Shock Index for Early Detection of Low Plasma Fibrinogen in Trauma: A Prospective Observational Cohort Pilot Study
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Injuries Violence The Facts; World Health Organization: Geneva, Switzerland, 2010; Available online: https://apps.who.int/iris/bitstream/handle/10665/149798/9789241508018_eng.pdf (accessed on 15 October 2022).
- Eastridge, B.J.; Holcomb, J.B.; Shackelford, S. Outcomes of traumatic hemorrhagic shock and the epidemiology of preventable death from injury. Transfusion 2019, 59, 1423–1428. [Google Scholar] [CrossRef]
- Candefjord, S.; Asker, L.; Caragounis, E.-C. Mortality of trauma patients treated at trauma centers compared to non-trauma centers in Sweden: A retrospective study. Eur. J. Trauma Emerg. Surg. 2022, 48, 525–536. [Google Scholar] [CrossRef]
- Tien, H.C.; Spencer, F.; Tremblay, L.N.; Rizoli, S.B.; Brennemn, F.D. Preventable deaths from hemorrhage at a Level I Canadian trauma center. J. Trauma: Inj. Infect. Crit. Care 2007, 62, 142–146. [Google Scholar] [CrossRef] [PubMed]
- Sauaia, A.; Moore, F.; Moore, E.E.; Moser, K.S.; Brennan, R.; Read, R.A.; Pons, P.T. Epidemiology of Trauma Deaths: A Reassessment. J. Trauma Acute Care Surg. 1995, 38, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Brohi, K.; Singh, J.; Heron, M.; Coats, T. Acute Traumatic Coagulopathy. J. Trauma 2003, 54, 1127–1130. [Google Scholar] [CrossRef] [PubMed]
- Moore, E.E.; Moore, H.B.; Kornblith, L.Z.; Neal, M.D.; Hoffman, M.; Mutch, N.J.; Schöchl, H.; Hunt, B.J.; Sauaia, A. Trauma-induced coagulopathy. Nat. Rev. Dis. Primers. 2021, 7, 30. [Google Scholar] [CrossRef]
- Johansson, P.I.; Stensballe, J.; Ostrowski, S.R. Shock induced endotheliopathy (SHINE) in acute critical illness—A unifying pathophysiologic mechanism. Crit. Care 2017, 21, 25. [Google Scholar] [CrossRef]
- Chang, R.; Cardenas, J.C.; Wade, C.E.; Holcomb, J. Advances in the understanding of trauma-induced coagulopathy. Blood 2016, 128, 1043–1049. [Google Scholar] [CrossRef]
- Chambers, L.A.; Chow, S.J.; Shaffer, L.E.T. Frequency and characteristics of coagulopathy in trauma patients treated with a low- or high-plasma-content massive transfusion protocol. Am. J. Clin. Pathol. 2011, 136, 364–370. [Google Scholar] [CrossRef]
- Schöchl, H.; Cotton, B.; Inaba, K.; Niebauer, U.; Fischer, H.; Voeckel, W.; Solomon, C. FIBTEM provides early prediction of massive transfusion in trauma. Crit Care 2011, 15, R265. [Google Scholar] [CrossRef]
- Inaba, K.; Karamanos, E.; Lustenberger, T.; Schöchl, H.; Shulman, I.; Nelson, J.; Rhee, P.; Talving, P.; Lam, L.; Demetriades, D. Impact of fibrinogen levels on outcomes after acute injury in patients requiring a massive transfusion. J. Am. Coll. Surg. 2013, 216, 290–297. [Google Scholar] [CrossRef]
- Hagemo, J.S.; Stanworth, S.; Juffermans, N.P.; Brohi, K.; Cohen, M.; Johansson, P.; Røislien, J.; Eken, T.; Næss, P.A.; Gaarder, C. Prevalence, predictors and outcome of hypofibrinogenaemia in trauma: A multicentre observational study. Crit Care 2014, 18, R52. [Google Scholar] [CrossRef] [PubMed]
- Rourke, C.; Curry, N.; Khan, S.; Taylor, R.; Raza, I.; Davenport, R.; Stanworth, S.; Brohi, K. Fibrinogen levels during trauma hemorrhage, response to replacement therapy, and association with patient outcomes. J. Thromb. Haemost. 2012, 10, 1342–1351. [Google Scholar] [CrossRef]
- Brunclikova, M.; Simurda, T.; Zolkova, J.; Sterankova, M.; Skornova, I.; Dobrotova, M.; Kolkova, Z.; Loderer, D.; Grendar, M.; Hudecek, J.; et al. Heterogeneity of Genotype–Phenotype in Congenital Hypofibrinogenemia—A Review of Case Reports Associated with Bleeding and Thrombosis. J. Clin. Med. 2022, 11, 1083. [Google Scholar] [CrossRef]
- Spahn, D.R.; Bouillon, B.; Cerny, V.; Duranteau, J.; Filipescu, D.; Hunt, B.; Komadina, R.; Maegele, M.; NArdi, G.; Riddez, L.; et al. The European guideline on management of major bleeding and coagulopathy following trauma: Fifth edition. Crit. Care 2019, 23, 98. [Google Scholar] [PubMed]
- Khan, S.; Davenport, R.; Raza, I.; Glasgow, S.; De’Ath, H.; Johansson, P.; Curry, N.; Stanworth, S.; Gaarder, C.; Brohi, K. Damage control resuscitation using blood component therapy in standard doses has a limited effect on coagulopathy during trauma hemorrhage. Intensive Care Med. 2015, 41, 239–247. [Google Scholar] [CrossRef]
- Innerhofer, P.; Fries, D.; Mittermayr, M.; Innerhofer, N.; von Langen, D.; Hell, T.; Gruber, G.; Schmid, S.; Friesenecker, B.; Lorenz, I.; et al. Reversal of trauma-induced coagulopathy using first-line coagulation factor concentrates or fresh frozen plasma (RETIC): A single-centre, parallel-group, open-label, randomised trial. Lancet Haematol. 2017, 4, e258–e271. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K.; Yamaguchi, A.; Sawano, M.; Matsuda, M.; Anan, M.; Inokuchi, K.; Sugiyama, S. Pre-emptive administration of fibrinogen concentrate contributes to improved prognosis in patients with severe trauma. Trauma Surg Acute Care Open 2016, 1. [Google Scholar] [CrossRef] [PubMed]
- Grottke, O.; Mallaiah, S.; Karkouti, K.; Saner, F.; Haas, T. Fibrinogen Supplementation and Its Indications. Semin. Thromb. Hemost. 2020, 46, 38–49. [Google Scholar] [CrossRef]
- Mitra, B.; Cameron, P.A.; Mori, A.; Maini, A.; Fitzgerald, M.; Paul, E.; Street, A. Early prediction of acute traumatic coagulopathy. Resuscitation 2011, 82, 1208–1213. [Google Scholar] [CrossRef] [PubMed]
- Schlimp, C.J.; Voelckel, W.; Inaba, K.; Maegele, M.; Ponschab, M.; Schöchl, H. Estimation of plasma fibrinogen levels based on hemoglobin, base excess and Injury Severity Score upon emergency room admission. Crit. Care 2013, 17, R137. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.J.; Kutcher, M.; Redick, B.; Nelson, M.; Call, M.; Knudson, M.; Schreiber, M.; Bulger, E.; Muskat, P.; Alarcon, L.; et al. Clinical and mechanistic drivers of acute traumatic coagulopathy. J. Trauma Acute Care Surg. 2013, 75, S40–S47. [Google Scholar] [CrossRef] [PubMed]
- Gauss, T.; Campion, S.; Kerever, S.; Eurin, M.; Raux, M.; Harrois, A.; Paugam-Burtz, C.; Hamada, S. Fibrinogen on Admission in Trauma score. Eur. J. Anaesthesiol. 2018, 35, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Allgöwer, M.; Burri, C. Schockindex. Dtsch. Med. Wochenschr. 1967, 92, 1947–1950. [Google Scholar] [CrossRef] [PubMed]
- Vandromme, M.J.; Griffin, R.L.; Kerby, J.D.; McGwin, G.; Rue, L.; Weinberg, J. Identifying risk for massive transfusion in the relatively normotensive patient: Utility of the prehospital shock index. J. Trauma: Inj. Infect. Crit. Care 2011, 70, 384–390. [Google Scholar] [CrossRef]
- Cannon, C.M.; Braxton, C.C.; Kling-Smith, M.; Mahnken, J.; Carlton, E.; Moncure, M. Utility of the shock index in predicting mortality in traumatically injured patients. J. Trauma: Inj. Infect. Crit. Care 2009, 67, 1426–1430. [Google Scholar] [CrossRef] [PubMed]
- Mutschler, M.; Nienaber, U.; Münzberg, M.; Wölfl, C.; Schoechl, H.; Paffrath, T.; Bouillon, B.; Maegele, M. The Shock Index revisited—A fast guide to transfusion requirement? A retrospective analysis on 21,853 patients derived from the TraumaRegister DGU®. Crit. Care 2013, 17, R172. [Google Scholar] [CrossRef]
- Era, S.; Matsunaga, S.; Matsumura, H.; Murayama, H.; Takai, Y.; Seki, H. Usefulness of shock indicators for determining the need for blood transfusion after massive obstetric hemorrhage. J. Obstet. Gynaecol. Res. 2015, 41, 39–43. [Google Scholar] [CrossRef]
- Lamb, C.M.; Macgoey, P.; Navarro, A.P.; Brooks, A. Damage control surgery in the era of damage control resuscitation. Br. J. Anaesth. 2014, 113, 242–249. [Google Scholar] [CrossRef]
- Vang, M.; Østberg, M.; Steinmetz, J.; Rasmussen, L. Shock index as a predictor for mortality in trauma patients: A systematic review and meta-analysis. Eur. J. Trauma Emerg. Surg. 2022, 48, 2559–2566. [Google Scholar] [CrossRef] [PubMed]
- James, A.; Abback, P.S.; Pasquier, P.; Ausset, S.; Duranteau, J.; Hoffman, C.; Hamada, S. The conundrum of the definition of haemorrhagic shock: A pragmatic exploration based on a scoping review, experts’ survey and a cohort analysis. Eur. J. Trauma Emerg. Surg. 2022, 48, 4639–4649. [Google Scholar] [CrossRef] [PubMed]
- Mutschler, M.; Nienaber, U.; Brockamp, T.; Wafaisade, A.; Fabian, T.; Paffrath, T.; Bouzillon, B.; Maegele, M. Renaissance of base deficit for the initial assessment of trauma patients: A base deficit-based classification for hypovolemic shock developed on data from 16,305 patients derived from the TraumaRegister DGU®. Crit. Care 2013, 17, R42. [Google Scholar] [CrossRef] [PubMed]
- Rossaint, R.; Bouillon, B.; Cerny, V.; Coats, T.; Duranteau, J.; Fernandez-Mondejar, E.; Filipescu, D.; Hunt, B.; Komadina, R.; Nardi, G.; et al. The European guideline on management of major bleeding and coagulopathy following trauma: Fourth edition. Crit. Care 2016, 20, 100. [Google Scholar] [CrossRef] [PubMed]
- Aubron, C.; Reade, M.C.; Fraser, J.F.; Cooper, D. Efficacy and safety of fibrinogen concentrate in trauma patients—A systematic review. J. Crit. Care 2014, 29, e11–e17. [Google Scholar] [CrossRef]
- Ziegler, B.; Bachler, M.; Haberfellner, H.; Niederwanger, C.; Innerhofer, P.; Kaufman, M.; Maegele, M.; Martinowitz, U.; Nebl, C.; Oswald, E.; et al. Efficacy of prehospital administration of fibrinogen concentrate in trauma patients bleeding or presumed to bleed (FIinTIC): A multicentre, double-blind, placebo-controlled, randomised pilot study. Eur. J. Anaesthesiol. 2021, 38, 348–357. [Google Scholar] [CrossRef] [PubMed]
- Volod, O.; Bunch, C.M.; Zackariya, N.; Moore, E.; Moore, H.; Kwaan, H.; Al-Fadhl, M.; Patel, S.; Wiarda, G.; Al-Fadhl, H.D.; et al. Viscoelastic Hemostatic Assays: A Primer on Legacy and New Generation Devices. J. Clin. Med. 2022, 11, 860. [Google Scholar] [CrossRef] [PubMed]
- Hagemo, J.S. Prehospital detection of traumatic coagulopathy. Transfusion 2013, 53, 48S–51S. [Google Scholar] [CrossRef]
- Paladino, L.; Subramanian, R.A.; Nabors, S.; Sinert, R. The utility of shock index in differentiating major from minor injury. Eur. J. Emerg. Med. 2011, 18, 94–98. [Google Scholar] [CrossRef]
- Costa, A.; Carron, P.-N.; Zingg, T.; Roberts, I.; Ageron, F. Early identification of bleeding in trauma patients: External validation of traumatic bleeding scores in the Swiss Trauma Registry. Crit. Care 2022, 26, 296. [Google Scholar] [CrossRef]
- Tonglet, M.L.; Minon, J.M.; Seidel, L.; Poplavsky, J.; Vergnion, M. Prehospital identification of trauma patients with early acute coagulopathy and massive bleeding: Results of a prospective non-interventional clinical trial evaluating the Trauma Induced Coagulopathy Clinical Score (TICCS). Crit. Care 2014, 18, 648, Epub ahead of print. [Google Scholar] [CrossRef]
- David, J.-S.; Voiglio, E.-J.; Cesareo, E.; Vassal, O.; Decullier, E.; Gueugniaud, P.; Peyrefitte, S.; Tazarourte, K. Prehospital parameters can help to predict coagulopathy and massive transfusion in trauma patients. Vox Sang. 2017, 112, 557–566. [Google Scholar] [CrossRef] [PubMed]


| Physiological criteria |
|
| Anatomical criteria |
|
| Mechanism of injury |
|
| Auxiliary criteria |
|
| All | Centre 1 (Ustí nad Labem) | Centre 2 (Plzen) | p Value 1 | |
|---|---|---|---|---|
| n (%) | 264 (100) | 155 (59) | 109 (41) | N/A |
| Age (SD) | 42.1 (15.4) | 41.2 (15.2) | 43.4 (15.5) | 0.23 |
| Male (%) | 196 (74) | 112 (72) | 84 (77) | 0.37 |
| Injury Severity Score (SD) | 13.6 (11.8) | 11.2 (10.6) | 16.9 (12.7) | <0.001 |
| Injury Severity Score ≥ 16 (%) | 86 (32.6) | 40 (25.8) | 46 (42.2) | 0.005 |
| Blunt trauma (%) | 260 (98) | 153 (99) | 107 (98) | 0.72 |
| Prehospital time [min] (SD) | 68 (20.7) | 63 (16.7) | 76.3 (23.9) | <0.001 |
| Time to sample [min] (SD) | 76 (21.7) | 70.5 (18.8) | 85.1 (23.2) | 0.02 |
| Prehospital SI (IQR) | 0.70 [0.59–0.86] | 0.69 [0.59–0.83] | 0.78 [0.61–0.93] | 0.01 |
| Admission SI (IQR) | 0.64 [0.54–0.76] | 0.65 [0.54–0.78] | 0.63 [0.54–0.76] | 0.48 |
| Fibrinogen, g.L−1 (IQR) | 2.69 [2.29–3.12] | 2.70 [2.31–3.25] | 2.61 [2.27–2.98] | 0.13 |
| Fibrinogen <2.3 g.L−1 (%) | 69 (26.1) | 38 (24.5) | 31 (28.4) | 0.47 |
| Fibrinogen <2.0 g.L−1 (%) | 32 (12.1) | 16 (10.3) | 16 (10.3) | 0.29 |
| Fibrinogen <1.5 g.L−1 (%) | 11 (4.2) | 7 (4.5) | 4 (3.7) | 0.73 |
| Prehospital SI ≥ 1 (%) * | 36 (13.7) | 12 (7.8) | 24 (22) | <0.001 |
| Admission SI ≥ 1 (%) * | 17 (6.5) | 8 (5.2) | 9 (8.3) | 0.30 |
| Shock Index | Sensitivity (95% CI) | Specificity (95% CI) | PPV (95% CI) | NPV (95% CI) | Accuracy (95% CI) |
|---|---|---|---|---|---|
| Prehospital SI ≥ 1 | 0.50 (0.19–0.81) | 0.88 (0.83–0.92) | 0.15 (0.08–0.27) | 0.98 (0.96–0.99) | 0.87 (0.82–0.90) |
| Prehospital SI ≥ 0.92 | 0.73 (0.39–0.94) | 0.82 (0.76–0.86) | 0.15 (0.11–0.26) | 0.99 (0.99–0.99) | 0.81 (0.76–0.86) |
| Admission SI ≥ 1 | 0.30 (0.07–0.65) | 0.94 (0.91–0.97) | 0.19 (0.07–0.41) | 0.97 (0.95–0.98) | 0.92 (0.88–0.95) |
| Admission SI ≥ 0.8 | 0.80 (0.44–0.97) | 0.80 (0.74–0.85) | 0.15 (0.11–0.25) | 0.99 (0.99–1.0) | 0.80 (0.75–0.85) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Škola, J.; Bílská, M.; Horáková, M.; Tégl, V.; Beneš, J.; Škulec, R.; Černý, V. Shock Index for Early Detection of Low Plasma Fibrinogen in Trauma: A Prospective Observational Cohort Pilot Study. J. Clin. Med. 2023, 12, 1707. https://doi.org/10.3390/jcm12041707
Škola J, Bílská M, Horáková M, Tégl V, Beneš J, Škulec R, Černý V. Shock Index for Early Detection of Low Plasma Fibrinogen in Trauma: A Prospective Observational Cohort Pilot Study. Journal of Clinical Medicine. 2023; 12(4):1707. https://doi.org/10.3390/jcm12041707
Chicago/Turabian StyleŠkola, Josef, Marcela Bílská, Michala Horáková, Václav Tégl, Jan Beneš, Roman Škulec, and Vladimír Černý. 2023. "Shock Index for Early Detection of Low Plasma Fibrinogen in Trauma: A Prospective Observational Cohort Pilot Study" Journal of Clinical Medicine 12, no. 4: 1707. https://doi.org/10.3390/jcm12041707
APA StyleŠkola, J., Bílská, M., Horáková, M., Tégl, V., Beneš, J., Škulec, R., & Černý, V. (2023). Shock Index for Early Detection of Low Plasma Fibrinogen in Trauma: A Prospective Observational Cohort Pilot Study. Journal of Clinical Medicine, 12(4), 1707. https://doi.org/10.3390/jcm12041707

