Molecular Perspectives in Radioactive Iodine Theranostics: Current Redifferentiation Protocols for Mis-Differentiated Thyroid Cancer
Abstract
:1. Introduction
2. RAI-Refractoriness and RAI-Indifference
3. Signaling Pathways and Functional Mis-Differentiation of Thyroid Cancers
4. Clinical Protocols
4.1. Published Studies
4.2. Clinical Trials in Progress
5. Clinical Considerations with Redifferentiation Protocols
6. Epilogue
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Glossary
Theranostics | Direct linking of diagnostic information to a therapeutic intervention. Theranostics describes a methodology in personalized medicine. In nuclear medicine, it refers to a radioactive pharmaceutical that is used to identify (diagnose) and to treat cancer. |
Theranostic Power | Theranostic power defines the clinical performance of a theranostic agent or method, whereas theranostic potential is an abstract term indicating a potential of a diagnostic agent/technique/method to be a theranostic tool. The clinical performance of a theranostic tool is a function of biologic and technical determinants. The theranostic power of RAI in thyroid cancer is diminished due to suppressed iodine metabolic transcriptomics. |
Differentiated Thyroid Cancer | Differentiated thyroid cancer refers to/encompasses thyroid cancers arising from thyroid follicular epithelial cells, excluding poorly differentiated and undifferentiated (anaplastic) varieties. Papillary thyroid cancer (PTC), follicular thyroid cancer (FTC), and oncocytic thyroid cancer (OTC) are considered differentiated. The term strictly implies a distinct morphologic differentiation. Iodine metabolic functionality of this group is highly variable. Metabolic function of these cancers is determined by their genomic and transcriptomic expressions. RAS-mutation-initiated cancers (follicular cancers and follicular variant of PTC) have diminished capacity for iodine processing. BRAF-mutation-initiated cancers (classic and tall cell variant PTC) have significantly depressed iodine metabolic function. Oncocytic cancers have completely different genomic constructs and have absent iodine processing capacity. |
Mis-differentiated Thyroid Cancer | The term mis-differentiated refers to thyroid cancers with distinct morphologic differentiation, but functionally showing significant deviance in their iodine processing capacity, in the most part, missing the ability of full metabolic functionality. |
RAI-Refractory | The term RAI-refractory denotes a lack of response to RAI therapy. A refractory state can be due to (1) inability to process RAI (RAI-indifference), (2) inadequate radiation absorbed dose delivery, or (3) radioresistance. |
RAI-Indifference | RAI-indifference implies a lack of avidity or reactivity in engaging RAI processing by the malignant tissue. Simply, the malignant tissue is not metabolically equipped to take up and/or process RAI as readily as the normal thyroid tissue. Due to the depressed iodine transcriptome, depending on the genomic signature, the mis-differentiated cancers exhibit variable degrees of RAI-indifference. |
RAI-Insufficiency | The mechanism for RAI-refractoriness involves a less-than-adequate radiation-absorbed dose delivery to the tumor. RAI-insufficiency may be a term to describe this mechanism. |
RAI-Insensitivity (RAI-Resistance) | This is a distinct mechanism for RAI-refractoriness where the tumor, respective of its RAI avidity and adequate dose delivery, is biologically resistant to radiation effects. RAI-resistance is a biologic response term and relates to the counteracting dynamics of cytolethal injury effects of beta radiation and cellular repair mechanisms. |
Redifferentiation | Oncoprotein-targeted molecular therapies that reverse the RAI-indifference and restore iodine metabolic functionality in mis-differentiated thyroid cancers. |
References
- Hertz, S.; Roberts, A.; Salter, W.T. Radioactive iodine as an indicator in thyroid physiology. iv. the metabolism of iodine in graves’ disease. J. Clin. Investig. 1942, 21, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Hertz, S.; Roberts, A. Radioactive iodine in the study of thyroid physiology; the use of radioactive iodine therapy in hyperthyroidism. J. Am. Med. Assoc. 1946, 131, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Hertz, S. A plan for analysis of the biologic factors involved in experimental carcinogenesis of the thyroid by means of radioactive isotopes. West. J. Surg. Obstet. Gynecol. 1946, 54, 487–489. [Google Scholar] [PubMed]
- Beierwaltes, W.H.; Johnson, P.C.; Solari, A.J. Clinical Use of Radioisotopes; W.B. Saunders Co.: Philadelphia, PA, USA, 1957; Volume 150. [Google Scholar]
- Frantz, V.K.; Ball, R.P.; Keston, A.S.; Palmer, W.W. Thyroid Carcinoma with Metastases: Studied with Radioactive Iodine. Ann. Surg. 1944, 119, 668–689. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, P.J.; Foote, F.W., Jr.; Hill, R.F. Concentration of I131 in thyroid cancer, shown by radioautography; a study of 100 consecutive cases showing the relation of histological structure to the function of thyroid carcinoma. Cancer 1950, 3, 86–105. [Google Scholar] [CrossRef] [PubMed]
- Brucer, M. A Chronology of Nuclear Medicine; Robert R Butaine: St. Louis, MI, USA, 1990; Volume 1, pp. 1–496. [Google Scholar]
- Wagner, H.N. A Personal History of Nuclear Medicine, 2006th ed.; Springer: London, UK, 2006; pp. 1–308. [Google Scholar]
- Taylor, S. Thyroid carcinoma and its treatment. Postgrad. Med. J. 1968, 44, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Robert, J.; Amdur, E.L. Mazzaferri. Essentials of Thyroid Cancer Management (Cancer Treatment and Research). In Cancer Treatment and Research, 2005th ed.; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- James, R.; Hurley, M.; David, M.; Becker, V. Treatment of Thyroid Carcinoma with Radioiodine. In Diagnostic Nuclear Medicine; Alexander Gottschalk, P.B.H., James Potchen, E., Eds.; Golden’s Diagnostic Radiology, William & Wilkins: Baltimore, MD, USA, 1976; Volume 2, pp. 792–814. [Google Scholar]
- Maxon, H.R., 3rd; Englaro, E.E.; Thomas, S.R.; Hertzberg, V.S.; Hinnefeld, J.D.; Chen, L.S.; Smith, H.; Cummings, D.; Aden, M.D. Radioiodine-131 therapy for well-differentiated thyroid cancer—A quantitative radiation dosimetric approach: Outcome and validation in 85 patients. J. Nucl. Med. 1992, 33, 1132–1136. [Google Scholar] [PubMed]
- Erdi, Y.E.; Macapinlac, H.; Larson, S.M.; Erdi, A.K.; Yeung, H.; Furhang, E.E.; Humm, J.L. Radiation Dose Assessment for I-131 Therapy of Thyroid Cancer Using I-124 PET Imaging. Clin. Positron Imaging 1999, 2, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Goldsmith, S.J. Radioactive Iodine Therapy of Differentiated Thyroid Carcinoma: Redesigning the Paradigm. Mol. Imaging Radionucl. Ther. 2017, 26 (Suppl. S1), 74–79. [Google Scholar] [CrossRef] [PubMed]
- Leonard Wartofsky, Douglas Van Nostrand. Thyroid Cancer: A Comprehensive Guide to Clinical Management, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Baloch, Z.W.; Asa, S.L.; Barletta, J.A.; Ghossein, R.A.; Juhlin, C.C.; Jung, C.K.; LiVolsi, V.A.; Papotti, M.G.; Sobrinho-Simões, M.; Tallini, G.; et al. Overview of the 2022 WHO Classification of Thyroid Neoplasms. Endocr. Pathol. 2022, 33, 27–63. [Google Scholar] [CrossRef]
- The Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell 2014, 159, 676–690. [Google Scholar]
- Fagin, J.A.; Nikiforov, Y.E. Progress in Thyroid Cancer Genomics: A 40-Year Journey. Thyroid 2023, 33, 1271–1286. [Google Scholar] [CrossRef] [PubMed]
- Landa, I.; Cabanillas, M.E. Genomic alterations in thyroid cancer: Biological and clinical insights. Nat. Rev. Endocrinol. 2024, 20, 93–110. [Google Scholar] [CrossRef] [PubMed]
- Fagin, J.A.; Krishnamoorthy, G.P.; Landa, I. Pathogenesis of cancers derived from thyroid follicular cells. Nat. Rev. Cancer 2023, 23, 631–650. [Google Scholar] [CrossRef] [PubMed]
- Lasolle, H.; Schiavo, A.; Tourneur, A.; Gillotay, P.; Fonseca, B.d.F.d.; Ceolin, L.; Monestier, O.; Aganahi, B.; Chomette, L.; Kizys, M.M.L.; et al. Dual targeting of MAPK and PI3K pathways unlocks redifferentiation of Braf-mutated thyroid cancer organoids. Oncogene 2024, 43, 155–170. [Google Scholar] [CrossRef]
- Silaghi, H.; Lozovanu, V.; Georgescu, C.E.; Pop, C.; Nasui, B.A.; Cătoi, A.F.; Silaghi, C.A. State of the Art in the Current Management and Future Directions of Targeted Therapy for Differentiated Thyroid Cancer. Int. J. Mol. Sci. 2022, 23, 3470. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.M.; Ahn, B.-C. Molecular mechanisms of radioactive iodine refractoriness in differentiated thyroid cancer: Impaired sodium iodide symporter (NIS) expression owing to altered signaling pathway activity and intracellular localization of NIS. Theranostics 2021, 11, 6251–6277. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, Y.; Lin, Y.; Liang, J. Radioactive Iodine-Refractory Differentiated Thyroid Cancer and Redifferentiation Therapy. Endocrinol. Metab. 2019, 34, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Quimby, E.H. Achievement in radiation dosimetry, 1937–1950. Br. J. Radiol. 1951, 24, 2–5. [Google Scholar] [CrossRef]
- Marinelli, L.D.; Hill, R.F. Radiation dosimetry in the treatment of functional thyroid carcinoma with I131. Radiology 1950, 55, 494–501. [Google Scholar] [CrossRef]
- Benua, R.S. A method and rationale for treating metastatic thyroid carcinoma with the largest safe dose of I-131. Front. Thyroidol. 1986, 2, 1317–1321. [Google Scholar]
- Tuttle, R.M.; Haugen, B.; Perrier, N.D. Updated American Joint Committee on Cancer/Tumor-Node-Metastasis Staging System for Differentiated and Anaplastic Thyroid Cancer (Eighth Edition): What Changed and Why? Thyroid 2017, 27, 751–756. [Google Scholar] [CrossRef] [PubMed]
- American Thyroid Association Guidelines Taskforce on Thyroid; Cooper, D.S.; Doherty, G.M.; Haugen, B.R.; Kloos, R.T.; Lee, S.L.; Mandel, S.J.; Mazzaferri, E.L.; McIver, B.; Pacini, F.; et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2009, 19, 1167–1214. [Google Scholar] [CrossRef] [PubMed]
- Ho, A.L.; Dedecjus, M.; Wirth, L.J.; Tuttle, R.M.; Iii, W.B.I.; Tennvall, J.; Vaisman, F.; Bastholt, L.; Gianoukakis, A.G.; Rodien, P.; et al. Selumetinib Plus Adjuvant Radioactive Iodine in Patients with High-Risk Differentiated Thyroid Cancer: A Phase III, Randomized, Placebo-Controlled Trial (ASTRA). J. Clin. Oncol. 2022, 40, 1870–1878. [Google Scholar] [CrossRef] [PubMed]
- Rothenberg, S.M.; McFadden, D.G.; Palmer, E.L.; Daniels, G.H.; Wirth, L.J. Redifferentiation of iodine-refractory BRAF V600E-mutant metastatic papillary thyroid cancer with dabrafenib. Clin. Cancer Res. 2015, 21, 1028–1035. [Google Scholar] [CrossRef] [PubMed]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [PubMed]
- Gulec, S.A.; Ahuja, S.; Avram, A.M.; Bernet, V.J.; Bourguet, P.; Draganescu, C.; Elisei, R.; Giovanella, L.; Grant, F.D.; Greenspan, B.; et al. A Joint Statement from the American Thyroid Association, the European Association of Nuclear Medicine, the European Thyroid Association, the Society of Nuclear Medicine and Molecular Imaging on Current Diagnostic and Theranostic Approaches in the Management of Thyroid Cancer. Thyroid 2021, 31, 1009–1019. [Google Scholar] [PubMed]
- Dunn, L.A.; Sherman, E.J.; Baxi, S.S.; Tchekmedyian, V.; Grewal, R.K.; Larson, S.M.; Pentlow, K.S.; Haque, S.; Tuttle, R.M.; Sabra, M.M.; et al. Vemurafenib Redifferentiation of BRAF Mutant, RAI-Refractory Thyroid Cancers. J. Clin. Endocrinol. Metab. 2019, 104, 1417–1428. [Google Scholar] [CrossRef] [PubMed]
- NIH. The Cancer Genome Atlas Program (TCGA). Cited 2024. Available online: https://www.cancer.gov/ccg/research/genome-sequencing/tcga (accessed on 15 June 2024).
- Weber, M.; Kersting, D.; Riemann, B.; Brandenburg, T.; Führer-Sakel, D.; Grünwald, F.; Kreissl, M.C.; Dralle, H.; Weber, F.; Schmid, K.W.; et al. Enhancing Radioiodine Incorporation into Radioiodine-Refractory Thyroid Cancer with MAPK Inhibition (ERRITI): A Single-Center Prospective Two-Arm Study. Clin. Cancer Res. 2022, 28, 4194–4202. [Google Scholar] [CrossRef]
- Leboulleux, S.; Dupuy, C.; Lacroix, L.; Attard, M.; Grimaldi, S.; Corre, R.; Ricard, M.; Nasr, S.; Berdelou, A.; Hadoux, J.; et al. Redifferentiation of a BRAFK601E-mutated poorly differentiated thyroid cancer patient with dabrafenib and trametinib treatment. Thyroid 2019, 29, 735–742. [Google Scholar] [CrossRef]
- Ho, A.L.; Grewal, R.K.; Leboeuf, R.; Sherman, E.J.; Pfister, D.G.; Deandreis, D.; Pentlow, K.S.; Zanzonico, P.B.; Haque, S.; Gavane, S.; et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N. Engl. J. Med. 2013, 368, 623–632. [Google Scholar] [CrossRef] [PubMed]
- Leboulleux, S.; Benisvy, D.; Taieb, D.; Attard, M.; Bournaud, C.; Terroir-Cassou-Mounat, M.; Lacroix, L.; Anizan, N.; Schiazza, A.; Garcia, M.E.; et al. MERAIODE: A Phase II Redifferentiation Trial with Trametinib and 131I in Metastatic Radioactive Iodine Refractory RAS Mutated Differentiated Thyroid Cancer. Thyroid 2023, 33, 1124–1129. [Google Scholar] [CrossRef] [PubMed]
- Ho, A. Vemurafenib Plus Copanlisib in Radioiodine-Refractory (RAIR) Thyroid Cancers. Clinical Trials.gov Identifier: NCT04462471. Updated 28 February 2024. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT04462471 (accessed on 3 June 2024).
- Scott, A.M.M.; Fracp, A. Prospective, Multi-Centre Trial of TKI Redifferentiation Therapy in Patients with RAIR Thyroid Cancer (I-FIRST STUDY) (I-FIRST). ClinicalTrials.gov Identifier: NCT05182931. Updated 31 October 2023. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT05182931 (accessed on 3 June 2024).
- Peiling Yang, S.; MBBS; MRCP. Clinical Trial in RAI-Refractory Thyroid Carcinoma Evaluating BRAF & MEK Blockade for Re-differentiation Therapy. ClinicalTrials.gov Identifier: NCT04554680. Updated 5 March 2021. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT04554680 (accessed on 3 June 2024).
- Fendler, W. Enhancing Radioiodine Incorporation into Radio Iodine Refractory Thyroid Cancers with MAPK Inhibition (ERRITI). ClinicalTrials.gov Identifier: NCT04619316. Updated 22 June 2023. Available online: https://clinicaltrials.gov/study/NCT04619316 (accessed on 3 June 2024).
- Kapiteijn, E.M. Reinducing Radioiodine-Sensitivity in Radioiodine-Refractory DTC Using Lenvatinib (RESET) (RESET). ClinicalTrials.gov Identifier: NCT04858867. Updated 10 October 2023. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT04858867 (accessed on 3 June 2024).
- Wirth, L.J. I-131 Upt. + Selpercatinib in RET F-P RAI-R TC. ClinicalTrials.gov Identifier: NCT05668962. Updated 13 April 2023. Available online: https://clinicaltrials.gov/study/NCT05668962 (accessed on 3 June 2024).
- Laetsch, T.M. Larotrectinib to Enhance RAI Avidity in Differentiated Thyroid Cancer. ClinicalTrials.gov Identifier: NCT05783323. Updated 16 May 2024. Available online: https://clinicaltrials.gov/study/NCT05783323 (accessed on 3 June 2024).
- Gulec, S. I-124 PET/CT Imaging and Dosimetry for RAI-Naïve or Refractory Thyroid Cancer. ClinicalTrials.gov Identifier: NCT06443866. Updated 3 June 2024. Available online: https://clinicaltrials.gov/study/NCT06443866 (accessed on 3 June 2024).
- Wang, W.; Larson, S.M.; Fazzari, M.; Tickoo, S.K.; Kolbert, K.; Sgouros, G.; Yeung, H.; Macapinlac, H.; Rosai, J.; Robbins, R.J. Prognostic value of [18F]fluorodeoxyglucose positron emission tomographic scanning in patients with thyroid cancer. J. Clin. Endocrinol. Metab. 2000, 85, 1107–1113. [Google Scholar] [PubMed]
- Van Nostrand, D.; Veytsman, I.; Kulkarni, K.; Heimlich, L.; Burman, K.D. Redifferentiation of Differentiated Thyroid Cancer: Clinical Insights from a Narrative Review of Literature. Thyroid 2023, 33, 674–681. [Google Scholar] [CrossRef]
- Gulec, S.A.; Kuker, R.A.; Goryawala, M.; Fernandez, C.; Perez, R.; Khan-Ghany, A.; Apaza, A.; Harja, E.; Harrell, M. 124I PET/CT in Patients with Differentiated Thyroid Cancer: Clinical and Quantitative Image Analysis. Thyroid 2016, 26, 441–448. [Google Scholar] [CrossRef]
- Gulec, S.A.; Meneses, E. Theranostic Risk Stratification for Thyroid Cancer in the Genomic Paradigm. Cancers 2024, 16, 1585. [Google Scholar] [CrossRef]
CATEGORY | AGENT | TARGET | FDA Approval | RAI Redifferentiation Report in Thyroid Cancer |
---|---|---|---|---|
TKR | Lenvatinib | MULTIKINASE | DTC | |
Sorafenib | MULTIKINASE | DTC | ||
Cabozantinib | MULTIKINASE | DTC | ||
Vandetanib | MULTIKINASE | MTC | ||
Entrectinib | NTRK | DTC (NTRK) | ||
Larotrectinib | NTRK | DTC (NTRK) | ||
Repotrectinib | NTRK | NSCLC | ||
Lorlatinib | ALK | NSCLC | ||
Crizotinib | ALK | NSCLC | ||
Alectinib | ALK | NSCLC | ||
Selpercatinib | RET | DTC (RET) | In trial: NCT05668962 | |
Pralsetinib | RET | DTC (RET) | ||
MAPK|ERK | Dabrafenib | BRAF | BRAFv600 mutation | Published [31,36,37] |
Vemurafenib | BRAF | BRAFv600 mutation | Published [34] | |
Encorafenib | BRAF | Colorectal cancer | ||
Tavorafenib | BRAF(PAN) | Glioma | ||
Selumetinib | MEK | Neurofibromatosis | Published [38] | |
Trametinib | MEK | BRAFv600 mutation | Published [36,37,39] | |
Ulixertinib | ERK | NOT APPROVED | ||
PI3K|mTOR | Copanlisib | PI3K | Lymphoma | In trial: NCT04462471 |
Everolimus | mTOR | Neuroendocrine Tumors |
Lead Investigator, Year Publication Reference | Patients/Disease Redifferentiation Protocol | RAI Imaging, Dosimetry/Treat. | Redifferentiation Evidence by Imaging |
---|---|---|---|
Ho, 2013 [38] |
20 9, BRAF, 5RAS, 6 Other Selumetinib |
I-124, 6 mCi Lesional dosimetry D > 20 Gy, Max 300 mCi | 12/20 (60%) |
Rothenberg, 2015 [31] |
10, BRAF Dabrafenib |
I-131, 4 mCi No dosimetry 150 mCi Empiric | 6/10 (60%) |
Dunn, 2019 [34] |
10, BRAF Vemurafenib |
I-124, 6 mCi Lesional dosimetry D > 20 Gy, Max 300 mCi | 6/10 (60%) |
Weber, 2022 [37] |
20 6, BRAF: Dabrafenib + Trametinib 14, Non-BRAF: Trametinib |
I-123, 4 mCi & I-124 1 mCi Lesional dosimetry, MTA, mean 300 mCi | 7/20 (35%) |
Leboulleux, 2023 [38] |
21, BRAF Dabrafenib +Trametinib |
I-131, 5 mCi No dosimetry 150 mCi Empiric | 10/16 (63%) |
Leboulleux, 2023 [39] |
10, RAS Trametinib |
I-131, 5 mCi No dosimetry 150 mCi Empiric | 7/11 (66%) |
Investigator, Trial Type, Trial Reference | Disease & Redifferentiation Protocol | RAI Imaging, Dosimetry | RAI Therapy |
---|---|---|---|
Ho, A. Phase I, MSKCC, New York, NY, US NCT04462471, recruitment ended | BRAF: vemurafenib + copanlisib | I-124, 6 mCi Lesional dosimetry | Dosimetry-Guided D > 20 Gy, Max 300 mCi |
Scott A Phase II, AH, Melbourne, AU NCT05182931, recruitment active | BRAF: dabrafenib + trametinib | I-124, 1 mCi Lesional dosimetry | Dosimetry-Guided D > 20 Gy, Max 300 mCi |
Peiling YS, Phase II, NUH, Singapore, SG NCT04554680, recruitment active | BRAF: dabrafenib + trametinib RAS: trametinib | I-124, 2 mCi Lesional dosimetry | Dosimetry-Guided D > 20 Gy, Max 300 mCi |
Fendler, W. Phase II, EUH, Essen, DE NCT04619316, recruitment active | BRAF: dabrafenib + trametinib Non-BRAF: trametinib | I-123, 4 mCi + I-124 1mCi Lesional dosimetry | MTA dosimetry-guided |
Kapiteijn, H, Phase II, Leiden, NL NCT04858867, recruitment closed | DTC: lenvatinib | I-124, 1 mCi Lesional dosimetry | Dosimetry-Guided D > 20 Gy, Max 200 mCi |
Wirth, LJ, Phase II, MGH, Boston, MA, US NCT05668962, recruitment active | RET Fusion: selpercatinib | Post-RAI Tx imaging No Dosimetry | 150 mCi Empiric |
Laetsch, T, Phase II, CHOP, Philadelphia, PA, US NCT05783323, recruitment active | NTRK Fusion: larotrectinib | Post-RAI Tx imaging No Dosimetry | 150 mCi Empiric |
Gulec S. Phase II, MCRC, Miami, FL, US NCT06443866, recruitment active | Oncoprotein/RTK-targeted | I-124, 2 mCi Lesional dosimetry | 150–300 mCi Empiric |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gulec, S.A.; Benites, C.; Cabanillas, M.E. Molecular Perspectives in Radioactive Iodine Theranostics: Current Redifferentiation Protocols for Mis-Differentiated Thyroid Cancer. J. Clin. Med. 2024, 13, 3645. https://doi.org/10.3390/jcm13133645
Gulec SA, Benites C, Cabanillas ME. Molecular Perspectives in Radioactive Iodine Theranostics: Current Redifferentiation Protocols for Mis-Differentiated Thyroid Cancer. Journal of Clinical Medicine. 2024; 13(13):3645. https://doi.org/10.3390/jcm13133645
Chicago/Turabian StyleGulec, Seza A., Cristina Benites, and Maria E. Cabanillas. 2024. "Molecular Perspectives in Radioactive Iodine Theranostics: Current Redifferentiation Protocols for Mis-Differentiated Thyroid Cancer" Journal of Clinical Medicine 13, no. 13: 3645. https://doi.org/10.3390/jcm13133645
APA StyleGulec, S. A., Benites, C., & Cabanillas, M. E. (2024). Molecular Perspectives in Radioactive Iodine Theranostics: Current Redifferentiation Protocols for Mis-Differentiated Thyroid Cancer. Journal of Clinical Medicine, 13(13), 3645. https://doi.org/10.3390/jcm13133645