J.-C. Growth velocity of the biparietal diameter, abdominal transverse diameter and femur length in the fetal period. Early Hum. Dev. 1991, 27, 93–102. [Google Scholar] [CrossRef]
- Hugh, O.; Gardosi, J. Fetal weight projection model to define growth velocity and validation against pregnancy outcome in a cohort of serially scanned pregnancies. Ultrasound Obstet. Gynecol. 2022, 60, 86–95. [Google Scholar] [CrossRef]
- Ohuma, E.O.; Villar, J.; Feng, Y.; Xiao, L.; Salomon, L.; Barros, F.C.; Cheikh Ismail, L.E.; Stones, W.; Jaffer, Y.; Oberto, M.; et al. Fetal growth velocity standards from the Fetal Growth Longitudinal Study of the INTER-GROWTH-21st Project. Am. J. Obstet. Gynecol. 2021, 224, e1–e208. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, L.M.; Tong, S.; Robinson, A.J.; Hiscock, R.J.; Hui, L.; Dane, K.M.; Middleton, A.L.; Walker, S.P.; MacDonald, T.M. Reduced growth velocity from the mid-trimester is associated with placental insufficiency in fetuses born at a normal birthweight. BMC Med. 2020, 18, 395. [Google Scholar] [CrossRef] [PubMed]
- Deter, R.L.; Lee, W.; Dicker, P.; Tully, E.C.; Cody, F.; Malone, F.D.; Flood, K.M. Third-trimester growth diversity in small fetuses classified as appropriate-for-gestational age or small-for-gestational age at birth. Ultrasound Obstet. Gynecol. 2021, 58, 882–891. [Google Scholar] [CrossRef] [PubMed]
- Hendrix, M.; van Kuijk, S.; El Bahaey, S.; Gerver, W.; Feron, F.; Kuin, M.; Spaanderman, M.; Bons, J.; Al-Nasiry, S. Postnatal growth during the first five years of life in SGA and AGA neonates with reduced fetal growth. Early Hum. Dev. 2020, 151, 105199. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, T.M.; Robinson, A.J.; Hiscock, R.J.; Hui, L.; Dane, K.M.; Middleton, A.L.; Kennedy, L.M.; Tong, S.; Walker, S.P. Accelerated fetal growth velocity across the third trimester is associated with increased shoulder dystocia risk among fetuses who are not large-for-gestational-age: A prospective observational cohort study. PLoS ONE 2021, 16, e0258634. [Google Scholar] [CrossRef] [PubMed]
- Hammami, A.; Mazer Zumaeta, A.; Syngelaki, A.; Akolekar, R.; Nicolaides, K.H. Ultrasonographic estimation of fetal weight: Development of new model and assessment of performance of previous models. Ultrasound Obstet. Gynecol. 2018, 52, 35–43. [Google Scholar] [CrossRef]
- Simic, M.; Wikström, A.; Stephansson, O. Accelerated fetal growth in early pregnancy and risk of severe large-for-gestational-age and macrosomic infant: A cohort study in a low-risk population. Acta Obstet. Gynecol. Scand. 2017, 96, 1261–1268. [Google Scholar] [CrossRef]
- Rodriguez-Sibaja, M.J.; Villa-Cueva, A.; Ochoa-Padilla, M.; Rodriguez-Montenegro, M.S.; Lumbreras-Marquez, M.I.; Acevedo-Gallegos, S.; Gallardo-Gaona, J.M.; Copado-Mendoza, Y. Abdominal circumference growth velocity as a predictor of adverse perinatal outcomes in small-for-gestational-age fetuses. J. Matern. Neonatal Med. 2023, 36, 2262077. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, N.G.; Figueras, F.; Wøjdemann, K.R.; Tabor, A.; Gardosi, J. Early Fetal Size and Growth as Predictors of Adverse Outcome. Obstet. Gynecol. 2008, 112, 765–771. [Google Scholar] [CrossRef]
- Pacora, P.; Romero, R.; Jung, E.; Gudicha, D.W.; Hernandez-Andrade, E.; Musilova, I.; Kacerovsky, M.; Jaiman, S.; Erez, O.; Hsu, C.D.; et al. Reduced fetal growth velocity precedes antepartum fetal death. Ultrasound Obstet. Gynecol. 2021, 57, 942–952. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, H.; Toledano, H.; Weissbach, T.; Kassif, E.; Tsur, A.; Biron-Shental, T.; Weisz, B. Growth Velocity and Doppler Evaluation to Predict Nonreassuring Fetal Heart Rate at Birth in Low-Risk Women: A Prospective, Longitudinal Study. Fetal Diagn. Ther. 2021, 48, 624–632. [Google Scholar] [CrossRef] [PubMed]
- Villar, J.; Gunier, R.B.; Tshivuila-Matala, C.O.; Rauch, S.A.; Nosten, F.; Ochieng, R.; Restrepo-Méndez, M.C.; McGready, R.; Barros, F.C.; Fernandes, M.; et al. Fetal cranial growth trajectories are associated with growth and neurode-velopment at 2 years of age: INTERBIO-21st Fetal Study. Nat. Med. 2021, 27, 647–652. [Google Scholar] [PubMed]
- Cao, Z.-J.; Zhao, Y.; Wang, S.-M.; Zhang, D.-L.; Zhou, Y.-C.; Liu, W.-N.; Yang, Y.-Y.; Hua, J. Prenatal exposure to fine particulate matter and fetal growth: A cohort study from a velocity perspective. Chemosphere 2021, 262, 128404. [Google Scholar] [CrossRef] [PubMed]
- Melamed, N.; Hiersch, L.; Aviram, A.; Mei-Dan, E.; Keating, S.; Kingdom, J.C. Diagnostic accuracy of fetal growth charts for placenta-related fetal growth restriction. Placenta 2021, 105, 70–77. [Google Scholar] [CrossRef]
Growth Chart | What is Measured | Limitations | Usage |
---|---|---|---|
Hadlock (by Hadlock et al.) | EFW |
|
|
INTERGROWTH-21st (by Villar et al.) | Fetal growth in an international population |
|
|
WHO | Global standards for fetal growth |
|
|
NICHD | Fetal growth in the American population |
|
|
Customized Growth Charts (by Gardosi et al.) | Individual fetal growth considering factors such as ethnicity, maternal weight, height and parity |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orzeł, A.; Strojny, A.A.; Filipecka-Tyczka, D.; Baran, A.; Muzyka-Placzynska, K.; Mabiala, E.; Pajutrek-Dudek, J.; Scholz, A. Fetal Growth Velocity—A Breakthrough in Intrauterine Growth Assessment? J. Clin. Med. 2024, 13, 3842. https://doi.org/10.3390/jcm13133842
Orzeł A, Strojny AA, Filipecka-Tyczka D, Baran A, Muzyka-Placzynska K, Mabiala E, Pajutrek-Dudek J, Scholz A. Fetal Growth Velocity—A Breakthrough in Intrauterine Growth Assessment? Journal of Clinical Medicine. 2024; 13(13):3842. https://doi.org/10.3390/jcm13133842
Chicago/Turabian StyleOrzeł, Anna, Agnieszka Aleksandra Strojny, Dagmara Filipecka-Tyczka, Arkadiusz Baran, Katarzyna Muzyka-Placzynska, Ewelina Mabiala, Justyna Pajutrek-Dudek, and Anna Scholz. 2024. "Fetal Growth Velocity—A Breakthrough in Intrauterine Growth Assessment?" Journal of Clinical Medicine 13, no. 13: 3842. https://doi.org/10.3390/jcm13133842
APA StyleOrzeł, A., Strojny, A. A., Filipecka-Tyczka, D., Baran, A., Muzyka-Placzynska, K., Mabiala, E., Pajutrek-Dudek, J., & Scholz, A. (2024). Fetal Growth Velocity—A Breakthrough in Intrauterine Growth Assessment? Journal of Clinical Medicine, 13(13), 3842. https://doi.org/10.3390/jcm13133842