New Pharmacological Therapies in the Treatment of Epilepsy in the Pediatric Population
Abstract
1. Introduction
2. Materials and Methods
3. Pharmacological Agents
3.1. Cenobamate
3.2. Fenfluramine
3.3. Diazepam and Midazolam Intranasally
3.4. (-)-trans-cannabidiol (CBD)
3.5. Brivaracetam
3.6. Ganaxolone
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Fisher, R.S.; Boas, W.V.E.; Blume, W.; Elger, C.; Genton, P.; Lee, P.; Engel, J. Epileptic Seizures and Epilepsy: Definitions Proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 2005, 46, 470–472. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://epilepsydiagnosis.org (accessed on 29 April 2024).
- Auvin, S. Paediatric epilepsy and cognition. Dev. Med. Child Neurol. 2022, 64, 1444–1452. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, J.; Soni, P.; Khandelwal, N.; Hedaoo, K.; Kumar, A.; Sinha, M.; Ratre, S.; Parihar, V.; Swamy, M.N.; Yadav, Y.R. Epilepsy-Related Injuries in Children: An Institution-Based Study. Neurol. India 2022, 70, 1091. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, P.; Foster, D.L.; Sander, J.W.; Dupont, S.; Gil-Nagel, A.; Drogon O’Flaherty, E.; Alvarez-Baron, E.; Medjedovic, J. The burden of epilepsy and unmet need in people with focal seizures. Brain Behav. 2022, 12, e2589. [Google Scholar] [CrossRef] [PubMed]
- Sartori, S.; Nosadini, M.; Tessarin, G.; Boniver, C.; Frigo, A.C.; Toldo, I.; Bressan, S.; Da Dalt, L. First-ever convulsive seizures in children presenting to the emergency department: Risk factors for seizure recurrence and diagnosis of epilepsy. Dev. Med. Child Neurol. 2019, 61, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Symonds, J.D.; Elliott, K.S.; Shetty, J.; Armstrong, M.; Brunklaus, A.; Cutcutache, I.; Diver, L.A.; Dorris, L.; Gardiner, S.; Jollands, A.; et al. Early childhood epilepsies: Epidemiology, classification, aetiology, and socio-economic determinants. Brain J. Neurol. 2021, 144, 2879–2891. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, S.M.; Xian, J.; Helbig, I. The current landscape of epilepsy genetics: Where are we, and where are we going? Curr. Opin. Neurol. 2023, 36, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Brunklaus, A.; Brünger, T.; Feng, T.; Fons, C.; Lehikoinen, A.; Panagiotakaki, E.; Vintan, M.A.; Symonds, J.; Andrew, J.; Arzimanoglou, A.; et al. The gain of function SCN1A disorder spectrum: Novel epilepsy phenotypes and therapeutic implications. Brain J. Neurol. 2022, 145, 3816–3831. [Google Scholar] [CrossRef] [PubMed]
- Rochtus, A.; Olson, H.E.; Smith, L.; Keith, L.G.; El Achkar, C.; Taylor, A.; Mahida, S.; Park, M.; Kelly, M.; Shain, C.; et al. Genetic diagnoses in epilepsy: The impact of dynamic exome analysis in a pediatric cohort. Epilepsia 2020, 61, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Hong, W.; Haviland, I.; Pestana-Knight, E.; Weisenberg, J.L.; Demarest, S.; Marsh, E.D.; Olson, H.E. CDKL5 Deficiency Disorder-Related Epilepsy: A Review of Current and Emerging Treatment. CNS Drugs 2022, 36, 591–604. [Google Scholar] [CrossRef] [PubMed]
- Pisani, F.; Spagnoli, C.; Falsaperla, R.; Nagarajan, L.; Ramantani, G. Seizures in the neonate: A review of etiologies and outcomes. Seizure 2021, 85, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Messahel, S.; Bracken, L.; Appleton, R. Optimal Management of Status Epilepticus in Children in the Emergency Setting: A Review of Recent Advances. Open Access Emerg. Med. 2022, 14, 491–506. [Google Scholar] [CrossRef] [PubMed]
- Sculier, C.; Gaspard, N. New onset refractory status epilepticus (NORSE). Seizure 2019, 68, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Bjurulf, B.; Reilly, C.; Sigurdsson, G.V.; Thunström, S.; Kolbjer, S.; Hallböök, T. Dravet syndrome in children-A population-based study. Epilepsy Res. 2022, 182, 106922. [Google Scholar] [CrossRef] [PubMed]
- Asadi-Pooya, A.A. Lennox-Gastaut syndrome: A comprehensive review. Neurol. Sci. 2018, 39, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Nelson, J.A.; Knupp, K.G. Lennox-Gastaut Syndrome: Current Treatments, Novel Therapeutics, and Future Directions. Neurotherapeutics 2023, 20, 1255–1262. [Google Scholar] [CrossRef] [PubMed]
- Barnett, J.R.; Fleming, B.M.; Geenen, K.R.; Sourbron, J.; Freedman, J.H.; Bruno, P.L.; Thiele, E.A. Characterizing Sunflower syndrome: A clinical series. Epileptic Disord. 2020, 22, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Engel, J., Jr. The current place of epilepsy surgery. Curr. Opin. Neurol. 2018, 31, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Varughese, R.T.; Shah, Y.D.; Karkare, S.; Kothare, S.V. Adjunctive use of cenobamate for pediatric refractory focal-onset epilepsy: A single-center retrospective study. Epilepsy Behav. 2022, 130, 108679. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Nakamura, M.; Neupane, C.; Jeon, B.H.; Shin, H.; Melnick, S.M.; Glenn, K.J.; Jang, I.S.; Park, J.B. Positive allosteric modulation of GABAA receptors by a novel antiepileptic drug cenobamate. Eur. J. Pharmacol. 2020, 879, 173117. [Google Scholar] [CrossRef] [PubMed]
- Roberti, R.; De Caro, C.; Iannone, L.F.; Zaccara, G.; Lattanzi, S.; Russo, E. Pharmacology of Cenobamate: Mechanism of Action, Pharmacokinetics, Drug–Drug Interactions and Tolerability. CNS Drugs 2021, 35, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Makridis, K.L.; Bast, T.; Prager, C.; Kovacevic-Preradovic, T.; Bittigau, P.; Mayer, T.; Breuer, E.; Kaindl, A.M. Real-World Experience Treating Pediatric Epilepsy Patients with Cenobamate. Front. Neurol. 2022, 13, 950171. [Google Scholar] [CrossRef] [PubMed]
- Rissardo, J.P.; Fornari Caprara, A.L. Cenobamate (YKP3089) and Drug-Resistant Epilepsy: A Review of the Literature. Medicina 2023, 59, 1389. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Cho, J.H.; Shin, H.; Jang, I.S. Effects of cenobamate (YKP3089), a newly developed anti-epileptic drug, on voltage-gated sodium channels in rat hippocampal CA3 neurons. Eur. J. Pharmacol. 2019, 855, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Sankar, R. Treatment of status epilepticus: Physiology, pharmacology, and future directions. Epilepsia Open 2023, 8 (Suppl. S1), S141–S148. [Google Scholar] [CrossRef] [PubMed]
- Elliott, T.; Ridley-Pryor, T.; Gienapp, A.J.; Wheless, J.W. Initial Real-World Experience With Cenobamate in Adolescents and Adults: A Single Center Experience. Pediatr. Neurol. 2022, 129, 19–23. [Google Scholar] [CrossRef]
- Tabaee Damavandi, P.; Fabin, N.; Giossi, R.; Matricardi, S.; Del Giovane, C.; Striano, P.; Meletti, S.; Brigo, F.; Trinka, E.; Lattanzi, S. Efficacy and Safety of Fenfluramine in Epilepsy: A Systematic Review and Meta-analysis. Neurol. Ther. 2023, 12, 669–686. [Google Scholar] [CrossRef] [PubMed]
- Samanta, D. Fenfluramine: A Review of Pharmacology, Clinical Efficacy, and Safety in Epilepsy. Children 2022, 9, 1159. [Google Scholar] [CrossRef]
- Sourbron, J.; Lagae, L. Serotonin receptors in epilepsy: Novel treatment targets? Epilepsia Open 2022, 7, 231–246. [Google Scholar] [CrossRef] [PubMed]
- Nabbout, R.; Mistry, A.; Zuberi, S.; Villeneuve, N.; Gil-Nagel, A.; Sanchez-Carpintero, R.; Stephani, U.; Laux, L.; Wirrell, E.; Knupp, K.; et al. Fenfluramine for Treatment-Resistant Seizures in Patients With Dravet Syndrome Receiving Stiripentol-Inclusive Regimens: A Randomized Clinical Trial. JAMA Neurol. 2020, 77, 300. [Google Scholar] [CrossRef]
- Lagae, L.; Sullivan, J.; Knupp, K.; Laux, L.; Polster, T.; Nikanorova, M.; Devinsky, O.; Cross, J.H.; Guerrini, R.; Talwar, D.; et al. Fenfluramine hydrochloride for the treatment of seizures in Dravet syndrome: A randomised, double-blind, placebo-controlled trial. Lancet 2019, 394, 2243–2254. [Google Scholar] [CrossRef] [PubMed]
- Specchio, N.; Pietrafusa, N.; Doccini, V.; Trivisano, M.; Darra, F.; Ragona, F.; Cossu, A.; Spolverato, S.; Battaglia, D.; Quintiliani, M.; et al. Efficacy and safety of Fenfluramine hydrochloride for the treatment of seizures in Dravet syndrome: A real-world study. Epilepsia 2020, 61, 2405–2414. [Google Scholar] [CrossRef] [PubMed]
- Gil-Nagel, A.; Sullivan, J.; Ceulemans, B.; Wirrell, E.; Devinsky, O.; Nabbout, R.; Knupp, K.G.; Scott Perry, M.; Polster, T.; Davis, R.; et al. Treatment with fenfluramine in patients with Dravet syndrome has no long-term effects on weight and growth. Epilepsy Behav. 2021, 122, 108212. [Google Scholar] [CrossRef] [PubMed]
- Lattanzi, S.; Trinka, E.; Russo, E.; Del Giovane, C.; Matricardi, S.; Meletti, S.; Striano, P.; Damavandi, P.T.; Silvestrini, M.; Brigo, F. Pharmacotherapy for Dravet Syndrome: A Systematic Review and Network Meta-Analysis of Randomized Controlled Trials. Drugs 2023, 83, 1409–1424. [Google Scholar] [CrossRef]
- Knupp, K.G.; Scheffer, I.E.; Ceulemans, B.; Sullivan, J.; Nickels, K.C.; Lagae, L.; Guerrini, R.; Zuberi, S.M.; Nabbout, R.; Riney, K.; et al. Fenfluramine provides clinically meaningful reduction in frequency of drop seizures in patients with Lennox–Gastaut syndrome: Interim analysis of an open-label extension study. Epilepsia 2023, 64, 139–151. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Geenen, K.R.; Dowless, D.; Bruno, P.L.; Thiele, E.A. Follow-up to low-dose fenfluramine for Sunflower syndrome: A non-randomized controlled trial. Dev. Med. Child Neurol. 2023, 65, 961–967. [Google Scholar] [CrossRef] [PubMed]
- Dhaliwal, J.S.; Rosani, A.; Saadabadi, A. Diazepam. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK537022/ (accessed on 28 August 2023).
- Becker, D.A.; Wheless, J.W.; Sirven, J.; Tatum, W.O.; Rabinowicz, A.L.; Carrazana, E. Treatment of Seizure Clusters in Epilepsy: A Narrative Review on Rescue Therapies. Neurol. Ther. 2023, 12, 1439–1455. [Google Scholar] [CrossRef] [PubMed]
- Tarquinio, D.; Dlugos, D.; Wheless, J.W.; Desai, J.; Carrazana, E.; Rabinowicz, A.L. Safety of Diazepam Nasal Spray in Children and Adolescents with Epilepsy: Results from a Long-Term Phase 3 Safety Study. Pediatr. Neurol. 2022, 132, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Wheless, J.W.; Hogan, R.E.; Davis, C.S.; Carrazana, E.; Rabinowicz, A.L. Safety and effectiveness of diazepam nasal spray in male and female patients: Post hoc analysis of data from a phase 3 safety study. Epilepsia Open 2024, 9, 793–799. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cornett, E.M.; Amarasinghe, S.N.; Angelette, A.; Abubakar, T.; Kaye, A.M.; Kaye, A.D.; Neuchat, E.E.; Urits, I.; Viswanath, O. VALTOCO® (Diazepam Nasal Spray) for the Acute Treatment of Intermittent Stereotypic Episodes of Frequent Seizure Activity. Neurol. Int. 2021, 13, 64–78. [Google Scholar] [CrossRef] [PubMed]
- Lingamchetty, T.N.; Hosseini, S.A.; Saadabadi, A. Midazolam. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: http://www.ncbi.nlm.nih.gov/books/NBK537321/ (accessed on 24 April 2024).
- Kay, L.; Merkel, N.; Von Blomberg, A.; Willems, L.M.; Bauer, S.; Reif, P.S.; Schubert-Bast, S.; Rosenow, F.; Strzelczyk, A. Intranasal midazolam as first-line inhospital treatment for status epilepticus: A pharmaco-EEG cohort study. Ann. Clin. Transl. Neurol. 2019, 6, 2413–2425. [Google Scholar] [CrossRef] [PubMed]
- Peters, J.; Becker, D.; Misra, S.; Carrazana, E.; Rabinowicz, A. Taking a Newer, Faster, Intranasal Route: A Narrative Review of Transitioning to a Less-Invasive Rescue Treatment for Seizure Clusters. Patient Prefer. Adherence 2024, 18, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, E.C.; Chamberland, S.; Bazelot, M.; Nebet, E.R.; Wang, X.; McKenzie, S.; Jain, S.; Greenhill, S.; Wilson, M.; Marley, N.; et al. Cannabidiol modulates excitatory-inhibitory ratio to counter hippocampal hyperactivity. Neuron 2023, 111, 1282–1300.e8. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, J.S.; Stella, N.; Catterall, W.A.; Westenbroek, R.E. Cannabidiol attenuates seizures and social deficits in a mouse model of Dravet syndrome. Proc. Natl. Acad. Sci. USA 2017, 114, 11229–11234. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shapiro, L.; Escayg, A.; Wong, J.C. Cannabidiol Increases Seizure Resistance and Improves Behavior in an Scn8a Mouse Model. Front. Pharmacol. 2022, 13, 815950. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Witherspoon, E.; Quinlan, S.; Forcelli, P.A. Preclinical efficacy of cannabidiol for the treatment of early-life seizures. Pharmacol. Rep. 2022, 74, 1092–1098. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, F.R.; da Silva, N.M.; Hamoy, M.; Crespo-López, M.E.; Ferreira, I.M.; da Silva, E.O.; de Matos Macchi, B.; do Nascimento, J.L.M. The GABAergic System and Endocannabinoids in Epilepsy and Seizures: What Can We Expect from Plant Oils? Molecules 2022, 27, 3595. [Google Scholar] [CrossRef] [PubMed]
- Efron, D.; Taylor, K. Medicinal Cannabis for Paediatric Developmental, Behavioural and Mental Health Disorders. Int. J. Environ. Res. Public Health 2023, 20, 5430. [Google Scholar] [CrossRef] [PubMed]
- Kwan Cheung, K.A.; Peiris, H.; Wallace, G.; Holland, O.J.; Mitchell, M.D. The Interplay between the Endocannabinoid System, Epilepsy and Cannabinoids. Int. J. Mol. Sci. 2019, 20, 6079. [Google Scholar] [CrossRef] [PubMed]
- Colangeli, R.; Morena, M.; Pittman, Q.J.; Hill, M.N.; Teskey, G.C. Anandamide Signaling Augmentation Rescues Amygdala Synaptic Function and Comorbid Emotional Alterations in a Model of Epilepsy. J. Neurosci. Off. J. Soc. Neurosci. 2020, 40, 6068–6081. [Google Scholar] [CrossRef] [PubMed]
- Romigi, A.; Bari, M.; Placidi, F.; Marciani, M.G.; Malaponti, M.; Torelli, F.; Izzi, F.; Prosperetti, C.; Zannino, S.; Corte, F.; et al. Cerebrospinal fluid levels of the endocannabinoid anandamide are reduced in patients with untreated newly diagnosed temporal lobe epilepsy. Epilepsia 2010, 51, 768–772. [Google Scholar] [CrossRef] [PubMed]
- Henson, J.; Vitetta, L.; Quezada, M.; Hall, S. Enhancing Endocannabinoid Control of Stress with Cannabidiol. J. Clin. Med. 2021, 10, 5852. [Google Scholar] [CrossRef] [PubMed]
- Elliott, J.; DeJean, D.; Clifford, T.; Coyle, D.; Potter, B.K.; Skidmore, B.; Alexander, C.; Repetski, A.E.; Shukla, V.; McCoy, B.; et al. Cannabis-based products for pediatric epilepsy: A systematic review. Epilepsia 2019, 60, 6–19. [Google Scholar] [CrossRef] [PubMed]
- Thiele, E.A.; Marsh, E.D.; French, J.A.; Mazurkiewicz-Beldzinska, M.; Benbadis, S.R.; Joshi, C.; Lyons, P.D.; Taylor, A.; Roberts, C.; Sommerville, K.; et al. Cannabidiol in patients with seizures associated with Lennox-Gastaut syndrome (GWPCARE4): A randomised, double-blind, placebo-controlled phase 3 trial. Lancet 2018, 391, 1085–1096. [Google Scholar] [CrossRef] [PubMed]
- Porter, B.E.; Jacobson, C. Report of a parent survey of cannabidiol-enriched cannabis use in pediatric treatment-resistant epilepsy. Epilepsy Behav. 2013, 29, 574–577. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hussain, S.A.; Zhou, R.; Jacobson, C.; Weng, J.; Cheng, E.; Lay, J.; Hung, P.; Lerner, J.T.; Sankar, R. Perceived efficacy of cannabidiol-enriched cannabis extracts for treatment of pediatric epilepsy: A potential role for infantile spasms and Lennox-Gastaut syndrome. Epilepsy Behav. 2015, 47, 138–141. [Google Scholar] [CrossRef] [PubMed]
- Ammendolia, I.; Mannucci, C.; Cardia, L.; Calapai, G.; Gangemi, S.; Esposito, E.; Calapai, F. Pharmacovigilance on cannabidiol as an antiepileptic agent. Front. Pharmacol. 2023, 14, 1091978. [Google Scholar] [CrossRef] [PubMed]
- Chuang, S.H.; Westenbroek, R.E.; Stella, N.; Catterall, W.A. Combined Antiseizure Efficacy of Cannabidiol and Clonazepam in a Conditional Mouse Model of Dravet Syndrome. J. Exp. Neurol. 2021, 2, 81–85. [Google Scholar] [CrossRef]
- Devinsky, O.; Cross, J.H.; Laux, L.; Marsh, E.; Miller, I.; Nabbout, R.; Scheffer, I.E.; Thiele, E.A.; Wright, S.; Cannabidiol in Dravet Syndrome Study Group. Trial of Cannabidiol for Drug-Resistant Seizures in the Dravet Syndrome. N. Engl. J. Med. 2017, 376, 2011–2020. [Google Scholar] [CrossRef] [PubMed]
- Miller, I.; Scheffer, I.E.; Gunning, B.; Sanchez-Carpintero, R.; Gil-Nagel, A.; Perry, M.S.; Saneto, R.P.; Checketts, D.; Dunayevich, E.; Knappertz, V.; et al. Dose-Ranging Effect of Adjunctive Oral Cannabidiol vs Placebo on Convulsive Seizure Frequency in Dravet Syndrome: A Randomized Clinical Trial. JAMA Neurol. 2020, 77, 613–621, Erratum in JAMA Neurol. 2020, 77, 655. [Google Scholar] [CrossRef] [PubMed]
- Makke, Y.; Abou-Khalil, B. Brivaracetam efficacy and safety in focal epilepsy. Expert Rev. Neurother. 2019, 19, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.P.; Cao, B.R.; Tian, F.Y.; Gao, Z.B. Development of SV2A Ligands for Epilepsy Treatment: A Review of Levetiracetam, Brivaracetam, and Padsevonil. Neurosci. Bull. 2023, 40, 594–608. [Google Scholar] [CrossRef] [PubMed]
- Latimer, D.; Le, D.; Falgoust, E.; Abd-Elsayed, A.; Cornett, E.M.; Singh, R.; Choi, J.; Varrassi, G.; Kaye, A.M.; Kaye, A.D.; et al. Brivaracetam to Treat Partial Onset Seizures in Adults. Health Psychol. Res. 2023, 10, 56782. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.; Pruccoli, J.; Cesaroni, C.A.; Ingraffia, P.; Abd-Elsayed, A.; Cornett, E.M.; Singh, R.; Choi, J.; Varrassi, G.; Kaye, A.M.; et al. Brivaracetam add-on treatment in pediatric patients with severe drug-resistant epilepsy: Italian real-world evidence. Seizure Eur. J. Epilepsy 2022, 102, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Klein, P.; Dongre, P.; Choi, E.J.; Rhoney, D.H. Intravenous Brivaracetam in the Management of Acute Seizures in the Hospital Setting: A Scoping Review. J. Intensive Care Med. 2022, 37, 1133–1145. [Google Scholar] [CrossRef] [PubMed]
- Stockis, A.; Nicolas, J.; Sargentini-Maier, M.L.; Krauwinkel, W. Pharmacokinetics, Safety, and Tolerability of Brivaracetam in Healthy Elderly Participants. Clin. Pharmacol. Drug Dev. 2023, 12, 1121–1127. [Google Scholar] [CrossRef] [PubMed]
- Moseley, B.D.; Chanteux, H.; Nicolas, J.M.; Laloyaux, C.; Gidal, B.; Stockis, A. A review of the drug-drug interactions of the antiepileptic drug brivaracetam. Epilepsy Res. 2020, 163, 106327. [Google Scholar] [CrossRef] [PubMed]
- Khilari, M.; Nair, P.; Jha, B. Brivaracetam: How Well Does It Fare as an Anti-Epileptic? A Review. Neurol. India 2021, 69, 284. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.ema.europa.eu/en/documents/overview/briviact-epar-medicine-overview_en.pdf (accessed on 24 April 2024).
- Ferragut Ferretjans, F.; Soto Insuga, V.; Bernardino Cuesta, B.; Cantarín Extremera, V.; Duat Rodriguez, A.; Legido, M.J.; González Alguacil, E.; Furones García, M.; Gutiérrez Solana, L.; Moreno Cantero, T.; et al. Efficacy of Brivaracetam in children with epilepsy. Epilepsy Res. 2021, 177, 106757. [Google Scholar] [CrossRef] [PubMed]
- Lattanzi, S.; Canafoglia, L.; Canevini, M.P.; Casciato, S.; Cerulli Irelli, E.; Chiesa, V.; Dainese, F.; De Maria, G.; Didato, G.; Di Gennaro, G.; et al. Adjunctive brivaracetam and sustained seizure frequency reduction in very active focal epilepsy. Epilepsia 2023, 64, 2922–2933. [Google Scholar] [CrossRef] [PubMed]
- Tulli, E.; Di Cara, G.; Iapadre, G.; Striano, P.; Verrotti, A. An update on brivaracetam for the treatment of pediatric partial epilepsy. Expert Opin. Pharmacother. 2021, 22, 1387–1395. [Google Scholar] [CrossRef] [PubMed]
- Verrotti, A.; Grasso, E.A.; Cacciatore, M.; Matricardi, S.; Striano, P. Potential role of brivaracetam in pediatric epilepsy. Acta Neurol. Scand. 2021, 143, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Schoemaker, R.; Wade, J.R.; Stockis, A. Brivaracetam population pharmacokinetics in children with epilepsy aged 1 month to 16 years. Eur. J. Clin. Pharmacol. 2017, 73, 727–733. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McGuire, S.; Silva, G.; Lal, D.; Khurana, D.S.; Legido, A.; Hasbani, D.; Carvalho, K.S.; Melvin, J.; Valencia, I. Safety and Efficacy of Brivaracetam in Pediatric Refractory Epilepsy: A Single-Center Clinical Experience. J. Child Neurol. 2020, 35, 102–105. [Google Scholar] [CrossRef] [PubMed]
- Lagae, L.; Klotz, K.A.; Fogarasi, A.; Floricel, F.; Reichel, C.; Elshoff, J.P.; Fleyshman, S.; Kang, H. Long-term safety and efficacy of adjunctive brivaracetam in pediatric patients with epilepsy: An open-label, follow-up trial. Epilepsia 2023, 64, 2934–2946. [Google Scholar] [CrossRef] [PubMed]
- Nissenkorn, A.; Tzadok, M.; Bar-Yosef, O.; Ben-Zeev, B. Treatment with brivaracetam in children—The experience of a pediatric epilepsy center. Epilepsy Behav. 2019, 101, 106541. [Google Scholar] [CrossRef] [PubMed]
- Visa-Reñé, N.; Raspall-Chaure, M.; Paredes-Carmona, F.; Coromina, J.S.; Macaya-Ruiz, A. Clinical experience with brivaracetam in a series of 46 children. Epilepsy Behav. 2020, 107, 107067. [Google Scholar] [CrossRef] [PubMed]
- Benke, T.A.; Demarest, S.; Angione, K.; Downs, J.; Leonard, H.; Saldaris, J.; Marsh, E.D.; Olson, H.; Haviland, I. CDKL5 Deficiency Disorder. In GeneReviews®; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. Available online: http://www.ncbi.nlm.nih.gov/books/NBK602610/ (accessed on 24 April 2024).
- Fasipe, O.J.; Agede, O.A.; Enikuomehin, A.C. Announcing the novel class of GABA–A receptor selective positive allosteric modulator antidepressants. Future Sci. OA 2021, 7, FSO654. [Google Scholar] [CrossRef] [PubMed]
- Perucca, E.; Bialer, M.; White, H.S. New GABA-Targeting Therapies for the Treatment of Seizures and Epilepsy: I. Role of GABA as a Modulator of Seizure Activity and Recently Approved Medications Acting on the GABA System. CNS Drugs 2023, 37, 755–779. [Google Scholar] [CrossRef] [PubMed]
- Yasmen, N.; Sluter, M.N.; Yu, Y.; Jiang, J. Ganaxolone for management of seizures associated with CDKL5 deficiency disorder. Trends Pharmacol. Sci. 2023, 44, 128–129. [Google Scholar] [CrossRef] [PubMed]
- De, S.K. Ganaxolone: First FDA-approved Medicine for the Treatment ofSeizures Associated with Cyclin-dependent Kinase-like 5 DeficiencyDisorder. Curr. Med. Chem. 2024, 31, 388–392. [Google Scholar] [CrossRef] [PubMed]
- Thomas, P.; Pang, Y. Anti-apoptotic Actions of Allopregnanolone and Ganaxolone Mediated Through Membrane Progesterone Receptors (PAQRs) in Neuronal Cells. Front. Endocrinol. 2020, 11, 417. [Google Scholar] [CrossRef] [PubMed]
- Ganaxolone. Am. J. Health Syst. Pharm. 2022, 79, 1881–1884. [CrossRef] [PubMed]
- Samanta, D. PCDH19-Related Epilepsy Syndrome: A Comprehensive Clinical Review. Pediatr. Neurol. 2020, 105, 3–9. [Google Scholar] [CrossRef]
- Knight, E.M.P.; Amin, S.; Bahi-Buisson, N.; Benke, T.A.; Cross, J.H.; Demarest, S.T.; Olson, H.E.; Specchio, N.; Fleming, T.R.; Aimetti, A.A.; et al. Safety and efficacy of ganaxolone in patients with CDKL5 deficiency disorder: Results from the double-blind phase of a randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 2022, 21, 417–427. [Google Scholar] [CrossRef] [PubMed]
- Olson, H.E.; Amin, S.; Bahi-Buisson, N.; Devinsky, O.; Marsh, E.D.; Pestana-Knight, E.; Rajaraman, R.R.; Aimetti, A.A.; Rybak, E.; Kong, F.; et al. Long-term treatment with ganaxolone for seizures associated with cyclin-dependent kinase-like 5 deficiency disorder: Two-year open-label extension follow-up. Epilepsia 2024, 65, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, J.; Gunning, B.; Zafar, M.; Guerrini, R.; Gecz, J.; Kolc, K.L.; Zhao, Y.; Gasior, M.; Aimetti, A.A.; Samanta, D. Phase 2, placebo-controlled clinical study of oral ganaxolone in PCDH19-clustering epilepsy. Epilepsy Res. 2023, 191, 107112. [Google Scholar] [CrossRef] [PubMed]
- Moncayo, J.A.; Vargas, M.N.; Castillo, I.; Granda, P.V.; Duque, A.M.; Argudo, J.M.; Matcheswalla, S.; Lopez Dominguez, G.E.; Monteros, G.; Andrade, A.F.; et al. Adjuvant Treatment for Protocadherin 19 (PCDH19) Syndrome. Cureus 2022, 14, e27154. [Google Scholar] [CrossRef] [PubMed]
- Perry, M.S. New and Emerging Medications for Treatment of Pediatric Epilepsy. Pediatr. Neurol. 2020, 107, 24–27. [Google Scholar] [CrossRef] [PubMed]
- Hasan, S.U.; Pervez, A.; Bhatty, S.; Shamim, S.; Naeem, A.; Naseeb, M.W. Termination of seizures in the paediatric age group, best benzodiazepine and route of administration: A network meta-analysis. Eur. J. Neurosci. 2022, 56, 4234–4245. [Google Scholar] [CrossRef]
- Thiele, E.A.; Bebin, E.M.; Filloux, F.; Kwan, P.; Loftus, R.; Sahebkar, F.; Sparagana, S.; Wheless, J. Long-term cannabidiol treatment for seizures in patients with tuberous sclerosis complex: An open-label extension trial. Epilepsia 2022, 63, 426–439. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chilcott, E.; Díaz, J.A.; Bertram, C.; Berti, M.; Karda, R. Genetic therapeutic advancements for Dravet Syndrome. Epilepsy Behav. 2022, 132, 108741. [Google Scholar] [CrossRef] [PubMed]
- Strzelczyk, A.; Schubert-Bast, S. Expanding the Treatment Landscape for Lennox-Gastaut Syndrome: Current and Future Strategies. CNS Drugs 2021, 35, 61–83. [Google Scholar] [CrossRef] [PubMed]
- Ben-Zeev, B. Medical Cannabis for Intractable Epilepsy in Childhood: A Review. Rambam Maimonides Med. J. 2020, 11, e0004. [Google Scholar] [CrossRef] [PubMed]
- Kirmani, B.F.; Au, K.; Ayari, L.; John, M.; Shetty, P.; Delorenzo, R.J. Super-Refractory Status Epilepticus: Prognosis and Recent Advances in Management. Aging Dis. 2021, 12, 1097–1119. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sunita Misra, Cenobamate Open-Label Extension Study for YKP3089C025. Available online: https://clinicaltrials.gov./study/NCT03961568?cond=Cenobamate&aggFilters=ages:child&rank=1 (accessed on 5 April 2024).
- UCB Cares. A Study to Test the Long-Term Safety, Tolerability and Efficacy of Brivaracetam in Study Participants 2 to 26 Years of Age with Childhood Absence Epilepsy or Juvenile Absence Epilepsy. Available online: https://clinicaltrials.gov./study/NCT05109234?cond=Brivaracetam&aggFilters=ages:child,status:enr&rank=1 (accessed on 10 May 2024).
- UCB Cares. A Study to Evaluate Safety, Tolerability, and Pharmacokinetics of Fenfluramine (Hydrochloride) in Infants 1 Year to Less Than 2 Years of Age with Dravet Syndrome (ORCHID). Available online: https://clinicaltrials.gov./study/NCT06118255?cond=Fenfluramine&aggFilters=ages:child&rank=7 (accessed on 29 May 2024).
- Marinus Pharmaceuticals. Adjunctive GNX Treatment Compared with Placebo in Children and Adults with TSC-Related Epilepsy. Available online: https://clinicaltrials.gov./study/NCT05323734?cond=Ganaxolone&aggFilters=ages:child&page=2&rank=13 (accessed on 13 May 2024).
Author of the Study | Year of Publication | Number of Patients | Age of Patients | Dose | ≤50% Seizure Reduction | >50% Seizure Reduction | Complete Seizure Reduction | Adverse Effects | Type of Epilepsy |
---|---|---|---|---|---|---|---|---|---|
Makridis KL et al. [23] | 2022 | 16 | 12–18 | 6.25–25 mg/d | 6 (37.5%) | 6 (37.5%) | 5 (31.3%) | somnolence, fatigue | Drug-resistant epilepsy |
Elliott et al. [27] | 2022 | 13 | 12–17 | 50–300 mg/d | no data | 8 (61.5%) | no data | somnolence | Focal-onset epilepsy |
Varughese RT et al. [20] | 2022 | 21 | 10–18 | 200 mg/d | 13 (61.9%) | 11 (52.3%) | 4 (19%) | somnolence, fatigue | Focal-onset epilepsy |
209.8 mg/d |
Author of the Study | Year of Publication | Number of Patients | Age of Patients | Dose | % of Seizure Reduction Compared to Placebo | Adverse Effects | Type of Epilepsy |
---|---|---|---|---|---|---|---|
Nabbout et al. [31] | 2020 | 87 | 6–19 | 0.4 mg/kg/d | 54% | decreased appetite, fever, fatigue, diarrhea | Dravet syndrome |
Lagae et al. [32] | 2019 | 119 | 2–18 | 0.2 mg/kg/d | 42.30% | decreased appetite, fever, fatigue, diarrhea | Dravet syndrome |
0.7 mg/kg/d | 74.90% | ||||||
Specchio N et al. [33] | 2020 | 52 | 4–14 | 0.2–0.7 mg/kg/d | 77.40% | decreased appetite | Dravet syndrome |
Knupp et al. [36] | 2023 | 168 | 2–18 | 0.2–0.7 mg/kg/d | 25.60% | decreased appetite, fatigue | Dravet syndrome |
Author of the Study | Year of Publication | Number of Patients | Age of Patients | Dose | Positive Response to the Treatment | Adverse Effects |
---|---|---|---|---|---|---|
Tarquinio D et al. [40] | 2022 | 163 | 12–17 | 0.3 mg/kg | 143 (88%) | fever (17.9%), upper respiratory tract infection (17.9%), nosebleeds (2.6%) |
Kay L et al. [44] | 2019 | 42 | 5–92 | 2.5–15 mg/kg | 24 (57.1%) | nasal irritation (11.9%) |
Author of the Study | Year of Publication | Number of Patients | Age of Patients | Dose | Positive Response to the Treatment | Adverse Effects | Type of Epilepsy |
---|---|---|---|---|---|---|---|
Elliott J. et al. [51] | 2019 | 19 | 2–16 | 0.5–28.6 mg/kg | 16 (84%) | vomiting, diarrhoea | Lennox-Gastaut syndrome |
Thiele E. et al. [57] | 2018 | 86 | 2–17 | 10–20 mg/kg | 23 (37%) | diarrhea, lethargy, fever, decreased appetite, and vomiting | Lennox-Gastaut syndrome |
Devinsky O. et al. [62] | 2018 | 73 76 | 2–55 | 10 mg/kg 20 mg/kg | 27 (37.2%) 32 (41.9%) | vomiting, diarrhea, fatigue, somnolence, pyrexia | Dravet syndrome |
Miller et al. [63] | 2020 | 66 67 | 2–18 | 10 mg/kg 20 mg/kg | 30 (47.8%) 30 (45.7%) | decreased appetite, diarrhea, somnolence, pyrexia, fatigue | Dravet syndrome |
Author of the Study | Year of Publication | Number of Patients | Age of Patients | Dose | Type of Epilepsy | Positive Response to the Treatment | Adverse Effects |
---|---|---|---|---|---|---|---|
McGuire S et al. [78] | 2020 | 20 | 4–20 | 3.9 mg/kg/d | refractory epilepsy | 9 (45%) | psychiatric adverse effects (17%) |
Lagae L et al. [79] | 2023 | 257 | 1 month–17 years | 5 mg/kg/d | focal epilepsy, generalized epilepsy, generalized epileptic syndrome or other symptomatic generalized epilepsy | 225 (87.7%) | inflammation of the nasopharynx (29.2%); inflammation of the throat (22.3%); fever (25.3%); vomiting (21.4%); headache (15.2%); decreased appetite (11.7%); abdominal pain (10.5%); status epilepticus (4.3%); pneumonia (3.1%); generalized tonic-clonic seizures (1.9%) |
Nissenkorn A et al. [80] | 2019 | 31 | 6–20 | 100–300 mg | focal epilepsy, Lennox- Gastaut syndrome, myoclonic- atonic syndrome, myoclonic absence | 14 (45%) | drowsiness (6.4%); nausea (3.2%); psychosis (3.2%) |
Visa-Reñé N et al. [81] | 2020 | 46 | 0–18 | initial average 2.8 mg/kg/d | focal epilepsy, generalized epilepsy | 30 (65%) | drowsiness and irritability (43.5%) |
Author of the Study | Year of Publication | Number of Patients | Age of Patients | Dose | Type of Epilepsy | Seizure Frequency Reduction | Adverse Effects |
---|---|---|---|---|---|---|---|
Knight et al. [90] | 2022 | 50 | 2–21 | 63 mg/kg ≤28 kg 1800 mg/d > 28kg | CDD | 50% | somnolence (36%), pyrexia (18%), seizure (14%), vomiting (10%), upper respiratory tract infection (10%), constipation (6%), sedation (6%), salivary hypersecretion (6%), ear infection (4%), rash (4%) |
Olson HE et al. [91] | 2024 | 50 | 2–19 | 63 mg/kg ≤28 kg 1800 mg/d > 28kg | CDD | 48.20% | somnolence (17%), seizure (11.4%), decreased appetite (5.7%), pneumonia (5.7%) weight decrease (4.5%), attention-seeking behavior (3.4%), acute respiratory failure (3.4%), pneumonia aspiration (3.4%) gait disturbance (3.4%) |
Sullivan J et al. [92] | 2023 | 21 | 1–17 | 63 mg/kg ≤28 kg 1800 mg/d > 28kg | PCDH19—clustering epilepsy | 55.60% | psychiatric disorders (50%), somnolence (40%), agitation (20%), gastrointestinal disorders (20%), diarrhea (10%), agression (10%), ataxia (10%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daniłowska, K.; Picheta, N.; Żyła, D.; Piekarz, J.; Zych, K.; Gil-Kulik, P. New Pharmacological Therapies in the Treatment of Epilepsy in the Pediatric Population. J. Clin. Med. 2024, 13, 3567. https://doi.org/10.3390/jcm13123567
Daniłowska K, Picheta N, Żyła D, Piekarz J, Zych K, Gil-Kulik P. New Pharmacological Therapies in the Treatment of Epilepsy in the Pediatric Population. Journal of Clinical Medicine. 2024; 13(12):3567. https://doi.org/10.3390/jcm13123567
Chicago/Turabian StyleDaniłowska, Karolina, Natalia Picheta, Dominika Żyła, Julia Piekarz, Katarzyna Zych, and Paulina Gil-Kulik. 2024. "New Pharmacological Therapies in the Treatment of Epilepsy in the Pediatric Population" Journal of Clinical Medicine 13, no. 12: 3567. https://doi.org/10.3390/jcm13123567
APA StyleDaniłowska, K., Picheta, N., Żyła, D., Piekarz, J., Zych, K., & Gil-Kulik, P. (2024). New Pharmacological Therapies in the Treatment of Epilepsy in the Pediatric Population. Journal of Clinical Medicine, 13(12), 3567. https://doi.org/10.3390/jcm13123567