Inotropic Agents: Are We Still in the Middle of Nowhere?
Abstract
:1. Introduction
2. Use of Inotropes and Vasopressors in Clinical Practice
3. Exploring the Evidence through Trials and Registry: An Issue of Concern
4. Adrenergic Agents
5. Non-Adrenergic Agents
6. Other Inotropes
7. Using Inotropic/Vasopressor Agents across Different Clinical Settings
8. Reasonable Approach and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bangash, M.N.; Kong, M.L.; Pearse, R.M. Use of inotropes and vasopressor agents in critically ill patients. Br. J. Pharmacol. 2012, 165, 2015–2033. [Google Scholar] [CrossRef]
- Stevenson, L.W. Clinical use of inotropic therapy for heart failure: Looking backward or forward? Part I: Inotropic infusions during hospitalization. Circulation 2003, 108, 367–372. [Google Scholar] [CrossRef]
- Francis, G.S.; Bartos, J.A.; Adatya, S. Inotropes. J. Am. Coll. Cardiol. 2014, 63, 2069–2078. [Google Scholar] [CrossRef] [PubMed]
- Mebazaa, A.; Motiejunaite, J.; Gayat, E.; Crespo-Leiro, M.G.; Lund, L.H.; Maggioni, A.P.; Chioncel, O.; Akiyama, E.; Harjola, V.P.; Seferovic, P.; et al. Long-term safety of intravenous cardiovascular agents in acute heart failure: Results from the European Society of Cardiology Heart Failure Long-Term Registry. Eur. J. Heart Fail. 2018, 20, 332–341. [Google Scholar] [CrossRef] [PubMed]
- Mortara, A.; Oliva, F.; Metra, M.; Carbonieri, E.; Di Lenarda, A.; Gorini, M.; Midi, P.; Senni, M.; Urso, R.; Lucci, D.; et al. Treatment with inotropes and related prognosis in acute heart failure: Contemporary data from the Italian Network on Heart Failure (IN-HF) Outcome registry. J. Heart Lung Transplant. 2014, 33, 1056–1065. [Google Scholar] [CrossRef] [PubMed]
- Fonarow, G.C.; Heywood, J.T.; Heidenreich, P.A.; Lopatin, M.; Yancy, C.W. Temporal trends in clinical characteristics, treatments, and outcomes for heart failure hospitalizations, 2002 to 2004: Findings from Acute Decompensated Heart Failure National Registry (ADHERE). Am. Heart J. 2007, 153, 1021–1028. [Google Scholar] [CrossRef]
- Chioncel, O.; Lainscak, M.; Seferovic, P.M.; Anker, S.D.; Crespo-Leiro, M.G.; Harjola, V.P.; Parissis, J.; Laroche, C.; Piepoli, M.F.; Fonseca, C.; et al. Epidemiology and one-year outcomes in patients with chronic heart failure and preserved, mid-range and reduced ejection fraction: An analysis of the ESC Heart Failure Long-Term Registry. Eur. J. Heart Fail. 2017, 19, 1574–1585. [Google Scholar] [CrossRef]
- Spinar, J.; Parenica, J.; Vitovec, J.; Widimsky, P.; Linhart, A.; Fedorco, M.; Malek, F.; Cihalik, C.; Spinarová, L.; Miklik, R.; et al. Baseline characteristics and hospital mortality in the Acute Heart Failure Database (AHEAD) Main registry. Crit. Care 2011, 15, R291. [Google Scholar] [CrossRef]
- Fonarow, G.C. The Acute Decompensated Heart Failure National Registry (ADHERE): Opportunities to improve care of patients hospitalized with acute decompensated heart failure. Rev. Cardiovasc. Med. 2003, 4, S21–S30. [Google Scholar]
- Mebazaa, A.; Parissis, J.; Porcher, R.; Gayat, E.; Nikolaou, M.; Boas, F.V.; Delgado, J.F.; Follath, F. Short-term survival by treatment among patients hospitalized with acute heart failure: The global ALARM-HF registry using propensity scoring methods. Intensive Care Med. 2011, 37, 290–301. [Google Scholar] [CrossRef]
- Mortara, A. Inotropes and vasopressors in acute heart failure, when the devil dresses as an angel. Eur. J. Heart Fail. 2018, 20, 342–344. [Google Scholar] [CrossRef] [PubMed]
- Thackray, S.; Easthaugh, J.; Freemantle, N.; Cleland, J.G. The effectiveness and relative effectiveness of intravenous inotropic drugs acting through the adrenergic pathway in patients with heart failure-a meta-regression analysis. Eur. J. Heart Fail. 2002, 4, 515–529. [Google Scholar] [CrossRef] [PubMed]
- Gheorghiade, M.; Filippatos, G. Reassessing treatment of acute heart failure syndromes: The ADHERE Registry. Eur. Heart J. Suppl. 2005, 7, B13–B19. [Google Scholar] [CrossRef]
- Elkayam, U.; Tasissa, G.; Binanay, C.; Stevenson, L.W.; Gheorghiade, M.; Warnica, J.W.; Young, J.B.; Rayburn, B.K.; Rogers, J.G.; DeMarco, T. Use and impact of inotropes and vasodilator therapy in hospitalized patients with severe heart failure. Am. Heart J. 2007, 153, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Bloom, J.E.; Chan, W.; Kaye, D.M.; Stub, D. State of shock: Contemporary vasopressor and inotrope use in cardiogenic shock. J. Am. Heart Assoc. 2023, 12, e029787. [Google Scholar] [CrossRef] [PubMed]
- Masip, J.; Frank Peacok, W.; Arrigo, M.; Rossello, X.; Platz, E.; Cullen, L.; Mebazaa, A.; Price, S.; Bueno, H.; Di Somma, S.; et al. Acute Heart Failure in the 2021 ESC Heart Failure Guidelines: A scientific statement from the Association for Acute CardioVascular Care (ACVC)of the European Society of Cardiology. Eur. Heart J. Acute Cardiovasc. Care 2022, 11, 173–185. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2023, 44, 3627–3639. [Google Scholar] [CrossRef] [PubMed]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.; Coats, A.J.; Falk, V.; González-Juanatey, J.R.; Harjola, V.-P.; Jankowska, E.A. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Kardiol. Pol. Pol. Heart J. 2016, 74, 1037–1147. [Google Scholar] [CrossRef] [PubMed]
- Yancy, C.W.; Jessup, M.; Bozkurt, B.; Butler, J.; Casey Jr, D.E.; Colvin, M.M.; Drazner, M.H.; Filippatos, G.S.; Fonarow, G.C.; Givertz, M.M. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation 2017, 136, e137–e161. [Google Scholar]
- Jentzer, J.C.; Coons, J.C.; Link, C.B.; Schmidhofer, M. Pharmacotherapy update on the use of vasopressors and inotropes in the intensive care unit. J. Cardiovasc. Pharmacol. Ther. 2015, 20, 249–260. [Google Scholar] [CrossRef]
- Schiffmann, H.; Gleiss, J.; von Hirscheydt, A.; Schröder, T.; Kahles, H.; Hellige, G. Effects of epinephrine on the myocardial performance and haemodynamics of the isolated rat heart during moderate hypothermia—Importance of calcium homeostasis. Resuscitation 2001, 50, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Levy, B.; Clere-Jehl, R.; Legras, A.; Morichau-Beauchant, T.; Leone, M.; Frederique, G.; Quenot, J.P.; Kimmoun, A.; Cariou, A.; Lassus, J.; et al. Epinephrine Versus Norepinephrine for Cardiogenic Shock After Acute Myocardial Infarction. J. Am. Coll. Cardiol. 2018, 72, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Morici, N.; Oliva, F.; Ajello, S.; Stucchi, M.; Sacco, A.; Cipriani, M.G.; De Bonis, M.; Garascia, A.; Gagliardone, M.P.; Melisurgo, G.; et al. Management of cardiogenic shock in acute decompensated chronic heart failure: The ALTSHOCK phase II clinical trial. Am. Heart J. 2018, 204, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Monnet, X.; Lai, C.; Ospina-Tascon, G.; De Backer, D. Evidence for a personalized early start of norepinephrine in septic shock. Crit. Care 2023, 27, 322. [Google Scholar] [CrossRef] [PubMed]
- Nieminen, M.S.; Buerke, M.; Cohen-Solál, A.; Costa, S.; Édes, I.; Erlikh, A.; Franco, F.; Gibson, C.; Gorjup, V.; Guarracino, F.; et al. The role of levosimendan in acute heart failure complicating acute coronary syndrome: A review and expert consensus opinion. Int. J. Cardiol. 2016, 218, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, F.; Damman, K.; Nalbantgil, S.; Van Laake, L.W.; Tops, L.F.; Thum, T.; Adamopoulos, S.; Bonios, M.; Coats, A.J.; Crespo-Leiro, M.G.; et al. Inotropic therapy in patients with advanced heart failure. A clinical consensus statement from the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2023, 25, 457–468. [Google Scholar] [CrossRef] [PubMed]
- Elkayam, U.; Ng, T.M.; Hatamizadeh, P.; Janmohamed, M.; Mehra, A. Renal Vasodilatory Action of Dopamine in Patients with Heart Failure: Magnitude of Effect and Site of Action. Circulation 2008, 117, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.H.; Anstrom, K.J.; Givertz, M.M.; Stevenson, L.W.; Semigran, M.J.; Goldsmith, S.R.; Bart, B.A.; Bull, D.A.; Stehlik, J.; LeWinter, M.M.; et al. Low-dose dopamine or low-dose nesiritide in acute heart failure with renal dysfunction: The ROSE acute heart failure randomized trial. Jama 2013, 310, 2533–2543. [Google Scholar] [CrossRef] [PubMed]
- Xing, F.; Hu, X.; Jiang, J.; Ma, Y.; Tang, A. A meta-analysis of low-dose dopamine in heart failure. Int. J. Cardiol. 2016, 222, 1003–1011. [Google Scholar] [CrossRef]
- Metra, M.; Missale, C.; Spano, P.F.; Cas, L.D. Dopaminergic drugs in congestive heart failure: Hemodynamic and neuroendocrine responses to ibopamine, dopamine, and dihydroergotoxine. J. Cardiovasc. Pharmacol. 1995, 25, 732–740. [Google Scholar] [CrossRef]
- Wan, S.H.; Stevens, S.R.; Borlaug, B.A.; Anstrom, K.J.; Deswal, A.; Felker, G.M.; Givertz, M.M.; Bart, B.A.; Tang, W.H.; Redfield, M.M.; et al. Differential Response to Low-Dose Dopamine or Low-Dose Nesiritide in Acute Heart Failure with Reduced or Preserved Ejection Fraction: Results from the ROSE AHF Trial (Renal Optimization Strategies Evaluation in Acute Heart Failure). Circ. Heart Fail. 2016, 9, e002593. [Google Scholar] [CrossRef] [PubMed]
- Dalzell, J.R.; Connolly, E.C. Dopamine in acute decompensated heart failure: Does left ventricular ejection fraction matter? Int. J. Cardiol. 2014, 174, 739. [Google Scholar] [CrossRef] [PubMed]
- Romson, J.L.; Leung, J.M.; Bellows, W.H.; Bronstein, M.; Keith, F.; Moores, W.; Flachsbart, K.; Richter, R.; Pastor, D.; Fisher, D.M. Effects of dobutamine on hemodynamics and left ventricular performance after cardiopulmonary bypass in cardiac surgical patients. Anesthesiology 1999, 91, 1318–1328. [Google Scholar] [CrossRef] [PubMed]
- Leier, C.V.; Unverferth, D.V. Drugs five years later. Dobutamine. Ann. Intern. Med. 1983, 99, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Nikolaidis, L.A.; Hentosz, T.; Doverspike, A.; Huerbin, R.; Stolarski, C.; Shen, Y.T.; Shannon, R.P. Catecholamine stimulation is associated with impaired myocardial O(2) utilization in heart failure. Cardiovasc. Res. 2002, 53, 392–404. [Google Scholar] [CrossRef] [PubMed]
- Oliva, F.; Latini, R.; Politi, A.; Staszewsky, L.; Maggioni, A.P.; Nicolis, E.; Mauri, F. Intermittent 6-month low-dose dobutamine infusion in severe heart failure: DICE multicenter trial. Am. Heart J. 1999, 138, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Applefeld, M.M.; Newman, K.A.; Sutton, F.J.; Reed, W.P.; Roffman, D.S.; Talesnick, B.S.; Grove, W.R. Outpatient dobutamine and dopamine infusions in the management of chronic heart failure: Clinical experience in 21 patients. Am. Heart J. 1987, 114, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Collins, J.A.; Skidmore, M.A.; Melvin, D.B.; Engel, P.J. Home intravenous dobutamine therapy in patients awaiting heart transplantation. J. Heart Transplant. 1990, 9, 205–208. [Google Scholar] [PubMed]
- O’Connor, C.M.; Gattis, W.A.; Uretsky, B.F.; Adams, K.F., Jr.; McNulty, S.E.; Grossman, S.H.; McKenna, W.J.; Zannad, F.; Swedberg, K.; Gheorghiade, M.; et al. Continuous intravenous dobutamine is associated with an increased risk of death in patients with advanced heart failure: Insights from the Flolan International Randomized Survival Trial (FIRST). Am. Heart J. 1999, 138, 78–86. [Google Scholar] [CrossRef]
- Crespo-Leiro, M.G.; Metra, M.; Lund, L.H.; Milicic, D.; Costanzo, M.R.; Filippatos, G.; Gustafsson, F.; Tsui, S.; Barge-Caballero, E.; De Jonge, N.; et al. Advanced heart failure: A position statement of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2018, 20, 1505–1535. [Google Scholar] [CrossRef]
- Fowler, M.B.; Laser, J.A.; Hopkins, G.L.; Minobe, W.; Bristow, M.R. Assessment of the beta-adrenergic receptor pathway in the intact failing human heart: Progressive receptor down-regulation and subsensitivity to agonist response. Circulation 1986, 74, 1290–1302. [Google Scholar] [CrossRef] [PubMed]
- Unverferth, D.A.; Blanford, M.; Kates, R.E.; Leier, C.V. Tolerance to dobutamine after a 72 h continuous infusion. Am. J. Med. 1980, 69, 262–266. [Google Scholar] [CrossRef] [PubMed]
- Imai, T.; Saitoh, K.; Kani, H.; Fujita, T.; Murata, K. Combined dose ratios of dopamine and dobutamine and right ventricular performance after cardiac surgery. Chest 1992, 101, 1197–1202. [Google Scholar] [CrossRef] [PubMed]
- Nanas, J.N.; Papazoglou, P.P.; Terrovitis, J.V.; Kanakakis, J.; Dalianis, A.; Tsolakis, E.; Tsagalou, E.P.; Agrios, N.; Christodoulou, K.; Anastasiou-Nana, M.I. Hemodynamic effects of levosimendan added to dobutamine in patients with decompensated advanced heart failure refractory to dobutamine alone. Am. J. Cardiol. 2004, 94, 1329–1332. [Google Scholar] [CrossRef] [PubMed]
- Honerjäger, P. Pharmacology of positive inotropic phosphodiesterase III inhibitors. Eur. Heart J. 1989, 10 (Suppl. C), 25–31. [Google Scholar] [CrossRef] [PubMed]
- Lowes, B.D.; Tsvetkova, T.; Eichhorn, E.J.; Gilbert, E.M.; Bristow, M.R. Milrinone versus dobutamine in heart failure subjects treated chronically with carvedilol. Int. J. Cardiol. 2001, 81, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Jeon, Y.; Ryu, J.H.; Lim, Y.J.; Kim, C.S.; Bahk, J.H.; Yoon, S.Z.; Choi, J.Y. Comparative hemodynamic effects of vasopressin and norepinephrine after milrinone-induced hypotension in off-pump coronary artery bypass surgical patients. Eur. J. Cardiothorac. Surg. 2006, 29, 952–956. [Google Scholar] [CrossRef] [PubMed]
- Maack, C.; Eschenhagen, T.; Hamdani, N.; Heinzel, F.R.; Lyon, A.R.; Manstein, D.J.; Metzger, J.; Papp, Z.; Tocchetti, C.G.; Yilmaz, M.B.; et al. Treatments targeting inotropy. Eur. Heart J. 2019, 40, 3626–3644. [Google Scholar] [CrossRef] [PubMed]
- Felker, G.M.; Benza, R.L.; Chandler, A.B.; Leimberger, J.D.; Cuffe, M.S.; Califf, R.M.; Gheorghiade, M.; O’Connor, C.M. Heart failure etiology and response to milrinone in decompensated heart failure: Results from the OPTIME-CHF study. J. Am. Coll. Cardiol. 2003, 41, 997–1003. [Google Scholar] [CrossRef] [PubMed]
- Pollesello, P.; Ovaska, M.; Kaivola, J.; Tilgmann, C.; Lundström, K.; Kalkkinen, N.; Ulmanen, I.; Nissinen, E.; Taskinen, J. Binding of a new Ca2+ sensitizer, levosimendan, to recombinant human cardiac troponin C. A molecular modelling, fluorescence probe, and proton nuclear magnetic resonance study. J. Biol. Chem. 1994, 269, 28584–28590. [Google Scholar] [CrossRef]
- Gustafsson, F.; Guarracino, F.; Schwinger, R.H.G. The inodilator levosimendan as a treatment for acute heart failure in various settings. Eur. Heart J. Suppl. 2017, 19, c2–c7. [Google Scholar] [CrossRef] [PubMed]
- Oliva, F.; Perna, E.; Marini, M.; Nassiacos, D.; Cirò, A.; Malfatto, G.; Morandi, F.; Caico, I.; Perna, G.; Meloni, S.; et al. Scheduled intermittent inotropes for Ambulatory Advanced Heart Failure. The RELEVANT-HF multicentre collaboration. Int. J. Cardiol. 2018, 272, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Katchman, A.N.; Zakharov, S.I.; Bohnen, M.S.; Sanchez Jimenez, A.; Kushner, J.S.; Yang, L.; Chen, B.; Nasari, A.; Liu, G.; Rabbani, D.E.; et al. Augmented Cardiac Inotropy by Phosphodiesterase Inhibition Requires Phosphorylation of Rad and Increased Calcium Current. Circulation 2024, 149, 1617–1620. [Google Scholar] [CrossRef] [PubMed]
- Sponga, S.; Ivanitskaia, E.; Potapov, E.; Krabatsch, T.; Hetzer, R.; Lehmkuhl, H. Preoperative treatment with levosimendan in candidates for mechanical circulatory support. Asaio J. 2012, 58, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Moiseyev, V.S.; Põder, P.; Andrejevs, N.; Ruda, M.Y.; Golikov, A.P.; Lazebnik, L.B.; Kobalava, Z.D.; Lehtonen, L.A.; Laine, T.; Nieminen, M.S.; et al. Safety and efficacy of a novel calcium sensitizer, levosimendan, in patients with left ventricular failure due to an acute myocardial infarction. A randomized, placebo-controlled, double-blind study (RUSSLAN). Eur. Heart J. 2002, 23, 1422–1432. [Google Scholar] [CrossRef] [PubMed]
- Planelles-Herrero, V.J.; Hartman, J.J.; Robert-Paganin, J.; Malik, F.I.; Houdusse, A. Mechanistic and structural basis for activation of cardiac myosin force production by omecamtiv mecarbil. Nat. Commun. 2017, 8, 190. [Google Scholar] [CrossRef] [PubMed]
- Heusch, G.; Baumgart, D.; Camici, P.; Chilian, W.; Gregorini, L.; Hess, O.; Indolfi, C.; Rimoldi, O. alpha-adrenergic coronary vasoconstriction and myocardial ischemia in humans. Circulation 2000, 101, 689–694. [Google Scholar] [CrossRef] [PubMed]
- Teerlink, J.R.; Diaz, R.; Felker, G.M.; McMurray, J.J.V.; Metra, M.; Solomon, S.D.; Adams, K.F.; Anand, I.; Arias-Mendoza, A.; Biering-Sørensen, T.; et al. Cardiac Myosin Activation with Omecamtiv Mecarbil in Systolic Heart Failure. N. Engl. J. Med. 2021, 384, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Myles, R.C.; Wang, L.; Kang, C.; Bers, D.M.; Ripplinger, C.M. Local β-adrenergic stimulation overcomes source-sink mismatch to generate focal arrhythmia. Circ. Res. 2012, 110, 1454–1464. [Google Scholar] [CrossRef]
- Lubsen, J.; Just, H.; Hjalmarsson, A.C.; La Framboise, D.; Remme, W.J.; Heinrich-Nols, J.; Dumont, J.M.; Seed, P. Effect of pimobendan on exercise capacity in patients with heart failure: Main results from the Pimobendan in Congestive Heart Failure (PICO) trial. Heart 1996, 76, 223–231. [Google Scholar] [CrossRef]
- Scheeren, T.W.L.; Bakker, J.; Kaufmann, T.; Annane, D.; Asfar, P.; Boerma, E.C.; Cecconi, M.; Chew, M.S.; Cholley, B.; Cronhjort, M.; et al. Current use of inotropes in circulatory shock. Ann. Intensive Care 2021, 11, 21. [Google Scholar] [CrossRef] [PubMed]
- Tikunov, B.; Levine, S.; Mancini, D. Chronic congestive heart failure elicits adaptations of endurance exercise in diaphragmatic muscle. Circulation 1997, 95, 910–916. [Google Scholar] [CrossRef] [PubMed]
- Kapitsinou, P.P.; Haase, V.H. Molecular mechanisms of ischemic preconditioning in the kidney. Am. J. Physiol. Renal Physiol. 2015, 309, F821–F834. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, A.S.; Berg, D.D.; Bohula, E.A.; Alviar, C.L.; Baird-Zars, V.M.; Barnett, C.F.; Burke, J.A.; Carnicelli, A.P.; Chaudhry, S.P.; Daniels, L.B.; et al. De Novo vs. Acute-on-Chronic Presentations of Heart Failure-Related Cardiogenic Shock: Insights from the Critical Care Cardiology Trials Network Registry. J. Card. Fail. 2021, 27, 1073–1081. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.S.; Howell, N. Cardiogenic Shock Due to End-Stage Heart Failure and Acute Myocardial Infarction: Characteristics and Outcome of Temporary Mechanical Circulatory Support. Shock 2018, 50, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Bertaina, M.; Morici, N.; Frea, S.; Garatti, L.; Briani, M.; Sorini, C.; Villanova, L.; Corrada, E.; Sacco, A.; Moltrasio, M.; et al. Differences between cardiogenic shock related to acute decompensated heart failure and acute myocardial infarction. ESC Heart Fail. 2023, 10, 3472–3482. [Google Scholar] [CrossRef] [PubMed]
- Abraham, J.; Blumer, V.; Burkhoff, D.; Pahuja, M.; Sinha, S.S.; Rosner, C.; Vorovich, E.; Grafton, G.; Bagnola, A.; Hernandez-Montfort, J.A.; et al. Heart Failure-Related Cardiogenic Shock: Pathophysiology, Evaluation and Management Considerations: Review of Heart Failure-Related Cardiogenic Shock. J. Card. Fail. 2021, 27, 1126–1140. [Google Scholar] [CrossRef] [PubMed]
- Morici, N.; Stucchi, M.; Sacco, A.; Bottiroli, M.A.; Oliva, F.; Carugo, S.; Castini, D.; Catena, E.; Cipriani, M.; Corrada, E.; et al. Vasopressors and inotropes in cardiogenic shock: Is there room for “adrenaline resuscitation”? Crit. Care 2016, 20, 302. [Google Scholar] [CrossRef] [PubMed]
- Tarvasmäki, T.; Lassus, J.; Varpula, M.; Sionis, A.; Sund, R.; Køber, L.; Spinar, J.; Parissis, J.; Banaszewski, M.; Cardoso, J.S.; et al. Current real-life use of vasopressors and inotropes in cardiogenic shock-adrenaline use is associated with excess organ injury and mortality. Crit. Care 2016, 20, 208. [Google Scholar] [CrossRef]
- Meredith, I.T.; Broughton, A.; Jennings, G.L.; Esler, M.D. Evidence of a selective increase in cardiac sympathetic activity in patients with sustained ventricular arrhythmias. N. Engl. J. Med. 1991, 325, 618–624. [Google Scholar] [CrossRef]
- Richard, C.; Ricome, J.L.; Rimailho, A.; Bottineau, G.; Auzepy, P. Combined hemodynamic effects of dopamine and dobutamine in cardiogenic shock. Circulation 1983, 67, 620–626. [Google Scholar] [CrossRef] [PubMed]
- Levy, B.; Perez, P.; Perny, J.; Thivilier, C.; Gerard, A. Comparison of norepinephrine-dobutamine to epinephrine for hemodynamics, lactate metabolism, and organ function variables in cardiogenic shock. A prospective, randomized pilot study. Crit. Care Med. 2011, 39, 450–455. [Google Scholar] [CrossRef] [PubMed]
- El Allaf, D.; Cremers, S.; D’Orio, V.; Carlier, J. Combined haemodynamic effects of low doses of dopamine and dobutamine in patients with acute infarction and cardiac failure. Arch. Int. Physiol. Biochim. 1984, 92, S49–S55. [Google Scholar] [CrossRef] [PubMed]
- Thiele, H.; Ohman, E.M.; Desch, S.; Eitel, I.; de Waha, S. Management of cardiogenic shock. Eur. Heart J. 2015, 36, 1223–1230. [Google Scholar] [CrossRef] [PubMed]
- Schumann, J.; Henrich, E.C.; Strobl, H.; Prondzinsky, R.; Weiche, S.; Thiele, H.; Werdan, K.; Frantz, S.; Unverzagt, S. Inotropic agents and vasodilator strategies for the treatment of cardiogenic shock or low cardiac output syndrome. Cochrane Database Syst. Rev. 2018, 1, Cd009669. [Google Scholar] [CrossRef]
- Lee, H.Y.; Chung, W.J.; Jeon, H.K.; Seo, H.S.; Choi, D.J.; Jeon, E.S.; Kim, J.J.; Shin, J.H.; Kang, S.M.; Lim, S.C.; et al. Impact of the β-1 adrenergic receptor polymorphism on tolerability and efficacy of bisoprolol therapy in Korean heart failure patients: Association between β adrenergic receptor polymorphism and bisoprolol therapy in heart failure (ABBA) study. Korean J. Intern. Med. 2016, 31, 277–287. [Google Scholar] [CrossRef]
European Registries | American Registry | Multinational Registry | ||||
---|---|---|---|---|---|---|
IN-HF [5] (n 360) | ESC-LT [7] (n 833) | AHEAD [8] (n 4153) | ADHERE [9] (n 159,168) | ALARM-HF [10] (n 1617) | ||
Region(s) | Italy | Europe | Czech Republic | US | Europe, Australia, Mexico | |
Years | 2007–2009 | 2011–2013 | 2006–2009 | 2001–2003 | 2006–2007 | |
Age (±sd or IQR) | 70 (±12) | 67 (±13) | 74 (49–87) | 72 (±14) | ||
Male, % | 64.4 | 66 | 53.6 | 48.4 | 65.1 | |
Mean SBP, mmHg (±sd or IQR) | 112 (±27) | 112 (±27) | 135 (85–200) | 144 (±33) | 100 (85–140) | |
SBP < 110, n (%) | 176 (49) | - | - | - | - | |
SBP ≤ 100, n (%) | - | - | 648 (15.6) | - | - | |
SBP > 140, n (%) | - | - | 79,584 (50) | - | ||
LVEF, % (±sd or IQR) | 31 (±12) | 35 (±15) | 37 (16–65) | 37.8 (±17.3) | 33.9(±14.2) | |
LVEF < 30%, n (%) | 186 (51.6) | - | 1574 (37.9) | - | - | |
LVEF < 40%, n (%) | 61 (16.9) | - | - | 81,653 (51.3) | - | |
Clinical Setting | ||||||
Decompensated HF, n (%) | 144 (40) | 395 (47.4) | 224 (53.9) | 148,305 (93) | 1135 (70.2) | |
Pulmonary edema, n (%) | 82 (22.8) | 124 (14.9) | 748 (18.0) | - | - | |
RV failure, n (%) | 29 (8.1) | 23 (2.8) | 156 (3.7) | - | - | |
ACS, n (%) | 67 (18.6) | 107 (12.8) | - | 6366 (4) | - | |
Cardiogenic shock, n (%) | 30 (8.3) | 158 (19.0) | 600 (14.4) | - | 425 (26.3) | |
Inotrope (%) | ||||||
Dopamine, n (%) | 258 (71.6) | 206 (24.7) | 352 (8.7) | - | 541 (33.5) | |
Dobutamine, n (%) | 143 (39.7) | 354 (42.5) | 407 (10.0) | - | 926 (57.3) | |
Levosimendan, n (%) | 73 (20.2) | 109 (13.1) | 148 (3.6) | - | 234 (14.5) | |
PDEi, n (%) | - | 2 (0.2) | - | - | 48 (3.0) | |
Vasopressor (%) | ||||||
Epinephrine, n (%) | - | 14 (1.7) | 360 (8.9) | - | 142 (8.8) | |
Norepinephrine, n (%) | - | 45 (5.4) | 770 (19.0) | - | 164 (10.1) |
Agents | Dose | Receptors | Inotropism | PVR | SVR |
---|---|---|---|---|---|
Adrenaline | 0.05–0.1 µg/kg/min | α ++/β1 +++ (β1 = β2) | - | ||
High dose | A +++/β1 +++ (β1 = β2) | ||||
Noradrenaline | 0.1–1.0 µg/kg/min | α +++/β1 + (β1 > β2) | - | ||
High dose | α ++++/β1 ++ (β1 > β2) | ||||
Dobutamine | 2–10 µg/kg/min | β1 +++/β2 ++ | |||
>10 µg/kg/min | β1 ++++/β2 +++ | ||||
Dopamine | <3 µg/kg/min | D1 ++/β1 ++ | - | - | |
3–5 µg/kg/min | D1 ++/β1 +++ | - | - | ||
>5 µg/kg/min | α +/β1 ++ | ||||
>10 µg/kg/min | α +++/β1 ++ |
Clinical Scenario | Advantages | Disadvantages |
---|---|---|
Cardiogenic Shock | Adrenaline: Systemic vasocostriction and inotropic effects while low/no effects on pulmonary resistance | ↑ Myocardial oxygen demand Tachycardia |
Noradrenaline: Systemic effects on vasocostriction while not requiring myocardial oxygen consumption | ↑ Afterload Low inotropic effects Peripheral ischemia | |
RV failure | Dobutamine: Inotropic effects with favorable RV/arterial coupling | Excessive drop of SVR Tachycardia (↑ ventricular response rate in patients with AF) |
Dopamine: At low doses, inotropic effects with neutral afterload | Tachycardia ↑ PVR (At high doses) | |
Phosphodiesterase III inhibitors:Inotropic effects while reducing afterload (favorable RV/arterial coupling with particular effects on PVR drop) | Hypotension | |
Levosimendan: Inotropic effects with vasodilatation and no tachycardia effect | Hypotension | |
LV Failure-AHF | Dobutamine Inotropic effects with mild vasodilatation (at low doses) | ↑ Ventricular response rate in patients with AF |
Dopamine: Inotropic effects with neutral afterload (at low doses, vasodilatation by acting D1 receptors) | Tachycardia ↑ Afterload at high dose | |
Phosphodiesterase III inhibitors: Inotropic effects with vasodilatation | Hypotension | |
Levosimendan:Inotropic effects with reduced afterload, no arrhythmia effects, mitigating cardiac ischemia and tachycardia | Hypotension | |
LV-ADHF | Dobutamine: Inotropic effects while reducing PVR and SVR | Tachycardia (At a high dose, ventricular response rate, especially in AF with unfavorable effects) |
Dopamine:Low dose vasodilatation by acting D1 receptors | Unfavorable ventricular–arterial coupling (at high doses) | |
Phosphodiesterase III inhibitors:Inotropic effects with vasodilatation; use in patients in pretreatment of BB therapy | Excessive/no tollarated vasodilatation effects (unfavorable effects especially in adavanced biventricular dysfunction) | |
Levosimendan: Improved ventricular–arterial coupling Use in patients in pretreatment of BB therapy; | Longer half-life (unfavorable in patients who no longer need vasodilation) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iorio, A.M.; Lucà, F.; Pozzi, A.; Rao, C.M.; Di Fusco, S.A.; Colivicchi, F.; Grimaldi, M.; Oliva, F.; Gulizia, M.M. Inotropic Agents: Are We Still in the Middle of Nowhere? J. Clin. Med. 2024, 13, 3735. https://doi.org/10.3390/jcm13133735
Iorio AM, Lucà F, Pozzi A, Rao CM, Di Fusco SA, Colivicchi F, Grimaldi M, Oliva F, Gulizia MM. Inotropic Agents: Are We Still in the Middle of Nowhere? Journal of Clinical Medicine. 2024; 13(13):3735. https://doi.org/10.3390/jcm13133735
Chicago/Turabian StyleIorio, Anna Maria, Fabiana Lucà, Andrea Pozzi, Carmelo Massimiliano Rao, Stefania Angela Di Fusco, Furio Colivicchi, Massimo Grimaldi, Fabrizio Oliva, and Michele Masssimo Gulizia. 2024. "Inotropic Agents: Are We Still in the Middle of Nowhere?" Journal of Clinical Medicine 13, no. 13: 3735. https://doi.org/10.3390/jcm13133735
APA StyleIorio, A. M., Lucà, F., Pozzi, A., Rao, C. M., Di Fusco, S. A., Colivicchi, F., Grimaldi, M., Oliva, F., & Gulizia, M. M. (2024). Inotropic Agents: Are We Still in the Middle of Nowhere? Journal of Clinical Medicine, 13(13), 3735. https://doi.org/10.3390/jcm13133735