Analysis of Postoperative Complication and Revision Rates and Mid- to Long-Term Implant Survival in Primary Short-Stem Total Hip Arthroplasty
Abstract
:1. Introduction
2. Materials and Methods
2.1. Implant Characteristics
2.2. Surgical Procedure
2.3. Clinical Data
2.4. Statistical Analysis
3. Results
3.1. Inpatient Stay
3.2. Follow-Up
3.3. Survival Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ASA | American Society of Anesthesiologists |
BMI | Body Mass Index |
DAIR | Debridement, antibiotics, and implant retention |
FAI | Femoroacetabular Impingement |
IPFF | Intraoperative periprosthetic femur fractures |
LCPD | Legg–Calvé–Perthes disease |
LLD | Leg length discrepancy |
LTRR | Lifetime risk of revision |
OA | Osteoarthritis |
ORIF | Open reduction and internal fixation |
PJI | Periprosthetic joint infection |
PPFF | Postoperative periprosthetic femur fractures |
rTHA | Revision total hip arthroplasty |
THA | Total hip arthroplasty |
SCFE | Slipped capital femoral epiphysis |
References
- Learmonth, I.D.; Young, C.; Rorabeck, C. The operation of the century: Total hip replacement. Lancet 2007, 370, 1508–1519. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.; Ong, K.; Lau, E.; Mowat, F.; Halpern, M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J. Bone Jt. Surg. Am. Vol. 2007, 89, 780–785. [Google Scholar] [CrossRef]
- Shichman, I.; Roof, M.; Askew, N.; Nherera, L.; Rozell, J.C.; Seyler, T.M.; Schwarzkopf, R. Projections and Epidemiology of Primary Hip and Knee Arthroplasty in Medicare Patients to 2040-2060. JBJS Open Access 2023, 8, e22.00112. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.M.; Lau, E.; Ong, K.; Zhao, K.; Kelly, M.; Bozic, K.J. Future young patient demand for primary and revision joint replacement: National projections from 2010 to 2030. Clin. Orthop. Relat. Res. 2009, 467, 2606–2612. [Google Scholar] [CrossRef]
- Kuijpers, M.F.L.; Hannink, G.; van Steenbergen, L.N.; Schreurs, B.W. Total Hip Arthroplasty in Young Patients in The Netherlands: Trend Analysis of >19,000 Primary Hip Replacements in the Dutch Arthroplasty Register. J. Arthroplast. 2018, 33, 3704–3711. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.G.; Sogbein, O.A.; McClure, J.A.; Reid, J.; Welk, B.; Lanting, B.A.; Degen, R.M. Total Hip Arthroplasty in Patients Aged 40 to 60 Years Old: A Population-Based Study. J. Arthroplast. 2023, 38, S83–S88.e82. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.T.; Evans, J.P.; Walker, R.W.; Blom, A.W.; Whitehouse, M.R.; Sayers, A. How long does a hip replacement last? A systematic review and meta-analysis of case series and national registry reports with more than 15 years of follow-up. Lancet 2019, 393, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Bayliss, L.E.; Culliford, D.; Monk, A.P.; Glyn-Jones, S.; Prieto-Alhambra, D.; Judge, A.; Cooper, C.; Carr, A.J.; Arden, N.K.; Beard, D.J.; et al. The effect of patient age at intervention on risk of implant revision after total replacement of the hip or knee: A population-based cohort study. Lancet 2017, 389, 1424–1430. [Google Scholar] [CrossRef] [PubMed]
- de Waard, S.; van der Vis, J.; Venema, P.; Sierevelt, I.N.; Kerkhoffs, G.; Haverkamp, D. Short-term success of proximal bone stock preservation in short hip stems: A systematic review of the literature. EFORT Open Rev. 2021, 6, 1040–1051. [Google Scholar] [CrossRef]
- Lavernia, C.; D’Apuzzo, M.; Hernandez, V.; Lee, D. Thigh pain in primary total hip arthroplasty: The effects of elastic moduli. J. Arthroplast. 2004, 19, 10–16. [Google Scholar] [CrossRef]
- Engh, C.A., Jr.; Young, A.M.; Engh, C.A., Sr.; Hopper, R.H., Jr. Clinical consequences of stress shielding after porous-coated total hip arthroplasty. Clin. Orthop. Relat. Res. 2003, 417, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Burchard, R.; Graw, J.A.; Soost, C.; Schmitt, J. Stress shielding effect after total hip arthroplasty varies between combinations of stem design and stiffness-a comparing biomechanical finite element analysis. Int. Orthop. 2023, 47, 1981–1987. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Jang, Y.S.; Kim, E.J. A Prospective, Randomized Comparison of the Long-Term Clinical and Radiographic Results of an Ultra-Short vs a Conventional Length Cementless Anatomic Femoral Stem. J. Arthroplast. 2021, 36, 1707–1713. [Google Scholar] [CrossRef] [PubMed]
- Khanuja, H.S.; Banerjee, S.; Jain, D.; Pivec, R.; Mont, M.A. Short bone-conserving stems in cementless hip arthroplasty. J. Bone Jt. Surg. Am. Vol. 2014, 96, 1742–1752. [Google Scholar] [CrossRef] [PubMed]
- Schnurr, C.; Schellen, B.; Dargel, J.; Beckmann, J.; Eysel, P.; Steffen, R. Low Short-Stem Revision Rates: 1-11 Year Results From 1888 Total Hip Arthroplasties. J Arthroplast. 2017, 32, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Loppini, M.; Grappiolo, G. Uncemented short stems in primary total hip arthroplasty: The state of the art. EFORT Open Rev. 2018, 3, 149–159. [Google Scholar] [CrossRef]
- Grupp, T.M.; Weik, T.; Bloemer, W.; Knaebel, H.P. Modular titanium alloy neck adapter failures in hip replacement--failure mode analysis and influence of implant material. BMC Musculoskelet. Disord. 2010, 11, 3. [Google Scholar] [CrossRef]
- Jauch, S.Y.; Huber, G.; Hoenig, E.; Baxmann, M.; Grupp, T.M.; Morlock, M.M. Influence of material coupling and assembly condition on the magnitude of micromotion at the stem-neck interface of a modular hip endoprosthesis. J. Biomech. 2011, 44, 1747–1751. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, H.; Krishnan, S.P.; Blunn, G.; Skinner, J.A.; Hart, A.J. Modular neck femoral stems. Bone Jt. J. 2013, 95-b, 1011–1021. [Google Scholar] [CrossRef]
- Carter, L.W.; Stovall, D.O.; Young, T.R. Determination of accuracy of preoperative templating of noncemented femoral prostheses. J. Arthroplast. 1995, 10, 507–513. [Google Scholar] [CrossRef]
- Healy, W.L.; Iorio, R.; Clair, A.J.; Pellegrini, V.D.; Della Valle, C.J.; Berend, K.R. Complications of Total Hip Arthroplasty: Standardized List, Definitions, and Stratification Developed by The Hip Society. Clin. Orthop. Relat. Res. 2016, 474, 357–364. [Google Scholar] [CrossRef]
- Kheir, M.M.; Drayer, N.J.; Chen, A.F. An Update on Cementless Femoral Fixation in Total Hip Arthroplasty. J. Bone Jt. Surg. Am. Vol. 2020, 102, 1646–1661. [Google Scholar] [CrossRef]
- Molli, R.G.; Lombardi, A.V., Jr.; Berend, K.R.; Adams, J.B.; Sneller, M.A. A short tapered stem reduces intraoperative complications in primary total hip arthroplasty. Clin. Orthop. Relat. Res. 2012, 470, 450–461. [Google Scholar] [CrossRef] [PubMed]
- Abdel, M.P.; Watts, C.D.; Houdek, M.T.; Lewallen, D.G.; Berry, D.J. Epidemiology of periprosthetic fracture of the femur in 32 644 primary total hip arthroplasties: A 40-year experience. Bone Jt. J. 2016, 98-b, 461–467. [Google Scholar] [CrossRef]
- Luger, M.; Feldler, S.; Pisecky, L.; Klasan, A.; Gotterbarm, T.; Schopper, C. Periprosthetic Femoral Fractures in Cementless Short Versus Straight Stem Total Hip Arthroplasty: A Propensity Score Matched Analysis. J. Arthroplast. 2023, 38, 751–756. [Google Scholar] [CrossRef]
- Dietrich, M.; Kabelitz, M.; Dora, C.; Zingg, P.O. Perioperative Fractures in Cementless Total Hip Arthroplasty Using the Direct Anterior Minimally Invasive Approach: Reduced Risk With Short Stems. J. Arthroplast. 2018, 33, 548–554. [Google Scholar] [CrossRef] [PubMed]
- Berend, K.R.; Lombardi, A.V., Jr. Intraoperative femur fracture is associated with stem and instrument design in primary total hip arthroplasty. Clin. Orthop. Relat. Res. 2010, 468, 2377–2381. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, A.H.; Kyle, R.F. Periprosthetic fractures of the femur. Orthop. Clin. N. Am. 2002, 33, 143–152, ix. [Google Scholar] [CrossRef]
- Lamb, J.N.; Matharu, G.S.; Redmond, A.; Judge, A.; West, R.M.; Pandit, H.G. Risk Factors for Intraoperative Periprosthetic Femoral Fractures During Primary Total Hip Arthroplasty. An Analysis From the National Joint Registry for England and Wales and the Isle of Man. J. Arthroplast. 2019, 34, 3065–3073.e3061. [Google Scholar] [CrossRef] [PubMed]
- Dorr, L.D.; Faugere, M.C.; Mackel, A.M.; Gruen, T.A.; Bognar, B.; Malluche, H.H. Structural and cellular assessment of bone quality of proximal femur. Bone 1993, 14, 231–242. [Google Scholar] [CrossRef] [PubMed]
- Noble, P.C.; Alexander, J.W.; Lindahl, L.J.; Yew, D.T.; Granberry, W.M.; Tullos, H.S. The anatomic basis of femoral component design. Clin. Orthop. Relat. Res. 1988, 235, 148–165. [Google Scholar] [CrossRef]
- Casper, D.S.; Kim, G.K.; Parvizi, J.; Freeman, T.A. Morphology of the proximal femur differs widely with age and sex: Relevance to design and selection of femoral prostheses. J. Orthop. Res. 2012, 30, 1162–1166. [Google Scholar] [CrossRef]
- Nelson, J.T.; Zheng, H.; Hallstrom, B.R.; Hughes, R.E.; Mont, M.A.; Masini, M.A. Are Short Stems Associated With Higher Fracture Rates and Early Revision Rates in Primary Total Hip Arthroplasty? A Noninferiority Analysis. J. Arthroplast. 2023, 38, 1287–1294.e1282. [Google Scholar] [CrossRef] [PubMed]
- Kelly, M.P.; Chan, P.H.; Prentice, H.A.; Paxton, E.W.; Hinman, A.D.; Khatod, M. Cause-Specific Stem Revision Risk in Primary Total Hip Arthroplasty Using Cemented vs Cementless Femoral Stem Fixation in a US Cohort. J. Arthroplast. 2022, 37, 89–96.e81. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Yang, Q.; Wang, Z.; Pan, Z.; Zhang, Y.; Shi, Z.; Yang, S. Comparisons of in-hospital complications between total hip arthroplasty and hip resurfacing arthroplasty. BMC Musculoskelet. Disord. 2023, 24, 375. [Google Scholar] [CrossRef] [PubMed]
- Fontalis, A.; Berry, D.J.; Shimmin, A.; Slullitel, P.A.; Buttaro, M.A.; Li, C.; Malchau, H.; Haddad, F.S. Prevention of early complications following total hip replacement. SICOT J. 2021, 7, 61. [Google Scholar] [CrossRef] [PubMed]
- Descamps, J.; Teissier, V.; Graff, W.; Mouton, A.; Bouché, P.A.; Marmor, S. Managing early complications in total hip arthroplasty: The safety of immediate revision. J. Orthop. Traumatol. 2023, 24, 38. [Google Scholar] [CrossRef] [PubMed]
- Markel, J.F.; Driscoll, J.A.; Zheng, T.H.; Hughes, R.E.; Moore, D.D.; Hallstrom, B.R.; Markel, D.C. Causes of Early Hip Revision Vary by Age and Gender: Analysis of Data From a Statewide Quality Registry. J. Arthroplast. 2022, 37, S616–S621. [Google Scholar] [CrossRef] [PubMed]
- Novikov, D.; Mercuri, J.J.; Schwarzkopf, R.; Long, W.J.; Bosco Iii, J.A.; Vigdorchik, J.M. Can some early revision total hip arthroplasties be avoided? Bone Jt. J. 2019, 101-b, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, J.S.; Lygrisse, K.A.; Roof, M.A.; Long, W.J.; Schwarzkopf, R.M.; Hepinstall, M.S. Early, Mid-Term, and Late-Term Aseptic Femoral Revisions After THA: Comparing Causes, Complications, and Resource Utilization. J. Arthroplast. 2021, 36, 3551–3555. [Google Scholar] [CrossRef]
- Shen, T.S.; Gu, A.; Bovonratwet, P.; Ondeck, N.T.; Sculco, P.K.; Su, E.P. Etiology and Complications of Early Aseptic Revision Total Hip Arthroplasty Within 90 Days. J. Arthroplast. 2021, 36, 1734–1739. [Google Scholar] [CrossRef]
- Bozic, K.J.; Kurtz, S.M.; Lau, E.; Ong, K.; Vail, T.P.; Berry, D.J. The epidemiology of revision total hip arthroplasty in the United States. J. Bone Jt. Surg. Am. 2009, 91, 128–133. [Google Scholar] [CrossRef]
- Gwam, C.U.; Mistry, J.B.; Mohamed, N.S.; Thomas, M.; Bigart, K.C.; Mont, M.A.; Delanois, R.E. Current Epidemiology of Revision Total Hip Arthroplasty in the United States: National Inpatient Sample 2009 to 2013. J Arthroplast. 2017, 32, 2088–2092. [Google Scholar] [CrossRef] [PubMed]
- Hinton, Z.W.; Wu, C.J.; Ryan, S.P.; Cunningham, D.J.; Green, C.L.; Lachiewicz, P.F. Current Trends in Revision Hip Arthroplasty: Indications and Types of Components Revised. J. Arthroplast. 2022, 37, S611–S615.e617. [Google Scholar] [CrossRef] [PubMed]
- Innmann, M.M.; Spier, K.; Streit, M.R.; Aldinger, P.R.; Bruckner, T.; Gotterbarm, T.; Merle, C. Comparative Analysis of the Reconstruction of Individual Hip Anatomy Using 3 Different Cementless Stem Designs in Patients With Primary Hip Osteoarthritis. J. Arthroplast. 2018, 33, 1126–1132. [Google Scholar] [CrossRef] [PubMed]
- Schmidutz, F.; Beirer, M.; Weber, P.; Mazoochian, F.; Fottner, A.; Jansson, V. Biomechanical reconstruction of the hip: Comparison between modular short-stem hip arthroplasty and conventional total hip arthroplasty. Int. Orthop. 2012, 36, 1341–1347. [Google Scholar] [CrossRef] [PubMed]
- Maurer-Ertl, W.; Friesenbichler, J.; Pfann, M.; Maier, M.; Reinbacher, P.; Leithner, A.; Smolle, M.A. Restoration of hip geometry after total hip arthroplasty: Retrospective comparison of two short stems and one straight stem. BMC Musculoskelet. Disord. 2022, 23, 1035. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, M.; Hein, M.A.; Faschingbauer, M.; Sgroi, M.; Bieger, R.; Reichel, H.; Freitag, T. Abductor Muscle Force after Straight-Stem Compared to Short-Stem Total Hip Arthroplasty through a Modified Direct Lateral Approach: Functional Assessment of 70 Consecutive Patients of a Randomized Controlled Clinical Trial. J. Clin. Med. 2021, 10, 1235. [Google Scholar] [CrossRef] [PubMed]
- Weenders, S.G.M.; Merfort, R.; Eschweiler, J.; Hildebrand, F.; Gruner, A.; Heller, K.D. Ten-year follow-up and clinical outcome of a metaphyseal anchoring short hip stem prosthesis: A retrospective single-centre analysis. Int. Orthop. 2024, 48, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Malahias, M.A.; Tejaswi, P.; Chytas, D.; Kadu, V.; Karanikas, D.; Thorey, F. The clinical outcome of the Metha short hip stem: A systematic scoping review. HIP Int. 2021, 31, 24–33. [Google Scholar] [CrossRef]
- von Lewinski, G.; Floerkemeier, T. 10-year experience with short stem total hip arthroplasty. Orthopedics 2015, 38, S51–S56. [Google Scholar] [CrossRef]
- Streit, M.R.; Haeussler, D.; Bruckner, T.; Proctor, T.; Innmann, M.M.; Merle, C.; Gotterbarm, T.; Weiss, S. Early Migration Predicts Aseptic Loosening of Cementless Femoral Stems: A Long-term Study. Clin. Orthop. Relat. Res. 2016, 474, 1697–1706. [Google Scholar] [CrossRef]
- Mittelstaedt, H.; Anderl, C.; Ortmaier, R.; Johl, C.; Krüger, T.; Wallroth, K.; Weigert, U.; Schagemann, J.C. Subsidence analysis of a cementless short stem THA using EBRA-FCA-A seven-year prospective multicentre study. J. Orthop. 2023, 43, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Kutzner, K.P.; Freitag, T.; Bieger, R. Defining ‘undersizing’ in short-stem total hip arthroplasty: The importance of sufficient contact with the lateral femoral cortex. HIP Int. 2022, 32, 160–165. [Google Scholar] [CrossRef] [PubMed]
Study Sample (n = 1327) | |||||
---|---|---|---|---|---|
Age (y), mean (SD) | 54.6 | (±9.13) | |||
Age categories, n (%) | |||||
Age < 60 years | 883 | (66.54) | |||
Age ≥ 60 years | 304 | (22.91) | |||
Age ≥ 65 years | 128 | (9.65) | |||
Age ≥ 70 years | 11 | (0.83) | |||
Age ≥ 75 years | 1 | (0.08) | |||
Sex, n (%) | |||||
Male | 602 | (45.37) | |||
Female | 725 | (54.63) | |||
BMI (kg/m2), mean (SD) | 28.8 | (±5.21) | |||
ASA-Score, n (%) | |||||
1 | 117 | (8.82) | |||
2 | 889 | (66.99) | |||
3 | 173 | (13.04) | |||
Missing data | 148 | (11.15) | |||
Aetiology, n (%) | |||||
Primary OA | 744 | (56.07) | |||
Secondary OA | 583 | (43.93) | |||
Developmental dysplasia of the hip | 384 | (28.94) | |||
Avascular necrosis | 130 | (9.80) | |||
Posttraumatic OA | 20 | (1.51) | |||
History of LCPD | 18 | (1.36) | |||
History of SCFE | 17 | (1.28) | |||
Rheumatoid arthritis | 8 | (0.60) | |||
FAI | 4 | (0.30) | |||
History of coxitis | 2 | (0.15) |
Study Sample (n = 1327) | |||
---|---|---|---|
Implant design, n (%) | |||
Metha modular stem | 195 | (14.69) | |
Metha monoblock stem | 1117 | (84.17) | |
Other 1 | 15 | (1.13) | |
Surgical technique, n (%) | |||
Optical navigation system | 1305 | (98.34) | |
Conventional manual technique | 22 | (1.66) | |
Surgical approach, n (%) | |||
Anterolateral | 978 | (73.70) | |
Lateral | 246 | (18.54) | |
Direct anterior | 53 | (3.99) | |
Missing data | 50 | (3.77) |
Study Sample (n = 1327) | ||||
---|---|---|---|---|
Intraoperative complications, n (%) | 50 | (3.77) | ||
Hairline cracks | 44 | (3.32) | ||
Periprosthetic fracture | 6 | (0.45) | ||
Vancouver AG | 1 | (0.08) | ||
Vancouver B1 | 1 | (0.08) | ||
Vancouver B2 | 4 | (0.30) | ||
Surgical management, n (%) | ||||
Conservative management | 22 | (44.00) | ||
Cerclage wires | 13 | (26.00) | ||
Stem replacement with straight-stem or femoral revision implant | 15 | (30.00) |
Study Sample (n = 1312) | ||||
---|---|---|---|---|
Surgery-related complications during inpatient stay, n (%) | 32 | (2.44) | ||
Wound complication requiring revision | 3 | (0.23) | ||
Postoperative haematoma requiring surgical treatment | 3 | (0.23) | ||
Mechanical complications | 11 | (0.84) | ||
Stem subsidence requiring revision | 2 | (0.15) | ||
Periprosthetic fracture | 1 | (0.08) | ||
Acetabular cup loosening | 1 | (0.08) | ||
Cup-liner dissociation | 1 | (0.08) | ||
Instability/dislocation | 2 | (0.15) | ||
Leg length discrepancy | 1 | (0.08) | ||
Temporary neural deficit | 14 | (1.07) | ||
Deep vein thrombosis | 1 | (0.08) | ||
Revision procedures during inpatient stay, n (%) | 11 | (0.84) | ||
Mean time to revision, days (SD) | 7.60 | (±4.56) | ||
Superficial wound revision | 3 | (0.23) | ||
Haematoma evacuation | 2 | (0.15) | ||
THA revision | 6 | (0.46) | ||
Isolated femoral head and acetabular liner exchange | 1 | (0.08) | ||
Isolated femoral component revision | 4 | (0.30) | ||
Short-stem to straight-stem implant | 2 | (0.15) | ||
Short-stem to femoral revision implant | 2 | (0.15) | ||
All component revision | 1 | (0.08) |
Study Sample (n = 1307) | |||
---|---|---|---|
Follow-up | |||
Follow-up (months), median (IQR) | 86.0 | (48–130) | |
Follow-up (years), median (IQR) | 7.0 | (4–10) | |
Surgery-related complications during follow-up, n (%) | 89 | (6.81) | |
Periprosthetic joint infection (PJI) | 3 | (0.23) | |
Acute PJI | 1 | (0.08) | |
Chronic PJI | 2 | (0.15) | |
Mechanical complications | 71 | (5.43) | |
Stem subsidence requiring revision | 20 | (1.53) | |
Aseptic loosening femoral component | 28 | (2.14) | |
Failure of neck adapter (modular stem) | 3 | (0.23) | |
Aseptic loosening acetabular cup | 10 | (0.77) | |
Bearing surface wear | 3 | (0.23) | |
Instability, dislocation | 2 | (0.15) | |
Periprosthetic fracture | 5 | (0.38) | |
Heterotopic ossification | 5 | (0.38) | |
Iliopsoas impingement | 10 | (0.77) | |
Revision procedures during follow-up, n (%) | 71 | (5.43) | |
Mean time to revision (months), median (IQR) | 6 | (2–14) | |
Isolated femoral head and acetabular liner exchange | 10 | (0.77) | |
Aseptic head and liner exchange | 9 | (0.69) | |
DAIR procedure | 1 | (0.08) | |
Isolated component revision | 55 | (4.21) | |
Femoral component revision | 51 | (3.90) | |
Acetabular component revision | 4 | (0.31) | |
All-component revision | 4 | (0.31) | |
One-stage revision | 1 | (0.08) | |
Two-stage revision | 2 | (0.15) | |
Not specified | 1 | (0.08) | |
Osteosynthesis (ORIF, plate and cerclage wires) | 2 | (0.15) |
Indications for Stem Revision | Inpatient Stay | Follow-Up | Total | |
---|---|---|---|---|
n | n | n (%) | ||
Chronic PJI | – | 2 | 2 | (3.33) |
Periprosthetic fracture | 1 | 1 | 2 | (3.33) |
Stem subsidence | 2 | 18 | 20 | (33.33) |
Aseptic loosening femoral component | – | 28 | 28 | (46.67) |
Aseptic loosening acetabular cup | 1 | 1 | 2 | (3.33) |
Dislocation | – | 1 | 1 | (1.67) |
Failure of neck adapter | – | 3 | 3 | (5.00) |
Leg length discrepancy | 1 | – | 1 | (1.67) |
Not specified | – | 1 | 1 | (1.67) |
Sum | 5 | 55 | 60 | (100.00) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stauss, R.; Becker, N.T.; Savov, P.; Ettinger, M.; Seeber, G.H. Analysis of Postoperative Complication and Revision Rates and Mid- to Long-Term Implant Survival in Primary Short-Stem Total Hip Arthroplasty. J. Clin. Med. 2024, 13, 3779. https://doi.org/10.3390/jcm13133779
Stauss R, Becker NT, Savov P, Ettinger M, Seeber GH. Analysis of Postoperative Complication and Revision Rates and Mid- to Long-Term Implant Survival in Primary Short-Stem Total Hip Arthroplasty. Journal of Clinical Medicine. 2024; 13(13):3779. https://doi.org/10.3390/jcm13133779
Chicago/Turabian StyleStauss, Ricarda, Nils T. Becker, Peter Savov, Max Ettinger, and Gesine H. Seeber. 2024. "Analysis of Postoperative Complication and Revision Rates and Mid- to Long-Term Implant Survival in Primary Short-Stem Total Hip Arthroplasty" Journal of Clinical Medicine 13, no. 13: 3779. https://doi.org/10.3390/jcm13133779
APA StyleStauss, R., Becker, N. T., Savov, P., Ettinger, M., & Seeber, G. H. (2024). Analysis of Postoperative Complication and Revision Rates and Mid- to Long-Term Implant Survival in Primary Short-Stem Total Hip Arthroplasty. Journal of Clinical Medicine, 13(13), 3779. https://doi.org/10.3390/jcm13133779