Comparison of Three Commercially Available, AI-Driven Cephalometric Analysis Tools in Orthodontics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Population, Sample Size Calculation
2.2. Eligibility Criteria
2.3. Automatic Cephalometric Analysis
2.4. Repeatability Analysis
2.5. Statistical Analysis
3. Results
3.1. Population, Sample Size Calculation
3.2. The Results from Automated CA
3.3. Concordance Analysis
3.4. Repeatability Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McCarthy, J.; Minsky, M.L.; Rochester, N.; Shannon, C.E. A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence. AI Mag. 2006, 27, 12. [Google Scholar]
- McNabb, N.K.; Christensen, E.W.; Rula, E.Y.; Coombs, L.; Dreyer, K.; Wald, C.; Treml, C. Projected Growth in FDA-Approved Artificial Intelligence Products Given Venture Capital Funding. J. Am. Coll. Radiol. 2023, 21, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Hans, M.G.; Martin Palomo, J.; Valiathan, M. History of Imaging in Orthodontics from Broadbent to Cone-Beam Computed Tomography. Am. J. Orthod. Dentofac. Orthop. 2015, 148, 914–921. [Google Scholar] [CrossRef]
- Leonardi, R.; Giordano, D.; Maiorana, F.; Spampinato, C. Automatic Cephalometric Analysis: A Systematic Review. Angle Orthod. 2008, 78, 145–151. [Google Scholar] [CrossRef]
- Devereux, L.; Moles, D.; Cunningham, S.J.; McKnight, M. How Important Are Lateral Cephalometric Radiographs in Orthodontic Treatment Planning? Am. J. Orthod. Dentofac. Orthop. 2011, 139, e175–e181. [Google Scholar] [CrossRef]
- Faria, A.C.; Xavier, S.P.; Silva, S.N.; Trawitzki, L.V.V.; De Mello-Filho, F.V. Cephalometric Analysis of Modifications of the Pharynx Due to Maxillo-Mandibular Advancement Surgery in Patients with Obstructive Sleep Apnea. Int. J. Oral Maxillofac. Surg. 2013, 42, 579–584. [Google Scholar] [CrossRef]
- Liu, J.K.; Chen, Y.T.; Cheng, K.S. Accuracy of Computerized Automatic Identification of Cephalometric Landmarks. Am. J. Orthod. Dentofac. Orthop. 2000, 118, 535–540. [Google Scholar] [CrossRef]
- Dobratulin, K.; Gaidel, A.; Kapishnikov, A.; Ivleva, A.; Aupova, I.; Zelter, P. The Efficiency of Deep Learning Algorithms for Detecting Anatomical Reference Points on Radiological Images of the Head Profile. In Proceedings of the ITNT 2020—6th IEEE International Conference on Information Technology and Nanotechnology, Samara, Russia, 26–29 May 2020. [Google Scholar]
- Park, J.H.; Hwang, H.W.; Moon, J.H.; Yu, Y.; Kim, H.; Her, S.B.; Srinivasan, G.; Aljanabi, M.N.A.; Donatelli, R.E.; Lee, S.J. Automated Identification of Cephalometric Landmarks: Part 1—Comparisons between the Latest Deep-Learning Methods YOLOV3 and SSD. Angle Orthod. 2019, 89, 903–909. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Shim, E.; Park, J.; Kim, Y.J.; Lee, U.; Kim, Y. Web-Based Fully Automated Cephalometric Analysis by Deep Learning. Comput. Methods Programs Biomed. 2020, 194, 105513. [Google Scholar] [CrossRef]
- Grau, V.; Alcañiz, M.; Juan, M.C.; Monserrat, C.; Knoll, C. Automatic Localization of Cephalometric Landmarks. J. Biomed. Inform. 2001, 34, 146–156. [Google Scholar] [CrossRef]
- Yao, J.; Zeng, W.; He, T.; Zhou, S.; Zhang, Y.; Guo, J.; Tang, W. Automatic Localization of Cephalometric Landmarks Based on Convolutional Neural Network. Am. J. Orthod. Dentofac. Orthop. 2022, 161, E250–E259. [Google Scholar] [CrossRef]
- Nishimoto, S.; Sotsuka, Y.; Kawai, K.; Ishise, H.; Kakibuchi, M. Personal Computer-Based Cephalometric Landmark Detection with Deep Learning, Using Cephalograms on the Internet. J. Craniofacial Surg. 2019, 30, 91–95. [Google Scholar] [CrossRef]
- Kunz, F.; Stellzig-Eisenhauer, A.; Zeman, F.; Boldt, J. Artificial Intelligence in Orthodontics: Evaluation of a Fully Automated Cephalometric Analysis Using a Customized Convolutional Neural Network. J. Orofac. Orthop. 2020, 81, 52–68. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.J.; Cho, S.R.; Kim, M.J.; Kim, W.H.; Kim, J.W.; Choi, J. Automated Skeletal Classification with Lateral Cephalometry Based on Artificial Intelligence. J. Dent. Res. 2020, 99, 249–256. [Google Scholar] [CrossRef]
- Lee, J.H.; Yu, H.J.; Kim, M.J.; Kim, J.W.; Choi, J. Automated Cephalometric Landmark Detection with Confidence Regions Using Bayesian Convolutional Neural Networks. BMC Oral Health 2020, 20, 270. [Google Scholar] [CrossRef]
- Hwang, H.-W.; Moon, J.-H.; Kim, M.-G.; Donatelli, R.E.; Lee, S.-J. Evaluation of Automated Cephalometric Analysis Based on the Latest Deep Learning Method. Angle Orthod. 2021, 91, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.W.; Park, J.H.; Moon, J.H.; Yu, Y.; Kim, H.; Her, S.B.; Srinivasan, G.; Aljanabi, M.N.A.; Donatelli, R.E.; Lee, S.J. Automated Identification of Cephalometric Landmarks: Part 2—Might It Be Better than Human? Angle Orthod. 2020, 90, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Nishimoto, S.; Kawai, K.; Fujiwara, T.; Ishise, H.; Kakibuchi, M. Locating Cephalometric Landmarks with Multi-Phase Deep Learning. J. Dent. Health Oral Res. 2023, 4, 1–13. [Google Scholar] [CrossRef]
- Stabrun, A.E.; Danielsen, K. Precision in Cephalometric Landmark Indentification. Eur. J. Orthod. 1982, 4, 185–196. [Google Scholar] [CrossRef]
- Kazimierczak, N.; Kazimierczak, W.; Serafin, Z.; Nowicki, P.; Nożewski, J.; Janiszewska-Olszowska, J. AI in Orthodontics: Revolutionizing Diagnostics and Treatment Planning—A Comprehensive Review. J. Clin. Med. 2024, 13, 344. [Google Scholar] [CrossRef]
- Abesi, F.; Jamali, A.S.; Zamani, M. Accuracy of Artificial Intelligence in the Detection and Segmentation of Oral and Maxillofacial Structures Using Cone-Beam Computed Tomography Images: A Systematic Review and Meta-Analysis. Pol. J. Radiol. 2023, 88, e256. [Google Scholar] [CrossRef] [PubMed]
- Kiełczykowski, M.; Kamiński, K.; Perkowski, K.; Zadurska, M.; Czochrowska, E. Application of Artificial Intelligence (AI) in a Cephalometric Analysis: A Narrative Review. Diagnostics 2023, 13, 2640. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.H.; Jeon, K.; Kang, S.H.; Lee, S.H. 3D Cephalometric Landmark Detection by Multiple Stage Deep Reinforcement Learning. Sci. Rep. 2021, 11, 17509. [Google Scholar] [CrossRef] [PubMed]
- Chung, E.J.; Yang, B.E.; Park, I.Y.; Yi, S.; On, S.W.; Kim, Y.H.; Kang, S.H.; Byun, S.H. Effectiveness of Cone-Beam Computed Tomography-Generated Cephalograms Using Artificial Intelligence Cephalometric Analysis. Sci. Rep. 2022, 12, 20585. [Google Scholar] [CrossRef] [PubMed]
- Bulatova, G.; Kusnoto, B.; Grace, V.; Tsay, T.P.; Avenetti, D.M.; Sanchez, F.J.C. Assessment of Automatic Cephalometric Landmark Identification Using Artificial Intelligence. Orthod. Craniofac. Res. 2021, 24, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Tsolakis, I.A.; Tsolakis, A.I.; Elshebiny, T.; Matthaios, S.; Palomo, J.M. Comparing a Fully Automated Cephalometric Tracing Method to a Manual Tracing Method for Orthodontic Diagnosis. J. Clin. Med. 2022, 11, 6854. [Google Scholar] [CrossRef] [PubMed]
- Meriç, P.; Naoumova, J. Web-Based Fully Automated Cephalometric Analysis: Comparisons between App-Aided, Computerized, and Manual Tracings. Turk. J. Orthod. 2020, 33, 142–149. [Google Scholar] [CrossRef]
- Alqahtani, H. Evaluation of an Online Website-Based Platform for Cephalometric Analysis. J. Stomatol. Oral Maxillofac. Surg. 2020, 121, 53–57. [Google Scholar] [CrossRef]
- Prince, S.T.T.; Srinivasan, D.; Duraisamy, S.; Kannan, R.; Rajaram, K. Reproducibility of Linear and Angular Cephalometric Measurements Obtained by an Artificial-Intelligence Assisted Software (WebCeph) in Comparison with Digital Software (AutoCEPH) and Manual Tracing Method. Dent. Press. J. Orthod. 2023, 28, e2321214. [Google Scholar] [CrossRef]
- Ristau, B.; Coreil, M.; Chapple, A.; Armbruster, P.; Ballard, R. Comparison of AudaxCeph®’s Fully Automated Cephalometric Tracing Technology to a Semi-Automated Approach by Human Examiners. Int. Orthod. 2022, 20, 100691. [Google Scholar] [CrossRef]
- Shrout, P.E.; Fleiss, J.L. Intraclass Correlations: Uses in Assessing Rater Reliability. Psychol. Bull. 1979, 86, 420–428. [Google Scholar] [CrossRef] [PubMed]
- Mauchamp, O.; Sassouni, V. Growth and Prediction of the Skeletal and Soft-Tissue Profiles. Am. J. Orthod. 1973, 64, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Burstone, C.J. The Integumental Profile. Am. J. Orthod. 1958, 44, 1–25. [Google Scholar] [CrossRef]
- Muzj, E. Musical and Architectural Proportions in the Anatomy of the Facial System. An Anthropometric Approach. Angle Orthod. 1982, 52, 177–210. [Google Scholar] [PubMed]
- Subtelny, J.D. The Soft Tissue Profile, Growth and Treatment Changes. Angle Orthod. 1961, 31, 105–122. [Google Scholar]
- Ngan, P.; Hägg, U.; Yiu, C.; Merwin, D.; Wei, S.H. Soft Tissue and Dentoskeletal Profile Changes Associated with Maxillary Expansion and Protraction Headgear Treatment. Am. J. Orthod. Dentofac. Orthop. 1996, 109, 38–49. [Google Scholar] [CrossRef]
- Ruf, S.; Pancherz, H. Dentoskeletal Effects and Facial Profile Changes in Young Adults Treated with the Herbst Appliance. Angle Orthod. 1999, 69, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Godt, A.; Müller, A.; Kalwitzki, M.; Göz, G. Angles of Facial Convexity in Different Skeletal Classes. Eur. J. Orthod. 2007, 29, 648–653. [Google Scholar] [CrossRef] [PubMed]
- Mazurkiewicz, P.; Oblizajek, M.; Rzeszowska, J.; Sobolewska, E.; Ey-Chmielewska, H.; Szymańska-Kozula, R. Determining the Occlusal Plane: A Literature Review. Cranio J. Craniomandib. Pract. 2022, 40, 341–347. [Google Scholar] [CrossRef]
- Lin, Y.; Guo, R.; Hou, L.; Fu, Z.; Li, W. Stability of Maxillary Protraction Therapy in Children with Class III Malocclusion: A Systematic Review and Meta-Analysis. Clin. Oral Investig. 2018, 22, 2639–2652. [Google Scholar] [CrossRef]
- Kazimierczak, N.; Kazimierczak, W.; Serafin, Z.; Nowicki, P.; Lemanowicz, A.; Nadolska, K.; Janiszewska-Olszowska, J. Correlation Analysis of Nasal Septum Deviation and Results of AI-Driven Automated 3D Cephalometric Analysis. J. Clin. Med. 2023, 12, 6621. [Google Scholar] [CrossRef] [PubMed]
- Kazimierczak, N.; Kazimierczak, W.; Serafin, Z.; Nowicki, P.; Jankowski, T.; Jankowska, A.; Janiszewska-Olszowska, J. Skeletal Facial Asymmetry: Reliability of Manual and Artificial Intelligence-Driven Analysis. Dentomaxillofacial Radiol. 2024, 53, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Yassir, Y.A.; Salman, A.R.; Nabbat, S.A. The Accuracy and Reliability of WebCeph for Cephalometric Analysis. J. Taibah Univ. Med. Sci. 2022, 17, 57–66. [Google Scholar] [CrossRef]
- Silva, T.P.; Pinheiro, M.C.R.; Freitas, D.Q.; Gaêta-Araujo, H.; Oliveira-Santos, C. Assessment of Accuracy and Reproducibility of Cephalometric Identification Performed by 2 Artificial Intelligence-Driven Tracing Applications and Human Examiners. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2024, 137, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Khalid, R.F.; Azeez, S.M. Comparison of Cephalometric Measurements of On-Screen Images by CephX Software and Hard-Copy Printouts by Conventional Manual Tracing. J. Hunan Univ. Nat. Sci. 2022, 49, 68–74. [Google Scholar] [CrossRef]
- de Queiroz Tavares Borges Mesquita, G.; Vieira, W.A.; Vidigal, M.T.C.; Travençolo, B.A.N.; Beaini, T.L.; Spin-Neto, R.; Paranhos, L.R.; de Brito Júnior, R.B. Artificial Intelligence for Detecting Cephalometric Landmarks: A Systematic Review and Meta-Analysis. J. Digit. Imaging 2023, 36, 1158–1179. [Google Scholar] [CrossRef] [PubMed]
- Schwendicke, F.; Chaurasia, A.; Arsiwala, L.; Lee, J.H.; Elhennawy, K.; Jost-Brinkmann, P.G.; Demarco, F.; Krois, J. Deep Learning for Cephalometric Landmark Detection: Systematic Review and Meta-Analysis. Clin. Oral Investig. 2021, 25, 4299–4309. [Google Scholar] [CrossRef] [PubMed]
- Londono, J.; Ghasemi, S.; Hussain Shah, A.; Fahimipour, A.; Ghadimi, N.; Hashemi, S.; Khurshid, Z.; Dashti, M. Evaluation of Deep Learning and Convolutional Neural Network Algorithms Accuracy for Detecting and Predicting Anatomical Landmarks on 2D Lateral Cephalometric Images: A Systematic Review and Meta-Analysis. Saudi Dent. J. 2023, 35, 487–497. [Google Scholar] [CrossRef] [PubMed]
- Jihed, M.; Dallel, I.; Tobji, S.; Amor, A. Ben The Impact of Artificial Intelligence on Contemporary Orthodontic Treatment Planning—A Systematic Review and Meta-Analysis. Sch. J. Dent. Sci. 2022, 9, 70–87. [Google Scholar] [CrossRef]
- Junaid, N.; Khan, N.; Ahmed, N.; Abbasi, M.S.; Das, G.; Maqsood, A.; Ahmed, A.R.; Marya, A.; Alam, M.K.; Heboyan, A. Development, Application, and Performance of Artificial Intelligence in Cephalometric Landmark Identification and Diagnosis: A Systematic Review. Healthcare 2022, 10, 2454. [Google Scholar] [CrossRef]
- Rauniyar, S.; Jena, S.; Sahoo, N.; Mohanty, P.; Dash, B.P. Artificial Intelligence and Machine Learning for Automated Cephalometric Landmark Identification: A Meta-Analysis Previewed by a Systematic Review. Cureus 2023, 15, e40934. [Google Scholar] [CrossRef] [PubMed]
- Serafin, M.; Baldini, B.; Cabitza, F.; Carrafiello, G.; Baselli, G.; Del Fabbro, M.; Sforza, C.; Caprioglio, A.; Tartaglia, G.M. Accuracy of Automated 3D Cephalometric Landmarks by Deep Learning Algorithms: Systematic Review and Meta-Analysis. Radiol. Med. 2023, 128, 544–555. [Google Scholar] [CrossRef] [PubMed]
- Waller, J.; O’connor, A.; Rafaat, E.; Amireh, A.; Dempsey, J.; Martin, C.; Umair, M. Applications and Challenges of Artificial Intelligence in Diagnostic and Interventional Radiology. Pol. J. Radiol. 2022, 87, 113–117. [Google Scholar] [CrossRef] [PubMed]
Criteria | Description |
---|---|
Inclusion Criteria | Patients aged 12–20 years |
Lateral cephalograms obtained during orthodontic treatment planning | |
Good image quality without artifacts | |
Exclusion Criteria | Poor image quality |
Presence of artifacts or asymmetries | |
Significant double borders of the mandible |
No. | Parameter (Unified Name) | CephX | WebCeph | AudaxCeph |
---|---|---|---|---|
Downs | ||||
1 | Facial Angle | Facial Angle | FH-N-Pog | Facial Angle |
2 | Angle Convexity | Angle Convexity | - | N-A-Pg |
3 | A-B Plane | A-B Plane | NA | NPg/AB |
4 | Mandibular Plane | FH-GoGn | Mandibular Plane | FH/ML′ |
5 | Y-Axis | FH-S-Gn | Y-axis | FH/Y |
6 | Occlusal Plane | FH-Occ Plane | Cant of the Occlusal Plane | FH/OcP |
7 | Upper Incisor to Lower Incisor | UI to LI | Interincisal Angle | Interincisal Angle |
8 | Lower Incisor to Occlusal Plane | LI to Occ Plane | Incisor Occlusal Plane Angle | −1/OcP |
9 | Lower Incisor to Mandibular Plane | LI to Mand | Incisor Mandibular Plane Angle | −1/ML′ |
10 | Upper Incisor to A-Pog | UI to A-Pog | Upper Incisor to A-Pog Line | +1/APg |
Ricketts | ||||
11 | Maxillary Depth | FH to N-A | NA | Maxillary Depth |
12 | Maxillary Height | N-PTV to A pt | NA | NA |
13 | SN to Palatal Plane | SN TO PALATAL PLANE | NA | NA |
14 | Facial Depth | FH to N-Pog | Facial Depth | Facial Depth |
15 | Facial Axis | Na-Ba to PTV-Gn pt | Facial Axis | Facial Axis |
16 | Facial Taper | Na-Gn-Go | Facial Taper | Facial Taper |
17 | Mandibular Plane (Ricketts) | FH-GoGn | Mandibular Plane Angle (Ricketts) | FMA |
18 | Corpus Length | Xi to Pm | NA | Corpus Axis |
19 | Mandibular Arc | DC-Xi to Xi-Pm | Mandibular Arc | Mandibular Arc |
20 | Point A Convexity | A to N-Pog | Convexity of Point A | Convexity |
21 | Lower Facial Height | ANS-Xi-Pog | Denture Height (Lower Facial Height) | Lower Facial Height |
23 | Maxillary Incisor to A-Po | MAX.1 to APo | NA | NA |
24 | Upper Molar to PTV | MAX.6 to PTV | Upper Molar to PtV | NA |
25 | Mandibular Incisor to A-Po | MAND. 1 to APo | L1 to A-Pog (mm) | Lower 1 to APg (mm) |
26 | Hinge Axis Angle | DC-Go-LI | NA | NA |
27 | Maxillary Incisor to Mandibular Incisor | MAX.1 to MAND.1 | Intercisal Angle | Interincisal Angle |
28 | Overjet | Overjet | NA | NA |
29 | Overbite | Overbite | NA | NA |
31 | Upper Lip to E-Line | Upper Lip to E-Line | NA | NA |
32 | Lower Lip to E-Line | Lower Lip to E-Line | Lower Lip to E-Plane | Li/E-Line |
Steiner | ||||
33 | SNA | SNA | SNA | Angle SNA |
34 | SNB | SNB | SNB | Angle SNB |
35 | ANB | ANB | ANB | ANB |
36 | Maxillary Incisor to NA (deg) | I/to NA | U1 to NA (deg) | +1/NA |
37 | Maxillary Incisor to NA (mm) | I/to NA | U1 to NA (mm) | +1i/NA |
38 | Mandibular Incisor to NB (deg) | /I to NB | L1 to NB (deg) | −1/NB |
39 | Mandibular Incisor to NB (mm) | /I to NB | L1 to NB (mm) | −1i/NB |
40 | Interincisal Angle | Interincisal Angle | Interincisal Angle | Interincisal Angle |
41 | Occlusal Plane to SN | Occ to SN | Occlusal Plane to SN Angle | SN/OcP |
42 | Mandibular Plane to SN | GOGN-SN | Mandibular Plane Angle (Go-Gn to SN) | SN/GoGn |
43 | Pogonion to NB | Pog to NB | NA | Pg/NB |
Parameter | Software | Mean | SD | Median | Min | Max | Q1 | Q3 | p |
---|---|---|---|---|---|---|---|---|---|
FACIAL ANGLE | CephX-A | 89.54 | 3.64 | 89.09 | 82.68 | 101.20 | 87.08 | 91.62 | p = 0.001 * B.A > C |
AudaXCeph-B | 89.46 | 3.46 | 89.26 | 81.30 | 103.31 | 87.55 | 91.05 | ||
WebCeph-C | 88.77 | 3.43 | 89.03 | 81.78 | 99.89 | 86.49 | 90.56 | ||
ANGLE CONVEXITY (DOWNS) | CephX-A | 176.32 | 10.41 | 174.00 | 161.78 | 222.66 | 171.13 | 179.30 | p < 0.001 * A > C > B |
AudaXCeph-B | 7.18 | 4.53 | 6.28 | 0.66 | 19.68 | 3.77 | 9.69 | ||
WebCeph-C | 7.99 | 4.51 | 7.88 | 0.50 | 20.43 | 4.10 | 10.96 | ||
MAND. PLANE (DOWNS) | CephX-A | 24.90 | 5.61 | 23.23 | 13.63 | 37.34 | 21.21 | 29.57 | p < 0.001 * A > B.C |
AudaXCeph-B | 22.49 | 5.79 | 22.01 | 12.12 | 34.32 | 17.30 | 27.68 | ||
WebCeph-C | 22.05 | 6.31 | 21.01 | 10.55 | 33.25 | 17.13 | 27.44 | ||
Y-AXIS | CephX | 58.13 | 4.00 | 58.18 | 49.52 | 65.30 | 56.03 | 61.06 | p = 0.064 |
AudaXCeph | 57.74 | 3.90 | 57.64 | 48.28 | 66.25 | 55.41 | 60.21 | ||
WebCeph | 58.02 | 3.93 | 58.20 | 48.75 | 65.03 | 55.67 | 61.61 | ||
OCCLUSAL PLANE | CephX-A | 42.80 | 72.23 | 5.53 | 0.13 | 179.93 | 1.65 | 13.98 | p = 0.01 * A > C |
AudaXCeph-B | 6.11 | 4.01 | 5.38 | 0.32 | 17.61 | 3.21 | 8.38 | ||
WebCeph-C | 5.86 | 4.05 | 5.27 | 0.09 | 16.65 | 2.50 | 8.48 | ||
UI to LI | CephX-A | 130.06 | 11.10 | 129.31 | 103.04 | 167.22 | 123.03 | 135.18 | p = 0.029 * B > A |
AudaXCeph-B | 131.39 | 11.25 | 130.48 | 106.21 | 162.23 | 123.94 | 138.08 | ||
WebCeph-C | 130.29 | 10.96 | 129.28 | 105.95 | 160.59 | 123.05 | 137.04 | ||
LI to Occ PL. | CephX-A | 69.23 | 8.33 | 67.93 | 55.17 | 105.49 | 63.26 | 72.47 | p < 0.001 * A > B.C |
AudaXCeph-B | 20.31 | 7.30 | 21.70 | 2.32 | 36.02 | 17.22 | 25.68 | ||
WebCeph-C | 20.62 | 7.52 | 20.76 | 1.88 | 36.08 | 16.00 | 27.19 | ||
LI to MAND | CephX-A | 87.13 | 7.93 | 88.60 | 56.63 | 102.33 | 83.69 | 92.10 | p < 0.001 * A > C.B |
AudaXCeph-B | 6.98 | 4.72 | 6.35 | 0.09 | 21.00 | 3.53 | 9.73 | ||
WebCeph-C | 6.87 | 4.48 | 7.39 | 0.13 | 18.85 | 2.79 | 9.56 | ||
UI to A-Pog | CephX-A | 6.19 | 2.97 | 6.17 | 0.31 | 14.71 | 3.88 | 8.38 | p < 0.001 * A > B > C |
AudaXCeph-B | 5.94 | 2.83 | 5.73 | 0.03 | 12.21 | 3.99 | 8.48 | ||
WebCeph-C | 5.48 | 2.74 | 5.46 | 0.82 | 13.89 | 3.66 | 7.58 | ||
FACIAL DEPTH | CephX-A | 89.55 | 3.42 | 89.42 | 82.68 | 98.53 | 87.10 | 91.91 | p = 0.003 * A.B > C |
AudaXCeph-B | 89.35 | 3.07 | 89.30 | 81.30 | 97.54 | 87.45 | 91.15 | ||
WebCeph-C | 88.76 | 3.15 | 89.06 | 81.78 | 97.53 | 86.50 | 90.60 | ||
FACIAL AXIS | CephX-A | 89.25 | 5.39 | 90.29 | 77.27 | 102.22 | 84.19 | 92.59 | p < 0.001 * B > A.C |
AudaXCeph-B | 90.14 | 5.44 | 90.92 | 77.84 | 103.75 | 85.16 | 93.68 | ||
WebCeph-C | 89.17 | 5.27 | 90.18 | 78.05 | 99.90 | 84.45 | 92.83 | ||
FACIAL TAPER | CephX-A | 66.91 | 4.74 | 67.08 | 55.14 | 74.20 | 64.08 | 70.52 | p < 0.001 * C > A.B |
AudaXCeph-B | 66.90 | 5.06 | 66.79 | 53.22 | 75.07 | 64.10 | 70.57 | ||
WebCeph-C | 72.23 | 6.61 | 72.41 | 53.43 | 84.50 | 69.38 | 76.56 | ||
MAND. PLANE (RICKETTS) | CephX-A | 24.54 | 5.65 | 22.61 | 13.63 | 37.34 | 20.91 | 29.02 | p < 0.001 * B > A > C |
AudaXCeph-B | 23.75 | 5.74 | 22.95 | 13.50 | 35.81 | 18.75 | 28.96 | ||
WebCeph-C | 21.89 | 6.23 | 20.76 | 10.55 | 33.25 | 16.70 | 27.44 | ||
MAND. ARC | CephX-A | 28.05 | 7.82 | 28.35 | 15.94 | 69.51 | 23.85 | 31.75 | p < 0.001 * C > B > A |
AudaXCeph-B | 33.06 | 8.45 | 32.38 | 13.76 | 48.67 | 27.53 | 39.69 | ||
WebCeph-C | 37.76 | 5.21 | 39.13 | 26.51 | 46.27 | 35.12 | 41.85 | ||
A pt. CONVEXITY | CephX-A | 3.46 | 2.14 | 3.34 | 0.17 | 9.28 | 2.26 | 4.42 | p = 0.022 * B > A |
AudaXCeph-B | 3.68 | 4.22 | 2.85 | 0.27 | 29.82 | 1.78 | 4.27 | ||
WebCeph-C | 3.60 | 1.96 | 3.66 | 0.24 | 8.55 | 2.18 | 4.86 | ||
LOW.FACE.HEIGHT | CephX-A | 41.15 | 5.26 | 40.20 | 29.38 | 51.25 | 37.05 | 45.31 | p < 0.001 * C > B > A |
AudaXCeph-B | 43.56 | 6.67 | 42.71 | 32.35 | 56.68 | 37.71 | 48.96 | ||
WebCeph-C | 44.23 | 6.08 | 43.14 | 31.43 | 55.66 | 39.17 | 49.21 | ||
MAND.1 to APo | CephX-A | 2.13 | 1.79 | 1.48 | 0.11 | 7.79 | 0.80 | 3.04 | p < 0.001 * B > C.A |
AudaXCeph-B | 3.31 | 5.26 | 2.64 | 0.04 | 38.42 | 1.19 | 3.96 | ||
WebCeph-C | 2.11 | 1.73 | 1.73 | 0.07 | 7.00 | 0.74 | 3.26 | ||
MAX.1 to MAND.1 | CephX-A | 130.06 | 11.10 | 129.31 | 103.04 | 167.22 | 123.03 | 135.18 | p = 0.029 * B > A |
AudaXCeph-B | 131.39 | 11.25 | 130.48 | 106.21 | 162.23 | 123.94 | 138.08 | ||
WebCeph-C | 130.29 | 10.96 | 129.28 | 105.95 | 160.59 | 123.05 | 137.04 | ||
LOWER LIP to E-LINE | CephX | 2.60 | 2.11 | 1.90 | 0.02 | 9.78 | 1.04 | 4.12 | p = 0.981 |
AudaXCeph | 2.90 | 2.17 | 2.58 | 0.15 | 8.67 | 0.91 | 4.28 | ||
WebCeph | 2.67 | 2.01 | 2.50 | 0.03 | 6.98 | 1.08 | 4.13 | ||
SNA | CephX-A | 82.89 | 3.49 | 83.21 | 74.48 | 89.74 | 81.06 | 85.23 | p = 0.039 * A > B |
AudaXCeph-B | 82.38 | 3.67 | 82.71 | 73.90 | 89.71 | 79.73 | 84.83 | ||
WebCeph-C | 82.70 | 3.50 | 83.10 | 73.84 | 89.48 | 80.33 | 85.22 | ||
SNB | CephX-A | 79.59 | 4.29 | 80.00 | 69.16 | 90.13 | 77.36 | 81.75 | p = 0.035 * A > C.B |
AudaXCeph-B | 79.32 | 4.36 | 79.37 | 68.70 | 90.36 | 76.98 | 81.79 | ||
WebCeph-C | 79.09 | 4.19 | 79.48 | 67.43 | 89.65 | 77.34 | 82.40 | ||
ANB | CephX-A | 4.08 | 2.25 | 4.06 | 0.28 | 9.97 | 2.38 | 5.56 | p = 0.008 * C > B |
AudaXCeph-B | 3.85 | 2.18 | 3.83 | 0.31 | 10.08 | 2.25 | 5.35 | ||
WebCeph-C | 4.35 | 2.19 | 4.56 | 0.03 | 8.80 | 2.73 | 5.79 | ||
I/to NA (deg) | CephX-A | 23.32 | 8.38 | 22.00 | 5.76 | 44.38 | 18.71 | 28.05 | p < 0.001 * A.C > B |
AudaXCeph-B | 20.83 | 8.80 | 20.51 | 1.19 | 41.24 | 16.04 | 25.43 | ||
WebCeph-C | 21.99 | 8.45 | 21.23 | 0.55 | 39.50 | 17.92 | 27.02 | ||
I/to NA (mm) | CephX-A | 4.05 | 2.34 | 4.06 | 0.13 | 8.90 | 2.46 | 5.56 | p = 0.011 * A.B > C |
AudaXCeph-B | 4.64 | 4.78 | 3.59 | 0.06 | 33.65 | 2.41 | 5.94 | ||
WebCeph-C | 3.48 | 2.15 | 3.09 | 0.34 | 7.82 | 1.85 | 4.98 | ||
/I to NB (deg) | CephX | 22.85 | 6.46 | 24.65 | 2.10 | 31.14 | 19.14 | 27.23 | p = 0.118 |
AudaXCeph | 24.03 | 6.88 | 25.60 | 6.51 | 34.92 | 19.68 | 29.18 | ||
WebCeph | 23.58 | 6.88 | 24.68 | 4.21 | 35.43 | 19.45 | 28.45 | ||
/I to NB (mm) | CephX-A | 3.89 | 2.17 | 3.85 | 0.05 | 8.76 | 2.48 | 5.18 | p < 0.001 * B > C > A |
AudaXCeph-B | 4.98 | 2.88 | 4.62 | 0.19 | 16.66 | 3.18 | 6.44 | ||
WebCeph-C | 4.45 | 2.33 | 4.07 | 0.03 | 10.69 | 2.86 | 6.10 | ||
I/to/I | CephX-A | 130.06 | 11.10 | 129.31 | 103.04 | 167.22 | 123.03 | 135.18 | p = 0.029 * B > A |
AudaXCeph-B | 131.39 | 11.25 | 130.48 | 106.21 | 162.23 | 123.94 | 138.08 | ||
WebCeph-C | 130.29 | 10.96 | 129.28 | 105.95 | 160.59 | 123.05 | 137.04 | ||
Occ to SN | CephX-A | 12.59 | 5.10 | 11.66 | 3.71 | 27.11 | 8.96 | 15.08 | p < 0.001 * B > C > A |
AudaXCeph-B | 14.79 | 4.87 | 14.31 | 5.49 | 24.36 | 11.23 | 17.98 | ||
WebCeph-C | 14.04 | 4.68 | 13.40 | 2.42 | 23.03 | 10.61 | 17.53 | ||
GOGN-SN | CephX-A | 36.22 | 6.35 | 35.59 | 25.68 | 47.29 | 30.94 | 41.98 | p < 0.001 * A > B > C |
AudaXCeph-B | 30.40 | 6.91 | 30.40 | 18.48 | 41.91 | 24.65 | 36.83 | ||
WebCeph-C | 29.33 | 6.85 | 28.25 | 16.41 | 42.20 | 23.76 | 35.33 |
Parameter | Measurement | Mean | SD | Median | Min | Max | Q1 | Q3 | p |
---|---|---|---|---|---|---|---|---|---|
A-B PLANE | CephX | 6.84 | 3.43 | 7.1 | 0.14 | 15.35 | 4.23 | 9.68 | p < 0.001 * |
AudaXCeph | 9.79 | 5.41 | 9.43 | 0.95 | 23.64 | 5.8 | 14.06 | ||
MAX DEPTH | CephX | 91.89 | 2.97 | 91.47 | 86.54 | 99.13 | 89.98 | 94.02 | p = 0.004 * |
AudaXCeph | 91.31 | 2.99 | 91.41 | 83.84 | 97.46 | 89.52 | 93.06 | ||
CORPUS LENGTH | CephX | 73.77 | 6.5 | 73.43 | 39.67 | 88.53 | 70.22 | 78.12 | p < 0.001 * |
AudaXCeph | 72.14 | 37.69 | 67.88 | 59.11 | 391.47 | 64.36 | 70.01 | ||
POG to NB | CephX | 1.96 | 1.59 | 1.74 | 0 | 6.69 | 0.62 | 3.01 | p < 0.001 * |
AudaXCeph | 2.46 | 1.66 | 2.21 | 0.18 | 6.24 | 1.24 | 3.47 |
Parameter | ICC | 95% CI | Agreement (Cicchetti) | Agreement (Koo and Li) | |
---|---|---|---|---|---|
FACIAL ANGLE | 0.910 | 0.864 | 0.943 | Excellent | Excellent |
ANGLE CONVEXITY (DOWNS) | 0.075 | −0.073 | 0.254 | Poor | Poor |
MAND. PLANE (DOWNS) | 0.903 | 0.854 | 0.939 | Excellent | Excellent |
Y AXIS | 0.927 | 0.889 | 0.954 | Excellent | Excellent |
OCCLUSAL PLANE | 0.000 | −0.137 | 0.172 | Poor | Poor |
UI to LI | 0.942 | 0.913 | 0.963 | Excellent | Excellent |
LI to Occ PL. | 0.000 | −0.137 | 0.172 | Poor | Poor |
LI to MAND | 0.388 | 0.222 | 0.553 | Poor | Poor |
UI to A-Pog | 0.922 | 0.881 | 0.951 | Excellent | Excellent |
FACIAL DEPTH | 0.898 | 0.845 | 0.937 | Excellent | Good |
FACIAL AXIS | 0.975 | 0.960 | 0.984 | Excellent | Excellent |
FACIAL TAPER | 0.789 | 0.692 | 0.865 | Excellent | Good |
MAND. PLANE (RICKETTS) | 0.901 | 0.849 | 0.938 | Excellent | Excellent |
MAND. ARC | 0.510 | 0.348 | 0.659 | Fair | Fair |
A pt. CONVEXITY | 0.532 | 0.373 | 0.676 | Fair | Fair |
LOW.FACE.HEIGHT | 0.947 | 0.918 | 0.967 | Excellent | Excellent |
MAND. 1 to APo | 0.416 | 0.246 | 0.582 | Fair | Poor |
MAX.1 to MAND.1 | 0.942 | 0.913 | 0.963 | Excellent | Excellent |
LOWER LIP to E-LINE | 0.799 | 0.705 | 0.871 | Excellent | Good |
SNA | 0.897 | 0.843 | 0.935 | Excellent | Good |
SNB | 0.968 | 0.950 | 0.981 | Excellent | Excellent |
ANB | 0.908 | 0.860 | 0.943 | Excellent | Excellent |
I/to NA (deg) | 0.918 | 0.873 | 0.949 | Excellent | Excellent |
I/to NA (mm) | 0.494 | 0.331 | 0.646 | Fair | Poor |
/I to NB (deg) | 0.938 | 0.903 | 0.961 | Excellent | Excellent |
/I to NB (mm) | 0.745 | 0.633 | 0.834 | Good | Fair |
I/to/I | 0.942 | 0.913 | 0.963 | Excellent | Excellent |
Occ to SN | 0.903 | 0.853 | 0.940 | Excellent | Excellent |
GOGN-SN | 0.931 | 0.893 | 0.957 | Excellent | Excellent |
Parameter | ICC | 95% CI | Agreement (Cicchetti) | Agreement (Koo and Li) | |
---|---|---|---|---|---|
A-B PLANE | 0.798 | 0.698 | 0.868 | Excellent | Good |
MAX DEPTH | 0.844 | 0.764 | 0.899 | Excellent | Good |
CORPUS LENGTH | 0.123 | −0.106 | 0.339 | Poor | Poor |
POG to NB | 0.945 | 0.914 | 0.965 | Excellent | Excellent |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazimierczak, W.; Gawin, G.; Janiszewska-Olszowska, J.; Dyszkiewicz-Konwińska, M.; Nowicki, P.; Kazimierczak, N.; Serafin, Z.; Orhan, K. Comparison of Three Commercially Available, AI-Driven Cephalometric Analysis Tools in Orthodontics. J. Clin. Med. 2024, 13, 3733. https://doi.org/10.3390/jcm13133733
Kazimierczak W, Gawin G, Janiszewska-Olszowska J, Dyszkiewicz-Konwińska M, Nowicki P, Kazimierczak N, Serafin Z, Orhan K. Comparison of Three Commercially Available, AI-Driven Cephalometric Analysis Tools in Orthodontics. Journal of Clinical Medicine. 2024; 13(13):3733. https://doi.org/10.3390/jcm13133733
Chicago/Turabian StyleKazimierczak, Wojciech, Grzegorz Gawin, Joanna Janiszewska-Olszowska, Marta Dyszkiewicz-Konwińska, Paweł Nowicki, Natalia Kazimierczak, Zbigniew Serafin, and Kaan Orhan. 2024. "Comparison of Three Commercially Available, AI-Driven Cephalometric Analysis Tools in Orthodontics" Journal of Clinical Medicine 13, no. 13: 3733. https://doi.org/10.3390/jcm13133733
APA StyleKazimierczak, W., Gawin, G., Janiszewska-Olszowska, J., Dyszkiewicz-Konwińska, M., Nowicki, P., Kazimierczak, N., Serafin, Z., & Orhan, K. (2024). Comparison of Three Commercially Available, AI-Driven Cephalometric Analysis Tools in Orthodontics. Journal of Clinical Medicine, 13(13), 3733. https://doi.org/10.3390/jcm13133733