Premature Progesterone Rise Is Associated with Higher Cumulative Live Birth Rate with Freeze-All Strategy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Controlled Ovarian Hyperstimulation Protocol
2.3. Outcome Measures
2.4. Editorial Board Members and Editors
2.5. Statistical Analyses
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schoolcraft, W.; Sinton, E.; Schlenker, T.; Huynh, D.; Hamilton, F.; Meldrum, D.R. Lower pregnancy rate with premature luteinization during pituitary suppression with leuprolide acetate. Fertil. Steril. 1991, 55, 563–566. [Google Scholar] [CrossRef]
- Bosch, E.; Valencia, I.; Escudero, E.; Crespo, J.; Simón, C.; Remohí, J.; Pellicer, A. Premature luteinization during gonadotropin-releasing hormone antagonist cycles and its relationship with in vitro fertilization outcome. Fertil. Steril. 2003, 80, 1444–1449. [Google Scholar] [CrossRef]
- Huang, R.; Fang, C.; Xu, S.; Yi, Y.; Liang, X. Premature progesterone rise negatively correlated with live birth rate in IVF cycles with GnRH agonist: An analysis of 2566 cycles. Fertil. Steril. 2012, 98, 664–670.e2. [Google Scholar] [CrossRef]
- Hussein, R.S.; Elnashar, I.; Amin, A.F.; Abou-Taleb, H.A.; Abbas, A.M.; Abdelmageed, A.M.; Farghaly, T.; Zhao, Y. Revisiting debates of premature luteinization and its effect on assisted reproductive technology outcome. J. Assist. Reprod. Genet. 2019, 36, 2195–2206. [Google Scholar] [CrossRef]
- Venetis, C.A.; Kolibianakis, E.M.; Bosdou, J.K.; Tarlatzis, B.C. Progesterone elevation and probability of pregnancy after IVF: A systematic review and meta-analysis of over 60,000 cycles. Hum. Reprod. Update 2013, 19, 433–457. [Google Scholar] [CrossRef]
- Bosch, E.; Labarta, E.; Crespo, J.; Simón, C.; Remohí, J.; Jenkins, J.; Pellicer, A. Circulating progesterone levels and ongoing pregnancy rates in controlled ovarian stimulation cycles for in vitro fertilization: Analysis of over 4000 cycles. Hum. Reprod. 2010, 25, 2092–2100. [Google Scholar] [CrossRef]
- Kolibianakis, E.M.; Albano, C.; Camus, M.; Tournaye, H.; Van Steirteghem, A.C.; Devroey, P. Prolongation of the follicular phase in in vitro fertilization results in a lower ongoing pregnancy rate in cycles stimulated with recombinant follicle-stimulating hormone and gonadotropin-releasing hormone antagonists. Fertil. Steril. 2004, 82, 102–107. [Google Scholar] [CrossRef]
- Orvieto, R.; Nahum, R.; Meltzer, S.; Liberty, G.; Anteby, E.Y.; Zohav, E. GnRH agonist versus GnRH antagonist in ovarian stimulation: The role of elevated peak serum progesterone levels. Gynecol. Endocrinol. 2013, 29, 843–845. [Google Scholar] [CrossRef]
- Liu, L.; Huang, J.; Li, T.C.; Hong, X.T.; Laird, S.; Dai, Y.D.; Tong, X.M.; Zhu, H.Y.; Zhang, S. The effect of elevated progesterone levels before oocyte retrieval in women undergoing ovarian stimulation for IVF treatment on the genomic profile of peri-implantation endometrium. J. Reprod. Immunol. 2017, 121, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Cetinkaya, E.S.; Berker, B.; Aytac, R.; Atabekoglu, C.; Sonmezer, M.; Ozmen, B. The value of the progesterone-to-estradiol ratio on the day of hCG administration in predicting ongoing pregnancy and live birth rates in normoresponders undergoing GnRH antagonist cycles. Eur. J. Obstet. Gynecol. Reprod. Biol. 2013, 170, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Van Vaerenbergh, I.; Blockeel, C.; Van Lommel, L.; Ghislain, V.; Veld, P.I.; Schuit, F.; Fatemi, H.M.; Devroey, P.; Bourgain, C. Cyclooxygenase-2 network as predictive molecular marker for clinical pregnancy in in vitro fertilization. Fertil. Steril. 2011, 95, 448–451.e2. [Google Scholar] [CrossRef] [PubMed]
- Bourgain, C.; Ubaldi, F.; Tavaniotou, A.; Smitz, J.; Van Steirteghem, A.C.; Devroey, P. Endometrial hormone receptors and proliferation index in the periovulatory phase of stimulated embryo transfer cycles in comparison with natural cycles and relation to clinical pregnancy outcome. Fertil. Steril. 2002, 78, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Melo, M.A.; Meseguer, M.; Garrido, N.; Bosch, E.; Pellicer, A.; Remohí, J. The significance of premature luteinization in an oocyte-donation programme. Hum. Reprod. 2006, 21, 1503–1507. [Google Scholar] [CrossRef] [PubMed]
- Baldini, D.; Savoia, M.V.; Sciancalepore, A.G.; Malvasi, A.; Vizziello, D.; Beck, R.; Vizziello, G. High progesterone levels on the day of HCG administration do not affect the embryo quality and the reproductive outcomes of frozen embryo transfers. Clin. Ter. 2018, 169, e91–e95. [Google Scholar] [PubMed]
- Ubaldi, F.; Albano, C.; Peukert, M.; Riethmüller-Winzen, H.; Camus, M.; Smitz, J.; Van Steirteghem, A.; Devroey, P. Subtle progesterone rise after the administration of the gonadotrophin-releasing hormone antagonist cetrorelix in intracytoplasmic sperm injection cycles. Hum. Reprod. 1996, 11, 1405–1407. [Google Scholar] [CrossRef] [PubMed]
- Kofinas, J.D.; Mehr, H.; Ganguly, N.; Biley, Y.; Bochkovsky, S.; McCulloh, D.; Grifo, J. Is it the egg or the endometrium? Elevated progesterone on day of trigger is not associated with embryo ploidy nor decreased success rates in subsequent embryo transfer cycles. J. Assist. Reprod. Genet. 2016, 33, 1169–1174. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Kaur, S.D.; Malik, N.; Malhotra, N.; Vanamail, P. Do increased levels of progesterone and progesterone/estradiol ratio on the day of human chorionic gonadotropin affects pregnancy outcome in long agonist protocol in fresh in vitro fertilization/intracytoplasmic sperm injection cycles? J. Hum. Reprod. Sci. 2015, 8, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Simon, C.; Moreau, J.; Gatimel, N.; Cohade, C.; Parinaud, J.; Leandri, R. Impact of estradiol and progesterone levels during the late follicular stage on the outcome of GnRH antagonist protocols. Gynecol. Endocrinol. 2019, 35, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Van Vaerenbergh, I.; Fatemi, H.M.; Blockeel, C.; Van Lommel, L.; Veld, P.I.; Schuit, F.; Kolibianakis, E.; Devroey, P.; Bourgain, C. Progesterone rise on HCG day in GnRH antagonist/rFSH stimulated cycles affects endometrial gene expression. Reprod. Biomed. Online 2011, 22, 263–271. [Google Scholar] [CrossRef]
- Voutilainen, R.; Tapanainen, J.; Chung, B.C.; Matteson, K.J.; Miller, W.L. Hormonal regulation of P450scc (20,22-desmolase) and P450c17 (17 alpha-hydroxylase/17,20-lyase) in cultured human granulosa cells. J. Clin. Endocrinol. Metab. 1986, 63, 202–207. [Google Scholar] [CrossRef]
- Bu, Z.; Zhao, F.; Wang, K.; Guo, Y.; Su, Y.; Zhai, J.; Sun, Y. Serum progesterone elevation adversely affects cumulative live birth rate in different ovarian responders during in vitro fertilization and embryo transfer: A large retrospective study. PLoS ONE 2014, 9, e100011. [Google Scholar] [CrossRef] [PubMed]
- Esteves, S.C.; Alviggi, C.; Humaidan, P.; Fischer, R.; Andersen, C.Y.; Conforti, A.; Bühler, K.; Sunkara, S.K.; Polyzos, N.P.; Galliano, D.; et al. The POSEIDON Criteria and Its Measure of Success Through the Eyes of Clinicians and Embryologists. Front. Endocrinol. 2019, 10, 814. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.H.; Liu, C.H.; Huang, C.C.; Wu, Y.-L.; Shih, Y.-T.; Ho, H.-N.; Yang, Y.-S.; Lee, M.-S. Serum anti-Mullerian hormone and estradiol levels as predictors of ovarian hyperstimulation syndrome in assisted reproduction technology cycles. Hum. Reprod. 2008, 23, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Lawrenz, B.; Melado, L.; Fatemi, H. Premature progesterone rise in ART-cycles. Reprod. Biol. 2018, 18, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Mirkin, S.; Nikas, G.; Hsiu, J.G.; Díaz, J.; Oehninger, S. Gene expression profiles and structural/functional features of the peri-implantation endometrium in natural and gonadotropin-stimulated cycles. J. Clin. Endocrinol. Metab. 2004, 89, 5742–5752. [Google Scholar] [CrossRef] [PubMed]
- Segal, S.; Glatstein, I.; McShane, P.; Hotamisligil, S.; Ezcurra, D.; Carson, R. Premature luteinization and in vitro fertilization outcome in gonadotropin/gonadotropin-releasing hormone antagonist cycles in women with polycystic ovary syndrome. Fertil. Steril. 2009, 91, 1755–1759. [Google Scholar] [CrossRef] [PubMed]
- Neves, A.R.; Santos-Ribeiro, S.; Garcia-Martinez, S.; Devesa, M.; Soares, S.R.; García-Velasco, J.A.; Garrido, N.; Polyzos, N.P. The effect of late-follicular phase progesterone elevation on embryo ploidy and cumulative live birth rates. Reprod. Biomed. Online 2021, 43, 1063–1069. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Ren, X.; Wu, L.; Zhu, L.; Xu, B.; Li, Y.; Ai, J.; Jin, L. Elevated Progesterone Levels on the Day of Oocyte Maturation May Affect Top Quality Embryo IVF Cycles. PLoS ONE 2016, 11, e0145895. [Google Scholar] [CrossRef] [PubMed]
- Kalakota, N.R.; George, L.C.; Morelli, S.S.; Douglas, N.C.; Babwah, A.V. Towards an Improved Understanding of the Effects of Elevated Progesterone Levels on Human Endometrial Receptivity and Oocyte/Embryo Quality during Assisted Reproductive Technologies. Cells 2022, 11, 1405. [Google Scholar] [CrossRef]
- Schiffer, L.; Barnard, L.; Baranowski, E.S.; Gilligan, L.C.; Taylor, A.E.; Arlt, W.; Shackleton, C.H.; Storbeck, K.-H. Human steroid biosynthesis, metabolism and excretion are differentially reflected by serum and urine steroid metabolomes: A comprehensive review. J. Steroid Biochem. Mol. Biol. 2019, 194, 105439. [Google Scholar] [CrossRef]
- Eldar-Geva, T.; Margalioth, E.J.; Brooks, B.; Algur, N.; Zylber-Haran, E.; Diamant, Y.Z. The origin of serum progesterone during the follicular phase of menotropin-stimulated cycles. Hum. Reprod. 1998, 13, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Werner, M.D.; Forman, E.J.; Hong, K.H.; Franasiak, J.M.; Molinaro, T.A.; Scott, R.T., Jr. Defining the “sweet spot” for administered luteinizing hormone-to-follicle-stimulating hormone gonadotropin ratios during ovarian stimulation to protect against a clinically significant late follicular increase in progesterone: An analysis of 10,280 first in vitro fertilization cycles. Fertil. Steril. 2014, 102, 1312–1317. [Google Scholar] [PubMed]
- Kyrou, D.; Al-Azemi, M.; Papanikolaou, E.G.; Donoso, P.; Tziomalos, K.; Devroey, P.; Fatemi, H. The relationship of premature progesterone rise with serum estradiol levels and number of follicles in GnRH antagonist/recombinant FSH-stimulated cycles. Eur. J. Obstet. Gynecol. Reprod. Biol. 2012, 162, 165–168. [Google Scholar] [CrossRef] [PubMed]
- Hill, M.J.; Royster, G.D., 4th; Healy, M.W.; Richter, K.S.; Levy, G.; DeCherney, A.H.; Levens, E.D.; Suthar, G.; Widra, E.; Levy, M.J. Are good patient and embryo characteristics protective against the negative effect of elevated progesterone level on the day of oocyte maturation? Fertil. Steril. 2015, 103, 1477–1484.e5. [Google Scholar] [CrossRef] [PubMed]
- Vanni, V.S.; Somigliana, E.; Reschini, M.; Pagliardini, L.; Marotta, E.; Faulisi, S.; Paffoni, A.; Vigano’, P.; Vegetti, W.; Candiani, M.; et al. Top quality blastocyst formation rates in relation to progesterone levels on the day of oocyte maturation in GnRH antagonist IVF/ICSI cycles. PLoS ONE 2017, 12, e0176482. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Nieto, C.; Lee, J.A.; Alkon-Meadows, T.; Luna-Rojas, M.; Mukherjee, T.; Copperman, A.B.; Sandler, B. Late follicular phase progesterone elevation during ovarian stimulation is not associated with decreased implantation of chromosomally screened embryos in thaw cycles. Hum. Reprod. 2020, 35, 1889–1899. [Google Scholar] [CrossRef] [PubMed]
- Pardinas, M.L.; Nohales, M.; Labarta, E.; Santos, J.M.D.L.; Mercader, A.; Remohí, J.; Bosch, E.; Santos, M.J.D.L. Elevated serum progesterone does not impact euploidy rates in PGT-A patients. J. Assist. Reprod. Genet. 2021, 38, 1819–1826. [Google Scholar] [CrossRef]
- Orvieto, R.; Venetis, C.A.; Fatemi, H.M.; D’hooghe, T.; Fischer, R.; Koloda, Y.; Horton, M.; Grynberg, M.; Longobardi, S.; Esteves, S.C.; et al. Optimising Follicular Development, Pituitary Suppression, Triggering and Luteal Phase Support During Assisted Reproductive Technology: A Delphi Consensus. Front. Endocrinol. 2021, 12, 675670. [Google Scholar] [CrossRef]
Progesterone Level (ng/mL) | <1.5 (n = 526) | ≥1.5 (n = 149) | p Value |
---|---|---|---|
Age (years) | 36.6 ± 4.0 | 35.8 ± 4.0 | 0.042 |
AMH (ng/mL) | 3.3 ± 3.2 | 4.6 ± 3.2 | <0.001 ** |
Total FSH dosage (IU) | 3297.8 ± 1163.0 | 3123.3 ± 1015.8 | 0.090 |
Total LH dosage (IU) | 1131.7 ± 676.9 | 991.1 ± 638.0 | 0.020 * |
FSH/LH dosage ratio | 4.0 ± 4.5 | 3.6 ± 2.3 | 0.119 |
Induction duration (days) | 10.2 ± 1.7 | 10.5 ± 1.2 | 0.006 ** |
No. of ≥14 mm follicle | 9.8 ± 6.4 | 14.0 ± 7.0 | <0.001 ** |
Estradiol on day of hCG administration (pg/mL) | 2895.1 ± 1775.8 | 4867.9 ± 2542.9 | <0.001 ** |
No. of oocytes retrieved | 13.9 ± 9.6 | 19.6 ± 10.2 | <0.001 ** |
Oocyte retrieval rate | 83.9% ± 24% | 84.4% ± 25.9% | 0.515 |
Rate of good embryos 1 (at day 3) | 32.7% ± 25% | 34.1% ± 21.5% | 0.375 |
Blastocyte formation rate | 55.8% ± 23.7% | 59.6% ± 32.0% | 0.370 |
Univariate | Multivariable Model | |||||
---|---|---|---|---|---|---|
OR | 95%CI | p Value | OR | 95%CI | p Value | |
Age (years) | 0.94 | (0.90–0.98) | 0.003 ** | 1.03 | (0.98–1.08) | 0.321 |
AMH (ng/mL) | 1.19 | (1.14–1.25) | <0.001 ** | 1.02 | (0.95–1.10) | 0.582 |
Total dosage of FSH (IU) | 1.00 | (1.00–1.00) | 0.158 | |||
FSH/LH dosage ratio | 0.99 | (0.93–1.04) | 0.623 | |||
Induction duration (days) | 1.27 | (1.15–1.40) | <0.001 ** | 1.27 | (1.14–1.42) | <0.001 ** |
No. of ≥14 mm follicle | 1.14 | (1.11–1.17) | <0.001 ** | |||
Estradiol on day of hCG administration (pg/mL) | 1.00 | (1.00–1.00) | <0.001 ** | |||
No. of oocytes retrieved | 1.09 | (1.07–1.10) | <0.001 ** | 1.08 | (1.06–1.11) | <0.001 ** |
Rate of good embryos 1 (at day 3) | 1.26 | (0.55–2.90) | 0.590 | |||
Rate of good blastocyst 2 (at day 5/6) | 2.00 | (0.99–1.00) | 0.808 | |||
Oocyte retrieval rate | 0.76 | (0.70–1.35) | 0.288 |
AMH (ng/mL) | ≤1.2 | >1.2–≤3.36 | >3.36 | ||||||
---|---|---|---|---|---|---|---|---|---|
Progesterone level (ng/mL) | <1.5 | ≥1.5 | p value | <1.5 | ≥1.5 | p value | <1.5 | ≥1.5 | p value |
Age (years) | 39 | 39 | 0.623 | 37 | 37 | 0.362 | 35 | 35 | 0.428 |
AMH (ng/mL) | 0.77 | 0.8 | 0.638 | 1.95 | 2.29 | 0.001 ** | 5.45 | 4.97 | 0.380 |
Total FSH dosage (IU) | 3750 | 3975 | 0.293 | 3375 | 3525 | 0.045 ** | 2250 | 2700 | 0.007 ** |
FSH/LH dosage ratio | 2.8 | 2.65 | 0.229 | 2.8 | 2.8 | 0.859 | 3.5 | 3.22 | 0.236 |
Induction duration (days) | 10 | 11 | 0.006 ** | 10 | 11 | 0.002 ** | 10 | 11 | <0.001 ** |
No. of ≥14 mm follicle | 3 | 6 | 0.005 ** | 7 | 10 | <0.001 ** | 13 | 16 | <0.001 ** |
Estradiol on day of hCG administration (pg/mL) | 1082 | 1900 | 0.006 ** | 1954 | 3514 | <0.001 ** | 3569 | 5476 | <0.001 ** |
No. of oocytes retrieved | 4 | 8 | 0.002 ** | 9 | 14 | <0.001 ** | 19 | 23 | 0.003 ** |
Blastocyte formation rate | 33% | 50% | 0.137 | 50% | 65% | 0.002 ** | 58% | 72% | 0.025 ** |
No. of Oocytes Retrieved | Progesterone on hCG Administration Day (ng/mL) | 1st First Frozen Embryo Transfers Live Birth Rates | Cumulative Live Birth Rates with Freeze-All Strategy |
---|---|---|---|
All | <1.5 | 46.1% | 59.3% |
≥1.5 | 51.1% | 71.9% | |
p value | 0.209 | 0.002 ** | |
≤5 | <1.5 | 17.4% | 20.4% |
≥1.5 | 16.7% | 16.7% | |
p value | 0.965 | 0.825 | |
6–19 | <1.5 | 47.4% | 59.7% |
≥1.5 | 53.2% | 61.3% | |
p value | 0.256 | 0.856 | |
≥20 | <1.5 | 65.0% | 88.3% |
≥1.5 | 65.1% | 92.1% | |
p value | 0.934 | 0.432 |
Quartile | Progesterone on hCG Administration Day (ng/mL) | 1st First Frozen Embryo Transfers Live Birth Rates | Cumulative Live Birth Rates with Freeze-All Strategy |
---|---|---|---|
First | ≤0.5 | 26.4% | 41.8% |
Second | >0.5–0.72 | 47.1% | 60.1% |
Third | >0.72–1 | 47.7% | 60% |
Forth | >1 | 54.6% | 71% |
p value | 1st vs. 2nd: <0.001 ** 1st vs. 3rd: <0.001 ** 1st vs. 4th: <0.001 ** Other: non-significant | 1st vs. 2nd: 0.004 ** 1st vs. 3rd: 0.005 ** 2nd vs. 4th: 0.024 ** 3rd vs. 4th: 0.025 ** 1st vs. 4th: <0.001 ** Other: non-significant |
Univariate | Multivariable Model | |||||
---|---|---|---|---|---|---|
OR | 95%CI | p Value | OR | 95%CI | p Value | |
Age (years) | 0.77 | (0.75–0.80) | <0.001 ** | 0.81 | (0.78–0.84) | <0.001 ** |
AMH (ng/mL) | 1.50 | (1.40–1.60) | <0.001 ** | 1.30 | (1.20–1.40) | <0.001 ** |
Total dosage of FSH (IU) | 1.00 | (1.00–1.00) | <0.001 ** | 1.00 | (1.00–1.00) | 0.014 * |
FSH/LH dosage ratio | 1.20 | (1.13–1.28) | <0.001 ** | |||
Induction duration (days) | 1.09 | (1.02–1.16) | 0.012 * | |||
No. of ≥ 14mm follicle | 1.24 | (1.20–1.27) | <0.001 ** | |||
Estradiol on day of hCG administration (pg/mL) | 1.00 | (1.00–1.00) | <0.001 ** | |||
No. of oocytes retrieved | 1.17 | (1.15–1.19) | <0.001 ** | |||
Rate of good embryos a (at day 3) | 2.35 | (1.35–4.09) | 0.003 ** | |||
Rate of good blastocyst b (at day 5/6) | 1.00 | (1.00–1.00) | 0.704 | |||
Oocyte retrieval rate | 1.65 | (1.12–2.43) | 0.011 * | |||
Premature progesterone rise | 2.51 | (1.86–3.37) | <0.001 ** | 1.56 | (1.08–2.25) | 0.017 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Chen, M.-J.; Guu, H.-F.; Chen, Y.-F.; Kung, H.-F.; Chang, J.-C.; Chen, L.-Y.; Chuan, S.-T.; Yi, Y.-C. Premature Progesterone Rise Is Associated with Higher Cumulative Live Birth Rate with Freeze-All Strategy. J. Clin. Med. 2024, 13, 3439. https://doi.org/10.3390/jcm13123439
Wang Y, Chen M-J, Guu H-F, Chen Y-F, Kung H-F, Chang J-C, Chen L-Y, Chuan S-T, Yi Y-C. Premature Progesterone Rise Is Associated with Higher Cumulative Live Birth Rate with Freeze-All Strategy. Journal of Clinical Medicine. 2024; 13(12):3439. https://doi.org/10.3390/jcm13123439
Chicago/Turabian StyleWang, Yu, Ming-Jer Chen, Hwa-Fen Guu, Ya-Fang Chen, Hsiao-Fan Kung, Jui-Chun Chang, Li-Yu Chen, Shih-Ting Chuan, and Yu-Chiao Yi. 2024. "Premature Progesterone Rise Is Associated with Higher Cumulative Live Birth Rate with Freeze-All Strategy" Journal of Clinical Medicine 13, no. 12: 3439. https://doi.org/10.3390/jcm13123439
APA StyleWang, Y., Chen, M. -J., Guu, H. -F., Chen, Y. -F., Kung, H. -F., Chang, J. -C., Chen, L. -Y., Chuan, S. -T., & Yi, Y. -C. (2024). Premature Progesterone Rise Is Associated with Higher Cumulative Live Birth Rate with Freeze-All Strategy. Journal of Clinical Medicine, 13(12), 3439. https://doi.org/10.3390/jcm13123439