Postural and Lumbopelvic Control: Crucial Factors in the Functionality of Patients with Low Back Pain—A Descriptive Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Study Design
2.3. Participants
2.4. Sample Size
2.5. Selection Criteria
2.6. Personal Variables
2.7. Assessment of Low Back Pain Intensity
2.8. Assessment of Lumbopelvic Control (LPC)
2.9. Assessment of Postural Control (PC)
2.10. Functionality Levels: Oswestry Disability Index (ODI)
2.11. Statistical Analysis
3. Results
3.1. Participants
3.2. Clinical Variables Based on the Degree of Disability in the LBP Group
3.3. Correlation Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Safiri, S.; Kolahi, A.A.; Cross, M.; Hill, C.; Smith, E.; Carson-Chahhoud, K.; Mansournia, M.A.; Almasi-Hashiani, A.; Ashrafi-Asgarabad, A.; Kaufman, J.; et al. Prevalence, Deaths, and Disability-Adjusted Life Years Due to Musculoskeletal Disorders for 195 Countries and Territories 1990–2017. Arthritis Rheumatol. 2021, 73, 702–714. [Google Scholar] [CrossRef] [PubMed]
- Asahi, M.G.; Briganti, D.; Cam, E.; Seffinger, M.A. The role of musculoskeletal disorders in chronic disease: A narrative review. J. Am. Osteopath. Assoc. 2020, 120, 665–670. [Google Scholar] [CrossRef] [PubMed]
- Cieza, A.; Causey, K.; Kamenov, K.; Hanson, S.W.; Chatterji, S.; Vos, T. Global estimates of the need for rehabilitation based on the Global Burden of Disease study 2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 2006–2017. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.L.; de Luca, K.; Haile, L.M.; Steinmetz, J.D.; Culbreth, G.T.; Cross, M.; A Kopec, J.; Ferreira, P.H.; Blyth, F.M.; Buchbinder, R.; et al. Global, regional, and national burden of low back pain, 1990–2020, its attributable risk factors, and projections to 2050: A systematic analysis of the Global Burden of Disease Study 2021. Lancet Rheumatol. 2023, 5, e316–e329. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Pinto, C.; Etchegaray-Morales, I.; Munguía-Realpozo, P.; Rojas-Villarraga, A.; Osorio-Peña, D.; Méndez-Martínez, S.; García-Carrasco, M. Burden of Other Musculoskeletal Disorders in Latin America and the Caribbean: Findings of Global Burden of Disease Study 2019. J. Clin. Rheumatol. 2024, 30, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Strozzi, A.G.; Peláez-Ballestas, I.; Granados, Y.; Burgos-Vargas, R.; Quintana, R.; Londoño, J.; Guevara, S.; Vega-Hinojosa, O.; Alvarez-Nemegyei, J.; Juarez, V.; et al. Syndemic and syndemogenesis of low back pain in Latin-American population: A network and cluster analysis. Clin. Rheumatol. 2020, 39, 2715–2726. [Google Scholar] [CrossRef] [PubMed]
- Bilbeny, N.; Miranda, J.P.; Eberhard, M.E.; Ahumada, M.; Méndez, L.; Orellana, M.E.; Cid, L.; Ritter, P.; Fernández, R. Survey of chronic pain in Chile—Prevalence and treatment, impact on mood, daily activities and quality of life. Scand. J. Pain 2018, 18, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Vargas, C.; Bilbeny, N.; Balmaceda, C.; Rodríguez, M.F.; Zitko, P.; Rojas, R.; Eberhard, M.E.; Ahumada, M.; Espinoza, M.A. Costs and consequences of chronic pain due to musculoskeletal disorders from a health system perspective in Chile. Pain Rep. 2018, 3, e656. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, A.R.; Graham, P.L.; Schofield, D.; Cunich, M.; Nicholas, M. Cost-effectiveness of Multidisciplinary Interventions for Chronic Low Back Pain: A Narrative Review. Clin. J. Pain 2022, 38, 197–207. [Google Scholar] [CrossRef]
- The Lancet Rheumatology. The global epidemic of low back pain. Lancet Rheumatol. 2023, 5, e305. [Google Scholar] [CrossRef]
- Hartvigsen, J.; Hancock, M.J.; Kongsted, A.; Louw, Q.; Ferreira, M.L.; Genevay, S.; Hoy, D.; Karppinen, J.; Pransky, G.; Sieper, J.; et al. What low back pain is and why we need to pay attention. Lancet 2018, 391, 2356–2367. [Google Scholar] [CrossRef] [PubMed]
- Russo, F.; Papalia, G.F.; Vadalà, G.; Fontana, L.; Iavicoli, S.; Papalia, R.; Denaro, V. The effects of workplace interventions on low back pain in workers: A systematic review and meta-analysis. Int. J. Environ. Res. Public Health 2021, 18, 12614. [Google Scholar] [CrossRef]
- Annaswamy, T.M.; Cunniff, K.J.; Kroll, M.; Yap, L.; Hasley, M.D.; Lin, C.-K.; Petrasic, J. Lumbar Bracing for Chronic Low Back Pain: A Randomized Controlled Trial. Am. J. Phys. Med. Rehabil. 2021, 100, 742–749. [Google Scholar] [CrossRef] [PubMed]
- Parreira, P.; Maher, C.G.; Steffens, D.; Hancock, M.J.; Ferreira, M.L. Risk factors for low back pain and sciatica: An umbrella review. Spine J. 2018, 18, 1715–1721. [Google Scholar] [CrossRef] [PubMed]
- Karran, E.L.; Grant, A.R.; Moseley, G.L. Low back pain and the social determinants of health: A systematic review and narrative synthesis. Pain 2020, 161, 2476–2493. [Google Scholar] [CrossRef]
- Wong, C.K.; Mak, R.Y.; Kwok, T.S.; Tsang, J.S.; Leung, M.Y.; Funabashi, M.; Macedo, L.G.; Dennett, L.; Wong, A.Y. Prevalence, Incidence, and Factors Associated with Non-Specific Chronic Low Back Pain in Community-Dwelling Older Adults Aged 60 Years and Older: A Systematic Review and Meta-Analysis. J. Pain 2022, 23, 509–534. [Google Scholar] [CrossRef]
- Berenshteyn, Y.; Gibson, K.; Hackett, G.C.; Trem, A.B.; Wilhelm, M. Is standing balance altered in individuals with chronic low back pain? A systematic review. Disabil. Rehabil. 2019, 41, 1514–1523. [Google Scholar] [CrossRef]
- Shanbehzadeh, S.; ShahAli, S.; Takamjani, I.E.; Vlaeyen, J.W.S.; Salehi, R.; Jafari, H. Association of pain-related threat beliefs and disability with postural control and trunk motion in individuals with low back pain: A systematic review and meta-analysis. Eur. Spine J. 2022, 31, 1802–1820. [Google Scholar] [CrossRef]
- Brumagne, S.; Diers, M.; Danneels, L.; Moseley, G.L.; Hodges, P.W. Neuroplasticity of sensorimotor control in low back pain. J. Orthop. Sports Phys. Ther. 2019, 49, 402–414. [Google Scholar] [CrossRef]
- Tong, M.H.; Mousavi, S.J.; Kiers, H.; Ferreira, P.; Refshauge, K.; van Dieën, J. Is There a Relationship Between Lumbar Proprioception and Low Back Pain? A Systematic Review with Meta-Analysis. Arch. Phys. Med. Rehabil. 2017, 98, 120–136.e2. [Google Scholar] [CrossRef]
- Lin, J.; Halaki, M.; Rajan, P.; Leaver, A. Relationship between proprioception and pain and disability in people with non-specific low back pain: A systematic review with meta-analysis. Spine 2019, 44, E606–E617. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.H.; Hwang, U.-J.; Ahn, S.-H.M.; Kim, H.-A.; Kim, J.-H.B.; Kwon, O.-Y. Lumbopelvic motor control function between patients with chronic low back pain and healthy controls: A useful distinguishing tool: The STROBE study. Medicine 2020, 99, e19621. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Lucas, P.; Leirós-Rodríguez, R.; Lopez-Barreiro, J.; García-Soidán, J.L. Prevention of non-specific back pain through exercise and education: A systematic review and meta-analysis. J. Back Musculoskelet. Rehabil. 2024, 37, 585–598. [Google Scholar] [CrossRef] [PubMed]
- Puntumetakul, R.; Saiklang, P.; Tapanya, W.; Chatprem, T.; Kanpittaya, J.; Arayawichanon, P.; Boucaut, R. The Effects of Core Stabilization Exercise with the Abdominal Drawing-in Maneuver Technique versus General Strengthening Exercise on Lumbar Segmental Motion in Patients with Clinical Lumbar Instability: A Randomized Controlled Trial with 12-Month Follow-Up. Int. J. Environ. Res. Public Health 2021, 18, 7811. [Google Scholar] [CrossRef] [PubMed]
- Miura, T.; Tominaga, R.; Sato, K.; Endo, T.; Iwabuchi, M.; Ito, T.; Shirado, O. Relationship between Lower Limb Pain Intensity and Dynamic Lumbopelvic-Hip Alignment in Patients with Degenerative Lumbar Spinal Canal Stenosis: A Cross-Sectional Study. Asian Spine J. 2022, 16, 918–926. [Google Scholar] [CrossRef] [PubMed]
- Meh, K.; Jurak, G.; Sorić, M.; Rocha, P.; Sember, V. Validity and Reliability of IPAQ-SF and GPAQ for Assessing Sedentary Behaviour in Adults in the European Union: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. 2021, 18, 4602. [Google Scholar] [CrossRef] [PubMed]
- Thong, I.S.K.; Jensen, M.P.; Miró, J.; Tan, G. The validity of pain intensity measures: What do the NRS, VAS, VRS, and FPS-R measure? Scand. J. Pain 2018, 18, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Chiarotto, A.; Maxwell, L.J.; Ostelo, R.W.; Boers, M.; Tugwell, P.; Terwee, C.B. Measurement Properties of Visual Analogue Scale, Numeric Rating Scale, and Pain Severity Subscale of the Brief Pain Inventory in Patients with Low Back Pain: A Systematic Review. J. Pain 2019, 20, 245–263. [Google Scholar] [CrossRef]
- Liebenson, C.; Karpowicz, A.M.; Brown, S.H.M.; Howarth, S.J.; McGill, S.M. The Active Straight Leg Raise Test and Lumbar Spine Stability. PM&R 2009, 1, 530–535. [Google Scholar] [CrossRef]
- Bruno, P.A.; Millar, D.P.; Goertzen, D.A. Inter-rater agreement, sensitivity, and specificity of the prone hip extension test and active straight leg raise test. Chiropr. Man. Ther. 2014, 22, 23. [Google Scholar] [CrossRef]
- de Paula Lima, P.O.; de Oliveira, R.R.; de Moura Filho, A.G.; Raposo, M.C.F.; Costa, L.O.P.; Laurentino, G.E.C. Reproducibility of the pressure biofeedback unit in measuring transversus abdominis muscle activity in patients with chronic nonspecific low back pain. J. Bodyw. Mov. Ther. 2012, 16, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Solana-Tramunt, M.; Ortegón, A.; Morales, J.; Nieto, A.; Nishishinya, M.B.; Villafañe, J.H. Diagnostic accuracy of lumbopelvic motor control tests using pressure biofeedback unit in professional swimmers: A cross-sectional study. J. Orthop. 2019, 16, 590–595. [Google Scholar] [CrossRef] [PubMed]
- Cabrejas, C.; Solana-Tramunt, M.; Morales, J.; Campos-Rius, J.; Ortegón, A.; Nieto-Guisado, A.; Carballeira, E. The Effect of Eight-Week Functional Core Training on Core Stability in Young Rhythmic Gymnasts: A Randomized Clinical Trial. Int. J. Environ. Res. Public Health 2022, 19, 3509. [Google Scholar] [CrossRef] [PubMed]
- Ruhe, A.; Fejer, R.; Walker, B. The test–retest reliability of centre of pressure measures in bipedal static task conditions—A systematic review of the literature. Gait Posture 2010, 32, 436–445. [Google Scholar] [CrossRef] [PubMed]
- Salavati, M.; Hadian, M.R.; Mazaheri, M.; Negahban, H.; Ebrahimi, I.; Talebian, S.; Jafari, A.H.; Sanjari, M.A.; Sohani, S.M.; Parnianpour, M. Test–retest reliabty of center of pressure measures of postural stability during quiet standing in a group with musculoskeletal disorders consisting of low back pain, anterior cruciate ligament injury and functional ankle instability. Gait Posture 2009, 29, 460–464. [Google Scholar] [CrossRef] [PubMed]
- Fehrmann, E.; Kotulla, S.; Fischer, L.; Kienbacher, T.; Tuechler, K.; Mair, P.; Ebenbichler, G.; Paul, B. The impact of age and gender on the ICF-based assessment of chronic low back pain. Disabil. Rehabil. 2019, 41, 1190–1199. [Google Scholar] [CrossRef] [PubMed]
- Vianin, M. Psychometric properties and clinical usefulness of the Oswestry Disability Index. J. Chiropr. Med. 2008, 7, 161–163. [Google Scholar] [CrossRef] [PubMed]
- Brodke, D.S.; Goz, V.; Lawrence, B.D.; Spiker, W.R.; Neese, A.; Hung, M. Oswestry Disability Index: A psychometric analysis with 1610 patients. Spine J. 2017, 17, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Weir, J.P. Quantifying Test-Retest Reliability Using the Intraclass Correlation Coefficient and the SEM. J. Strength Cond. Res. 2005, 19, 231–240. [Google Scholar]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155. [Google Scholar] [CrossRef]
- Kahraman, B.O.; Kahraman, T.; Kalemci, O.; Sengul, Y.S. Gender differences in postural control in people with nonspecific chronic low back pain. Gait Posture 2018, 64, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Palazzo, F.; Nardi, A.; Lamouchideli, N.; Caronti, A.; Alashram, A.; Padua, E.; Annino, G. The effect of age, sex and a firm-textured surface on postural control. Exp. Brain Res. 2021, 239, 2181–2191. [Google Scholar] [CrossRef] [PubMed]
- Griffioen, M.; van Dieën, J.H. Effects of age and sex on trunk motor control. J. Biomech. 2020, 102, 109607. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Trujillo, I.; López-De-Andrés, A.; Del Barrio, J.L.; Hernández-Barrera, V.; Valero-De-Bernabé, M.; Jiménez-García, R. Gender Differences in the Prevalence and Characteristics of Pain in Spain: Report from a Population-Based Study. Pain Med. 2019, 20, 2349–2359. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.M.; Chen, C.H.; Lue, Y.J. A cross-sectional study of disability and quality of life in patients with low back pain: Focus on sex and gender. J. Back Musculoskelet. Rehabil. 2022, 35, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Gautschi, O.P.; Corniola, M.V.; Smoll, N.R.; Joswig, H.; Schaller, K.; Hildebrandt, G.; Stienen, M.N. Sex differences in subjective and objective measures of pain, functional impairment, and health-related quality of life in patients with lumbar degenerative disc disease. Pain 2016, 157, 1065–1071. [Google Scholar] [CrossRef] [PubMed]
- Rathbone, T.; Truong, C.; Haldenby, H.; Riazi, S.; Kendall, M.; Cimek, T.; Macedo, L.G. Sex and gender considerations in low back pain clinical practice guidelines: A scoping review. BMJ Open Sport Exerc. Med. 2020, 6, e000972. [Google Scholar] [CrossRef] [PubMed]
- van den Bogaart, M.; Bruijn, S.M.; Spildooren, J.; van Dieën, J.H.; Meyns, P. Effects of age and surface instability on the control of the center of mass. Hum. Mov. Sci. 2022, 82, 102930. [Google Scholar] [CrossRef] [PubMed]
- Bergamin, M.; Gobbo, S.; Zanotto, T.; Sieverdes, J.C.; Alberton, C.L.; Zaccaria, M.; Ermolao, A. Influence of age on postural sway during different dual-task conditions. Front. Aging Neurosci. 2014, 6, 100754. [Google Scholar] [CrossRef]
- da Silva, R.A.; Vieira, E.R.; Léonard, G.; Beaulieu, L.-D.; Ngomo, S.; Nowotny, A.H.; Amorim, C.F. Age- and low back pain-related differences in trunk muscle activation during one-legged stance balance task. Gait Posture 2019, 69, 25–30. [Google Scholar] [CrossRef]
- Ruhe, A.; Fejer, R.; Walker, B. Is there a relationship between pain intensity and postural sway in patients with non-specific low back pain? BMC Musculoskelet. Disord. 2011, 12, 162. [Google Scholar] [CrossRef] [PubMed]
- Wettstein, M.; Eich, W.; Bieber, C.; Tesarz, J. Pain Intensity, Disability, and Quality of Life in Patients with Chronic Low Back Pain: Does Age Matter? Pain Med. 2019, 20, 464–475. [Google Scholar] [CrossRef] [PubMed]
- Viseux, F.J.F.; Simoneau, M.; Billot, M. A Comprehensive Review of Pain Interference on Postural Control: From Experimental to Chronic Pain. Medicina 2022, 58, 812. [Google Scholar] [CrossRef] [PubMed]
- Oyarzo, C.A.; Villagrán, C.R.; Silvestre, R.E.; Carpintero, P.; Berral, F.J. Postural control and low back pain in elite athletes comparison of static balance in elite athletes with and without low back pain. J. Back Musculoskelet. Rehabil. 2014, 27, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Ruhe, A.; Fejer, R.; Walker, B. Center of pressure excursion as a measure of balance performance in patients with non-specific low back pain compared to healthy controls: A systematic review of the literature. Eur. Spine J. 2011, 20, 358–368. [Google Scholar] [CrossRef] [PubMed]
- Ruhe, A.; Fejer, R.; Walker, B. Pain relief is associated with decreasing postural sway in patients with non-specific low back pain. BMC Musculoskelet. Disord. 2012, 13, 39. [Google Scholar] [CrossRef] [PubMed]
- Van Dieën, J.H.; Reeves, N.P.; Kawchuk, G.; Van Dillen, L.R.; Hodges, P.W. Motor Control Changes in Low Back Pain: Divergence in Presentations and Mechanisms. J. Orthop. Sports Phys. Ther. 2019, 49, 370–379. [Google Scholar] [CrossRef] [PubMed]
- Willigenburg, N.W.; Kingma, I.; Hoozemans, M.J.M.; van Dieën, J.H. Precision control of trunk movement in low back pain patients. Hum. Mov. Sci. 2013, 32, 228–239. [Google Scholar] [CrossRef] [PubMed]
- Hodges, P.W. Pain and motor control: From the laboratory to rehabilitation. J. Electromyogr. Kinesiol. 2011, 21, 220–228. [Google Scholar] [CrossRef]
- Hlaing, S.S.; Puntumetakul, R.; Wanpen, S.; Boucaut, R. Balance Control in Patients with Subacute Non-Specific Low Back Pain, with and without Lumbar Instability: A Cross-Sectional Study. J. Pain Res. 2020, 13, 795–803. [Google Scholar] [CrossRef]
- Frizziero, A.; Pellizzon, G.; Vittadini, F.; Bigliardi, D.; Costantino, C. Efficacy of Core Stability in Non-Specific Chronic Low Back Pain. J. Funct. Morphol. Kinesiol. 2021, 6, 37. [Google Scholar] [CrossRef] [PubMed]
- Inani, S.B.; Selkar, S.P. Effect of core stabilization exercises versus conventional exercises on pain and functional status in patients with non-specific low back pain: A randomized clinical trial. J. Back Musculoskelet. Rehabil. 2013, 26, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Moseley, G.L.; Hodges, P.W. Are the changes in postural control associated with low back pain caused by pain interference? Clin. J. Pain 2005, 21, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Niederer, D.; Engel, T.; Pfeifer, A.-C.; Arampatzis, A.; Beck, H.; Wippert, P.-M.; Schiltenwolf, M.; Mayer, F. Which Functional Outcomes Can be Measured in Low Back Pain Trials and Therapies? A Prospective 2-Year Factor-, Cluster-, and Reliability-Multicenter Analysis on 42 Variables in 1049 Individuals. Spine 2021, 46, 1495–1508. [Google Scholar] [CrossRef]
- Nieminen, L.K.; Pyysalo, L.M.; Kankaanpää, M.J. Prognostic factors for pain chronicity in low back pain: A systematic review. Pain Rep. 2021, 6, e919. [Google Scholar] [CrossRef]
Variables | (ICC(2, k)) | 95%CI |
---|---|---|
LPC (mmHg) | 0.974 | 0.95–0.98 |
TACOP (mm) | 0.758 | 0.39–0.91 |
VCOP (mm/s) | 0.76 | 0.40–0.91 |
Variables | LBP Group | Control Group | ||||
---|---|---|---|---|---|---|
Male (n = 18) Mean ± SD | Female (n = 12) Mean ± SD | p-Value (<0.05 *) | Male (n = 18) Mean ± SD | Female (n = 12) Mean ± SD | p-Value (<0.05 *) | |
BMI | 25.6 ± 2 | 23.5 ± 3.9 | 0.065 | 26.2 ± 1.9 | 22.7 ± 2.5 | 0.003 * |
IPAQ | 1539.7 ± 332 | 960 ± 313 | 0.240 | 3697 ± 731 | 4852.2 ± 847 | 0.313 |
Pain (VAS) | 5.2 ±1.6 | 5.1 ±1.6 | 0.888 | 0 | 0 | 1 |
TACOP (mm) | 409.9 ± 111.3 | 440.9 ± 164.4 | 0.735 | 301 ± 26.7 | 314.4 ± 26.2 | 0.882 |
VCOP (mm/s) | 14.1 ± 1.9 | 15.8 ± 3.3 | 0.071 | 10 ± 3 | 10.4 ± 2.6 | 0.735 |
LPC (mmHg) | 19.1 ± 6.6 | 17.9 ± 10 | 0.722 | 10.5 ± 7.5 | 7.3 ± 5.2 | 0.304 |
Functionality (ODI) | 31.3 ± 14.9 | 30.8 ± 11.7 | 0.950 | 0.55 ±0.4 | 2 ± 0.8 | 0.261 |
Variables | LBP Group | Control Group | ||||
---|---|---|---|---|---|---|
20–40 y (n = 15) Mean ± SD | 41–60 y (n = 15) Mean ± SD | p-Value (<0.05 *) | 20–40 y (n = 15) Mean ±SD | 41–60 y (n = 15) Mean ± SD | p-Value (<0.05 *) | |
BMI | 24.52 ± 2.6 | 25.1 ± 3.6 | 0.619 | 23.9 ± 2.56 | 25.3 3 ± 3 | 0.278 |
IPAQ | 1349.8 ± 323.5 | 1266.3 ± 360.3 | 0.432 | 4973 ± 2900 | 3460 ± 1822 | 0.180 |
Pain (VAS) | 5.13 ± 1.50 | 5.13± 1.64 | 1 | 0 | 0 | 1 |
TACOP (mm) | 430.9 ± 145.9 | 413.6 ± 123.7 | 0.729 | 279.9 ± 84.9 | 334 ± 73.7 | 0.143 |
VCOP (mm/s) | 14.9 ± 3.2 | 14.6 ± 1.9 | 0.788 | 9.31 ± 2.8 | 11.1 ± 2.5 | 0.148 |
LPC (mmHg) | 19.9 ± 9–03 | 17.2 ± 7.95 | 0.398 | 10.8 ± 7.7 | 7.2 ± 4.9 | 0.115 |
Functionality (ODI) | 32..6 ± 14.19 | 29.47 ± 13.08 | 0.526 | 0.20 ± 0.6 | 2.2 ± 2.6 | 0.038 * |
Variables | Male LBP vs. Control Group (n = 18) Cohen’s d (Power) | Female LBP vs. Control Group (n = 12) Cohen’s d (Power) | 20–40 y LBP vs. Control Group (n = 15) Cohen’s d (Power) | 41–60 y LBP vs. Control Group (n = 15) Cohen’s d (Power) |
---|---|---|---|---|
Pain (VAS) | 4.60 (1.0) | 4.51 (1.0) | 4.84 (1.0) | 4.42 (1.0) |
TACOP (mm) | 1.35 (0.99) | 1.07 (0.98) | 1.27 (0.99) | 0.78 (0.84) |
VCOP (mm/s) | 1.63 (1.0) | 1.82 (1.0) | 1.86 (1.0) | 1.58 (1.0) |
LPC (mmHg) | 1.22 (0.99) | 1.33 (0.99) | 1.08 0.98) | 1.51 (0.99) |
Functionality (ODI) | 2.92 (1.0) | 3.47 (1.0) | 3.23 (1.0) | 2.89 (1.0) |
Variables | Mild (n = 7) | Moderate (n = 14) | Severe (n = 9) | p-Value (<0.05 *) |
---|---|---|---|---|
BMI | 24.27 ± 0.9 | 25.2 ± 0.9 | 24.8 ± 1 | 0.8 |
IPAQ | 1634.22 ± 623.3 | 1217.21 ± 259.5 | 1070.43 ± 425.5 | 0.66 |
Pain (VAS) | 4.1 ± 1.1 | 5.14 ± 1.2 | 6.57 ± 2.2 | 0.002 * |
TACOP (mm) | 344.55 ± 74.8 | 419.75 ± 118.1 | 527.50 ± 161.3 | 0.018 * |
VCOP (mm) | 13.26 ± 2.2 | 15.19 ± 2.9 | 15.87 ± 1.7 | 0.105 |
LPC (mmHg) | 13.88 ± 7.1 | 19.92 ± 2.6 | 21.85 ± 5.4 | 0.123 |
Functionality (ODI) | 16.0 ± 2.8 | 31.43 ± 6.7 | 49.71 ± 5.1 | 0.001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stöwhas, K.; Droppelmann, G.; Jorquera, C.; Feijoo, F. Postural and Lumbopelvic Control: Crucial Factors in the Functionality of Patients with Low Back Pain—A Descriptive Cross-Sectional Study. J. Clin. Med. 2024, 13, 3836. https://doi.org/10.3390/jcm13133836
Stöwhas K, Droppelmann G, Jorquera C, Feijoo F. Postural and Lumbopelvic Control: Crucial Factors in the Functionality of Patients with Low Back Pain—A Descriptive Cross-Sectional Study. Journal of Clinical Medicine. 2024; 13(13):3836. https://doi.org/10.3390/jcm13133836
Chicago/Turabian StyleStöwhas, Katherine, Guillermo Droppelmann, Carlos Jorquera, and Felipe Feijoo. 2024. "Postural and Lumbopelvic Control: Crucial Factors in the Functionality of Patients with Low Back Pain—A Descriptive Cross-Sectional Study" Journal of Clinical Medicine 13, no. 13: 3836. https://doi.org/10.3390/jcm13133836
APA StyleStöwhas, K., Droppelmann, G., Jorquera, C., & Feijoo, F. (2024). Postural and Lumbopelvic Control: Crucial Factors in the Functionality of Patients with Low Back Pain—A Descriptive Cross-Sectional Study. Journal of Clinical Medicine, 13(13), 3836. https://doi.org/10.3390/jcm13133836