Feasibility and Safety of Early Post-COVID-19 High-Intensity Gait Training: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sample and Design
2.2. Intervention
2.3. Data Collection
2.3.1. Demographics and Health Records
2.3.2. Feasibility and Safety of the Intervention
2.3.3. Functional Outcome Measures
2.4. Statistical Analysis
3. Results
3.1. Sample and Demographics
3.2. Fidelity of the Intervention
3.3. Safety of the Intervention
3.4. Functional Outcome Measures
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Weekly Epidemiological Update on COVID-19; WHO: Geneva, Switzerland, 2023.
- Rapin, A.; Noujaim, P.J.; Taiar, R.; Carazo-Mendez, S.; Deslee, G.; Jolly, D.; Boyer, F.C. Characteristics of COVID-19 Inpatients in Rehabilitation Units during the First Pandemic Wave: A Cohort Study from a Large Hospital in Champagne Region. Biology 2022, 11, 937. [Google Scholar] [CrossRef]
- Bellan, M.; Baricich, A.; Patrucco, F.; Zeppegno, P.; Gramaglia, C.; Balbo, P.E.; Carriero, A.; Amico, C.S.; Avanzi, G.C.; Barini, M.; et al. Long-term sequelae are highly prevalent one year after hospitalization for severe COVID-19. Sci. Rep. 2021, 11, 22666. [Google Scholar] [CrossRef] [PubMed]
- Vitacca, M.; Nava, S.; Santus, P.; Harari, S. Early consensus management for non-ICU acute respiratory failure SARS-CoV-2 emergency in Italy: From ward to trenches. Eur. Respir. J. 2020, 55, 2000632. [Google Scholar] [CrossRef]
- Kozey, S.L.; Lyden, K.; Howe, C.A.; Staudenmayer, J.W.; Freedson, P.S. Accelerometer output and MET values of common physical activities. Med. Sci. Sports Exerc. 2010, 42, 1776–1784. [Google Scholar] [CrossRef]
- Mendes, M.A.; da Silva, I.; Ramires, V.; Reichert, F.; Martins, R.; Ferreira, R.; Tomasi, E. Metabolic equivalent of task (METs) thresholds as an indicator of physical activity intensity. PLoS ONE 2018, 13, e0200701. [Google Scholar] [CrossRef] [PubMed]
- Nakagata, T.; Yamada, Y.; Naito, H. Metabolic equivalents of body weight resistance exercise with slow movement in older adults using indirect calorimetry. Appl. Physiol. Nutr. Metab. 2019, 44, 1254–1257. [Google Scholar] [CrossRef] [PubMed]
- Keech, A.; Holgate, K.; Fildes, J.; Indraratna, P.; Cummins, L.; Lewis, C.; Yu, J. High-intensity interval training for patients with coronary artery disease: Finding the optimal balance. Int. J. Cardiol. 2020, 298, 8–14. [Google Scholar] [CrossRef]
- Liou, K.; Ho, S.; Fildes, J.; Ooi, S.Y. High Intensity Interval versus Moderate Intensity Continuous Training in Patients with Coronary Artery Disease: A Meta-analysis of Physiological and Clinical Parameters. Heart Lung Circ. 2016, 25, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Wen, D.; Utesch, T.; Wu, J.; Robertson, S.; Liu, J.; Hu, G.; Chen, H. Effects of different protocols of high intensity interval training for VO(2)max improvements in adults: A meta-analysis of randomised controlled trials. J. Sci. Med. Sport 2019, 22, 941–947. [Google Scholar] [CrossRef]
- Mohamed, A.A.; Alawna, M. Role of increasing the aerobic capacity on improving the function of immune and respiratory systems in patients with coronavirus (COVID-19): A review. Diabetes Metab. Syndr. 2020, 14, 489–496. [Google Scholar] [CrossRef]
- Alawna, M.; Amro, M.; Mohamed, A.A. Aerobic exercises recommendations and specifications for patients with COVID-19: A systematic review. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 13049–13055. [Google Scholar] [CrossRef]
- ACSM. ACSM’s Guidelines for Exercise Testing and Prescription (American College of Sports Medicine), 11th ed.; Liguori, G., Ed.; Wolters Kluwer: Alphen aan den Rijn, The Netherlands, 2021. [Google Scholar]
- Corna, S.; Giardini, M.; Godi, M.; Bellotti, L.; Arcolin, I. Effects of Aerobic Training in Patients with Subacute COVID-19: A Randomized Controlled Feasibility Trial. Int. J. Environ. Res. Public. Health 2022, 19, 16383. [Google Scholar] [CrossRef]
- Mohamed, A.A.; Alawna, M. The effect of aerobic exercise on immune biomarkers and symptoms severity and progression in patients with COVID-19: A randomized control trial. J. Bodyw. Mov. Ther. 2021, 28, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Mooren, J.M.; Garbsch, R.; Schäfer, H.; Kotewitsch, M.; Waranski, M.; Teschler, M.; Schmitz, B.; Mooren, F.C. Medical Rehabilitation of Patients with Post-COVID-19 Syndrome-A Comparison of Aerobic Interval and Continuous Training. J. Clin. Med. 2023, 12, 6739. [Google Scholar] [CrossRef] [PubMed]
- Foged, F.; Rasmussen, I.E.; Bjørn Budde, J.; Rasmussen, R.S.; Rasmussen, V.; Lyngbæk, M.; Jønck, S.; Krogh-Madsen, R.; Lindegaard, B.; Ried-Larsen, M.; et al. Fidelity, tolerability and safety of acute high-intensity interval training after hospitalisation for COVID-19: A randomised cross-over trial. BMJ Open Sport Exerc. Med. 2021, 7, e001156. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, I.E.; Løk, M.; Durrer, C.G.; Foged, F.; Schelde, V.G.; Budde, J.B.; Rasmussen, R.S.; Høvighoff, E.F.; Rasmussen, V.; Lyngbæk, M.; et al. Impact of high-intensity interval training on cardiac structure and function after COVID-19: An investigator-blinded randomized controlled trial. J. Appl. Physiol. 2023, 135, 421–435. [Google Scholar] [CrossRef] [PubMed]
- Holleran, C.L.; Straube, D.D.; Kinnaird, C.R.; Leddy, A.L.; Hornby, T.G. Feasibility and potential efficacy of high-intensity stepping training in variable contexts in subacute and chronic stroke. Neurorehabilit. Neural Repair 2014, 28, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Hornby, T.G.; Henderson, C.E.; Plawecki, A.; Lucas, E.; Lotter, J.; Holthus, M.; Brazg, G.; Fahey, M.; Woodward, J.; Ardestani, M.; et al. Contributions of Stepping Intensity and Variability to Mobility in Individuals Poststroke. Stroke 2019, 50, 2492–2499. [Google Scholar] [CrossRef] [PubMed]
- Hornby, T.G.; Holleran, C.L.; Hennessy, P.W.; Leddy, A.L.; Connolly, M.; Camardo, J.; Woodward, J.; Mahtani, G.; Lovell, L.; Roth, E.J. Variable Intensive Early Walking Poststroke (VIEWS): A Randomized Controlled Trial. Neurorehabilit. Neural Repair 2016, 30, 440–450. [Google Scholar] [CrossRef]
- Lotter, J.K.; Henderson, C.E.; Plawecki, A.; Holthus, M.E.; Lucas, E.H.; Ardestani, M.M.; Schmit, B.D.; Hornby, T.G. Task-Specific Versus Impairment-Based Training on Locomotor Performance in Individuals With Chronic Spinal Cord Injury: A Randomized Crossover Study. Neurorehabilit. Neural Repair 2020, 34, 627–639. [Google Scholar] [CrossRef]
- Moore, J.L.; Nordvik, J.E.; Erichsen, A.; Rosseland, I.; Bø, E.; Hornby, T.G. Implementation of High-Intensity Stepping Training During Inpatient Stroke Rehabilitation Improves Functional Outcomes. Stroke 2020, 51, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Nes, B.M.; Janszky, I.; Wisløff, U.; Støylen, A.; Karlsen, T. Age-predicted maximal heart rate in healthy subjects: The HUNT fitness study. Scand. J. Med. Sci. Sports 2013, 23, 697–704. [Google Scholar] [CrossRef] [PubMed]
- Cohen-Solal, A.; Baleynaud, S.; Laperche, T.; Sebag, C.; Gourgon, R. Cardiopulmonary response during exercise of a beta 1-selective beta-blocker (atenolol) and a calcium-channel blocker (diltiazem) in untrained subjects with hypertension. J. Cardiovasc. Pharmacol. 1993, 22, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Eynon, N.; Sagiv, M.; Amir, O.; Ben-Sira, D.; Goldhammer, E.; Amir, R. The effect of long-term beta-adrenergic receptor blockade on the oxygen delivery and extraction relationship in patients with coronary artery disease. J. Cardiopulm. Rehabil. Prev. 2008, 28, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Mier, C.M.; Domenick, M.A.; Wilmore, J.H. Changes in stroke volume with beta-blockade before and after 10 days of exercise training in men and women. J. Appl. Physiol. 1997, 83, 1660–1665. [Google Scholar] [CrossRef]
- Barker-Davies, R.M.; O’Sullivan, O.; Senaratne, K.P.P.; Baker, P.; Cranley, M.; Dharm-Datta, S.; Ellis, H.; Goodall, D.; Gough, M.; Lewis, S.; et al. The Stanford Hall consensus statement for post-COVID-19 rehabilitation. Br. J. Sports Med. 2020, 54, 949–959. [Google Scholar] [CrossRef] [PubMed]
- Mantha, S.; Tripuraneni, S.L.; Roizen, M.F.; Fleisher, L.A. Proposed Modifications in the 6-Minute Walk Test for Potential Application in Patients With Mild COVID-19: A Step to Optimize Triage Guidelines. Anesth. Analg. 2020, 131, 398–402. [Google Scholar] [CrossRef] [PubMed]
- Prado, A.; Alves, J.C.A.; Gurginski, R.N.M.; Mikuni, T.; Zata, D.; Albuquerque, P.L.M.S.; Oliveira, J.R.G. Exercise recommendations after COVID-19 infection: A scoping review. Rev. Bras. Ativ. Fís. Saúde 2022, 27, 1–12. [Google Scholar] [CrossRef]
- Bissett, B.M.; Leditschke, I.A.; Neeman, T.; Boots, R.; Paratz, J. Inspiratory muscle training to enhance recovery from mechanical ventilation: A randomised trial. Thorax 2016, 71, 812–819. [Google Scholar] [CrossRef]
- National Cancer Institute. Common Terminology Criteria for Adverse Events (CTCAE); U.S. Department of Health and Human Services: Washington, DC, USA, 2017.
- Helse Sør-Øst. Pasientforløp for Rehabilitering av Pasienter Innlagt Med COVID-19 Sykdom i Spesialisthelsetjenesten i Helse Sør-Øst; Helse Sør-Øst: Hamar, Norway, 2021. [Google Scholar]
- Marques, A.; Cruz, J.; Quina, S.; Regêncio, M.; Jácome, C. Reliability, Agreement and Minimal Detectable Change of the Timed Up & Go and the 10-Meter Walk Tests in Older Patients with COPD. COPD J. Chronic Obstr. Pulm. Dis. 2016, 13, 279–287. [Google Scholar] [CrossRef]
- Redelmeier, D.A.; Bayoumi, A.M.; Goldstein, R.S.; Guyatt, G.H. Interpreting small differences in functional status: The Six Minute Walk test in chronic lung disease patients. Am. J. Respir. Crit. Care Med. 1997, 155, 1278–1282. [Google Scholar] [CrossRef]
- Singh, S.J.; Puhan, M.A.; Andrianopoulos, V.; Hernandes, N.A.; Mitchell, K.E.; Hill, C.J.; Lee, A.L.; Camillo, C.A.; Troosters, T.; Spruit, M.A.; et al. An official systematic review of the European Respiratory Society/American Thoracic Society: Measurement properties of field walking tests in chronic respiratory disease. Eur. Respir. J. 2014, 44, 1447–1478. [Google Scholar] [CrossRef]
- Teasell, R.; Foley, N.; Salter, K.; Bhogal, S.; Jutai, J.; Speechley, M. Evidence-Based Review of Stroke Rehabilitation: Executive summary, 12th edition. Top. Stroke Rehabil. 2009, 16, 463–488. [Google Scholar] [CrossRef]
- Bui, K.L.; Nyberg, A.; Maltais, F.; Saey, D. Functional Tests in Chronic Obstructive Pulmonary Disease, Part 2: Measurement Properties. Ann. Am. Thorac. Soc. 2017, 14, 785–794. [Google Scholar] [CrossRef]
- Jácome, C.; Cruz, J.; Oliveira, A.; Marques, A. Validity, Reliability, and Ability to Identify Fall Status of the Berg Balance Scale, BESTest, Mini-BESTest, and Brief-BESTest in Patients With COPD. Phys. Ther. 2016, 96, 1807–1815. [Google Scholar] [CrossRef] [PubMed]
- Bergland, A.; Strand, B.H. Norwegian reference values for the Short Physical Performance Battery (SPPB): The Tromsø Study. BMC Geriatr. 2019, 19, 216. [Google Scholar] [CrossRef] [PubMed]
- Bernabeu-Mora, R.; Medina-Mirapeix, F.; Llamazares-Herrán, E.; García-Guillamón, G.; Giménez-Giménez, L.M.; Sánchez-Nieto, J.M. The Short Physical Performance Battery is a discriminative tool for identifying patients with COPD at risk of disability. Int. J. Chronic Obstr. Pulm. Dis. 2015, 10, 2619–2626. [Google Scholar] [CrossRef] [PubMed]
- Medina-Mirapeix, F.; Bernabeu-Mora, R.; Llamazares-Herrán, E.; Sánchez-Martínez, M.P.; García-Vidal, J.A.; Escolar-Reina, P. Interobserver Reliability of Peripheral Muscle Strength Tests and Short Physical Performance Battery in Patients With Chronic Obstructive Pulmonary Disease: A Prospective Observational Study. Arch. Phys. Med. Rehabil. 2016, 97, 2002–2005. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W.; Williams Andrews, A. Normal walking speed: A descriptive meta-analysis. Physiotherapy 2011, 97, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Steffen, T.M.; Hacker, T.A.; Mollinger, L. Age- and gender-related test performance in community-dwelling elderly people: Six-Minute Walk Test, Berg Balance Scale, Timed Up & Go Test, and gait speeds. Phys. Ther. 2002, 82, 128–137. [Google Scholar] [CrossRef] [PubMed]
- O’Hoski, S.; Winship, B.; Herridge, L.; Agha, T.; Brooks, D.; Beauchamp, M.K.; Sibley, K.M. Increasing the clinical utility of the BESTest, mini-BESTest, and brief-BESTest: Normative values in Canadian adults who are healthy and aged 50 years or older. Phys. Ther. 2014, 94, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Sclauser Pessoa, I.M.; Franco Parreira, V.; Fregonezi, G.A.; Sheel, A.W.; Chung, F.; Reid, W.D. Reference values for maximal inspiratory pressure: A systematic review. Can. Respir. J. 2014, 21, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Enright, P.L.; Kronmal, R.A.; Manolio, T.A.; Schenker, M.B.; Hyatt, R.E. Respiratory muscle strength in the elderly. Correlates and reference values. Cardiovascular Health Study Research Group. Am. J. Respir. Crit. Care Med. 1994, 149, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Abramoff, B.A.; Dillingham, T.R.; Caldera, F.E.; Ritchie, M.D.; Pezzin, L.E. Inpatient Rehabilitation Outcomes After Severe COVID-19 Infections: A Retrospective Cohort Study. Am. J. Phys. Med. Rehabil. 2021, 100, 1109–1114. [Google Scholar] [CrossRef] [PubMed]
- Hermann, M.; Pekacka-Egli, A.M.; Witassek, F.; Baumgaertner, R.; Schoendorf, S.; Spielmanns, M. Feasibility and Efficacy of Cardiopulmonary Rehabilitation After COVID-19. Am. J. Phys. Med. Rehabil. 2020, 99, 865–869. [Google Scholar] [CrossRef]
- Olezene, C.S.; Hansen, E.; Steere, H.K.; Giacino, J.T.; Polich, G.R.; Borg-Stein, J.; Zafonte, R.D.; Schneider, J.C. Functional outcomes in the inpatient rehabilitation setting following severe COVID-19 infection. PLoS ONE 2021, 16, e0248824. [Google Scholar] [CrossRef] [PubMed]
- Shan, M.X.; Tran, Y.M.; Vu, K.T.; Eapen, B.C. Postacute inpatient rehabilitation for COVID-19. BMJ Case Rep. 2020, 13, e237406. [Google Scholar] [CrossRef] [PubMed]
- Souza, Y.D.; Macedo, J.; Nascimento, R.; Alves, M.A.; Medeiros, S.; Leal, L.; Soares, J. Low-Intensity Pulmonary Rehabilitation Through Videoconference for Post-Acute COVID-19 Patients. Am. J. Respir. Crit. Care Med. 2021, 203, A4124. [Google Scholar]
- Li, J.; Xia, W.; Zhan, C.; Liu, S.; Yin, Z.; Wang, J.; Chong, Y.; Zheng, C.; Fang, X.; Cheng, W.; et al. A telerehabilitation programme in post-discharge COVID-19 patients (TERECO): A randomised controlled trial. Thorax 2022, 77, 697–706. [Google Scholar] [CrossRef]
- Niemeijer, A.; Lund, H.; Stafne, S.N.; Ipsen, T.; Goldschmidt, C.L.; Jørgensen, C.T.; Juhl, C.B. Adverse events of exercise therapy in randomised controlled trials: A systematic review and meta-analysis. Br. J. Sports Med. 2020, 54, 1073–1080. [Google Scholar] [CrossRef]
- Middleton, A.; Fritz, S.L.; Lusardi, M. Walking speed: The functional vital sign. J. Aging Phys. Act. 2015, 23, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Kus, S.; Müller, M.; Strobl, R.; Grill, E. Patient goals in post-acute geriatric rehabilitation—Goal attainment is an indicator for improved functioning. J. Rehabil. Med. 2011, 43, 156–161. [Google Scholar] [CrossRef]
- Rice, D.B.; McIntyre, A.; Mirkowski, M.; Janzen, S.; Viana, R.; Britt, E.; Teasell, R. Patient-Centered Goal Setting in a Hospital-Based Outpatient Stroke Rehabilitation Center. PM&R 2017, 9, 856–865. [Google Scholar] [CrossRef]
- Giardini, M.; Arcolin, I.; Guglielmetti, S.; Godi, M.; Capelli, A.; Corna, S. Balance performance in patients with post-acute COVID-19 compared to patients with an acute exacerbation of chronic obstructive pulmonary disease and healthy subjects. Int. J. Rehabil. Res. 2022, 45, 47–52. [Google Scholar] [CrossRef] [PubMed]
- de Sousa, K.C.A.; Gardel, D.G.; Lopes, A.J. Postural balance and its association with functionality and quality of life in non-hospitalized patients with post-acute COVID-19 syndrome. Physiother. Res. Int. 2022, 27, e1967. [Google Scholar] [CrossRef]
Description | Result |
---|---|
Age, years (n = 20) | 62.35 (±14.02) |
Sex, female (n = 20) | 11 (55%) |
Body mass index (BMI), kg/m2 (n = 12) | 27.10 (±3.90) |
Smoking history, never/previous/active (n = 18) | 6 (33%)/11 (61%)/1 (6%) |
Time since COVID-19 infection, days (n = 19) | 58.89 (±26.85) |
LOS at unit, days (n = 20) | 27.50 (18.50–34.75) |
| 2.95 (±1.73) |
Complications in the acute stage (n = 20) | |
| 1 (5%) |
| 2 (10%) |
| 1 (5%) |
| 1 (5%) |
| 1 (5%) |
Mechanical ventilator in hospital, yes (n = 20) | 15 (75%) |
Days on mechanical ventilator, days (n = 12) | 29.7 (±18.7) |
Oxygen treatment in hospital, yes (n = 15) | 14 (93%) |
Description | Admission | Discharge | Change | p-Value | Normative Data |
---|---|---|---|---|---|
Barthel Index (n = 18) | 16.0 (11.8–18.3) | 20.0 (18.8–20.0) | 3.5 (1.0–7.0) | <0.001 | - |
10 MWT SS, m/s (n = 20) | 0.78 ± 0.31 | 1.11 ± 0.26 | 0.33 ± 0.21 | <0.001 | 1.24–1.34 [43] |
10 MWT FS, m/s (n = 19) | 1.17 ± 0.47 | 1.53 ± 0.36 | 0.36 ± 0.37 | <0.001 | 1.87–2.05 [44] |
6 MWT, m (n = 19) | 259.8 ± 128.0 | 400.4 ± 108.5 | 140.6 ± 90.5 | <0.001 | 538–572 [44] |
FAC (n = 20) | 4.0 (4.0–5.0) | 5.0 (4.0–5.0) | 1.0 (0.3–1.8) | <0.001 | - |
BBS (n = 20) | 49.0 (20.8–53.0) | 55.0 (47.0–56.0) | 4.5 (1.3–20.5) | <0.001 | 55 [44] |
MiniBESTest (n = 19) | 15.0 (7.0–23.0) | 24.0 (19.0–25.0) | 5.0 (2.0–12.0) | 0.001 | 24.7 [45] |
SPPB (n = 19) | 7.0 (3.0–10.0) | 11.0 (6.0–12.0) | 2.0 (0.0–5.0) | 0.002 | 11.4–11.7 [40] |
MIP, cm H2O (n = 20) | 59.4 ± 28.5 | 77.7 ± 28.9 | 18.3 ± 17.2 | <0.001 | 75.1–92.7 [46] |
MEP, cm H2O (n = 20) | 59.5 (50.3–95.0) | 105.0 (73.5–112.0) | 15.5 (0.3–39.5) | <0.001 | 125.0–188.0 [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halvorsen, J.; Henderson, C.; Romney, W.; Hågå, M.; Barkenæs Eggen, T.; Nordvik, J.E.; Rosseland, I.; Moore, J. Feasibility and Safety of Early Post-COVID-19 High-Intensity Gait Training: A Pilot Study. J. Clin. Med. 2024, 13, 237. https://doi.org/10.3390/jcm13010237
Halvorsen J, Henderson C, Romney W, Hågå M, Barkenæs Eggen T, Nordvik JE, Rosseland I, Moore J. Feasibility and Safety of Early Post-COVID-19 High-Intensity Gait Training: A Pilot Study. Journal of Clinical Medicine. 2024; 13(1):237. https://doi.org/10.3390/jcm13010237
Chicago/Turabian StyleHalvorsen, Joakim, Christopher Henderson, Wendy Romney, Magnus Hågå, Tonje Barkenæs Eggen, Jan Egil Nordvik, Ingvild Rosseland, and Jennifer Moore. 2024. "Feasibility and Safety of Early Post-COVID-19 High-Intensity Gait Training: A Pilot Study" Journal of Clinical Medicine 13, no. 1: 237. https://doi.org/10.3390/jcm13010237
APA StyleHalvorsen, J., Henderson, C., Romney, W., Hågå, M., Barkenæs Eggen, T., Nordvik, J. E., Rosseland, I., & Moore, J. (2024). Feasibility and Safety of Early Post-COVID-19 High-Intensity Gait Training: A Pilot Study. Journal of Clinical Medicine, 13(1), 237. https://doi.org/10.3390/jcm13010237