The Landscape of Cytogenetic Aberrations in Light-Chain Amyloidosis with or without Coexistent Multiple Myeloma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Treatment
2.2. Interphase Fluorescence In Situ Hybridization
2.3. Statistical Analysis
3. Results
3.1. Baseline Clinical Characteristics
3.2. Frequencies and Distributions of FISH Abnormalities
3.3. Survival and Prognosis Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wechalekar, A.D.; Gillmore, J.D.; Hawkins, P.N. Systemic amyloidosis. Lancet 2016, 387, 2641–2654. [Google Scholar] [CrossRef] [PubMed]
- Dinner, S.; Witteles, W.; Witteles, R.; Lam, A.; Arai, S.; Lafayette, R.; George, T.I.; Schrier, S.L.; Liedtke, M. The prognostic value of diagnosing concurrent multiple myeloma in immunoglobulin light chain amyloidosis. Br. J. Haematol. 2013, 161, 367–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrison, C.J.; Mazzullo, H.; Ross, F.M.; Cheung, K.L.; Gerrard, G.; Harewood, L.; Mehta, A.; Lachmann, H.J.; Hawkins, P.N.; Orchard, K.H. Translocations of 14q32 and deletions of 13q14 are common chromosomal abnormalities in systemic amyloidosis. Br. J. Haematol. 2002, 117, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Bochtler, T.; Hegenbart, U.; Cremer, F.W.; Heiss, C.; Benner, A.; Hose, D.; Moos, M.; Bila, J.; Bartram, C.R.; Ho, A.D.; et al. Evaluation of the cytogenetic aberration pattern in amyloid light chain amyloidosis as compared with monoclonal gammopathy of undetermined significance reveals common pathways of karyotypic instability. Blood 2008, 111, 4700–4705. [Google Scholar] [CrossRef] [Green Version]
- Warsame, R.; Kumar, S.K.; Gertz, M.A.; Lacy, M.Q.; Buadi, F.K.; Hayman, S.R.; Leung, N.; Dingli, D.; Lust, J.A.; Ketterling, R.P.; et al. Abnormal FISH in patients with immunoglobulin light chain amyloidosis is a risk factor for cardiac involvement and for death. Blood Cancer J. 2015, 5, e310. [Google Scholar] [CrossRef] [Green Version]
- Avet-Loiseau, H.; Attal, M.; Moreau, P.; Charbonnel, C.; Garban, F.; Hulin, C.; Leyvraz, S.; Michallet, M.; Yakoub-Agha, I.; Garderet, L.; et al. Genetic abnormalities and survival in multiple myeloma: The experience of the Intergroupe Francophone du Myélome. Blood 2007, 109, 3489–3495. [Google Scholar] [CrossRef] [Green Version]
- Hervé, A.L.; Florence, M.; Philippe, M.; Michel, A.; Thierry, F.; Kenneth, A.; Jean-Luc, H.; Nikhil, M.; Stéphane, M. Molecular heterogeneity of multiple myeloma: Pathogenesis, prognosis, and therapeutic implications. J. Clin. Oncol. 2011, 29, 1893–1897. [Google Scholar] [CrossRef]
- Palumbo, A.; Avet-Loiseau, H.; Oliva, S.; Lokhorst, H.M.; Goldschmidt, H.; Rosinol, L.; Richardson, P.; Caltagirone, S.; Lahuerta, J.J.; Facon, T.; et al. Revised International Staging System for Multiple Myeloma: A Report from International Myeloma Working Group. J. Clin. Oncol. 2015, 33, 2863–2869. [Google Scholar] [CrossRef]
- Bochtler, T.; Hegenbart, U.; Kunz, C.; Granzow, M.; Benner, A.; Seckinger, A.; Kimmich, C.; Goldschmidt, H.; Ho, A.D.; Hose, D.; et al. Translocation t(11;14) is associated with adverse outcome in patients with newly diagnosed AL amyloidosis when treated with bortezomib-based regimens. J. Clin. Oncol. 2015, 33, 1371–1378. [Google Scholar] [CrossRef]
- Muchtar, E.; Dispenzieri, A.; Kumar, S.K.; Ketterling, R.P.; Dingli, D.; Lacy, M.Q.; Buadi, F.K.; Hayman, S.R.; Kapoor, P.; Leung, N.; et al. Interphase fluorescence in situ hybridization in untreated AL amyloidosis has an independent prognostic impact by abnormality type and treatment category. Leukemia 2017, 31, 1562–1569. [Google Scholar] [CrossRef]
- Kourelis, T.V.; Kumar, S.K.; Gertz, M.A.; Lacy, M.Q.; Buadi, F.K.; Hayman, S.R.; Zeldenrust, S.; Leung, N.; Kyle, R.A.; Russell, S.; et al. Coexistent multiple myeloma or increased bone marrow plasma cells define equally high-risk populations in patients with immunoglobulin light chain amyloidosis. J. Clin. Oncol. 2013, 31, 4319–4324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, H.; Fu, W.; Jiang, H.; Du, J.; Zhou, L.; Zhang, C.; Xi, H.; Li, R.; Hou, J. The clinical characteristics and prognosis of IGH deletion in multiple myeloma. Leuk. Res. 2015, 39, 515–519. [Google Scholar] [CrossRef] [PubMed]
- Ross, F.M.; Avet-Loiseau, H.; Ameye, G.; Gutiérrez, N.C.; Liebisch, P.; O’Connor, S.; Dalva, K.; Fabris, S.; Testi, A.M.; Jarosova, M.; et al. Report from the European Myeloma Network on interphase FISH in multiple myeloma and related disorders. Haematologica 2012, 97, 1272–1277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Dispenzieri, A.; Lacy, M.Q.; Hayman, S.R.; Buadi, F.K.; Colby, C.; Laumann, K.; Zeldenrust, S.R.; Leung, N.; Dingli, D.; et al. Revised prognostic staging system for light chain amyloidosis incorporating cardiac biomarkers and serum free light chain measurements. J. Clin. Oncol. 2012, 30, 989–995. [Google Scholar] [CrossRef] [Green Version]
- Bryce, A.H.; Ketterling, R.P.; Gertz, M.A.; Lacy, M.; Knudson, R.A.; Zeldenrust, S.; Kumar, S.; Hayman, S.; Buadi, F.; Kyle, R.A.; et al. Translocation t(11;14) and survival of patients with light chain (AL) amyloidosis. Haematologica 2009, 94, 380–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bochtler, T.; Hegenbart, U.; Heiss, C.; Benner, A.; Moos, M.; Seckinger, A.; Pschowski-Zuck, S.; Kirn, D.; Neben, K.; Bartram, C.R.; et al. Hyperdiploidy is less frequent in AL amyloidosis compared with monoclonal gammopathy of undetermined significance and inversely associated with translocation t(11;14). Blood 2011, 117, 3809–3815. [Google Scholar] [CrossRef]
- Kim, S.Y.; Im, K.; Park, S.N.; Kim, J.A.; Yoon, S.S.; Lee, D.S. Burden of cytogenetically abnormal plasma cells in light chain amyloidosis and their prognostic relevance. Leuk. Res. 2016, 44, 45–52. [Google Scholar] [CrossRef]
- Ozga, M.; Zhao, Q.; Benson, D., Jr.; Elder, P.; Williams, N.; Bumma, N.; Rosko, A.; Chaudhry, M.; Khan, A.; Devarakonda, S.; et al. AL amyloidosis: The effect of fluorescent in situ hybridization abnormalities on organ involvement and survival. Cancer Med. 2021, 10, 965–973. [Google Scholar] [CrossRef]
- Hammons, L.; Brazauskas, R.; Pasquini, M.; Hamadani, M.; Hari, P.; D’Souza, A. Presence of fluorescent in situ hybridization abnormalities is associated with plasma cell burden in light chain amyloidosis. Hematol. Oncol. Stem. Cell Ther. 2018, 11, 105–111. [Google Scholar] [CrossRef]
- Zhou, P.; Hoffman, J.; Landau, H.; Hassoun, H.; Iyer, L.; Comenzo, R.L. Clonal plasma cell pathophysiology and clinical features of disease are linked to clonal plasma cell expression of cyclin D1 in systemic light-chain amyloidosis. Clin. Lymphoma Myeloma Leuk. 2012, 12, 49–58. [Google Scholar] [CrossRef]
- Hwang, Y.; Lee, J.Y.; Mun, Y.C.; Seong, C.M.; Chung, W.S.; Huh, J. Various patterns of IgH deletion identified by FISH using combined IgH and IgH/CCND1 probes in multiple myeloma and chronic lymphocytic leukemia. Int. J. Lab. Hematol. 2011, 33, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Kaufman, J.L.; Gasparetto, C.; Mikhael, J.; Vij, R.; Pegourie, B.; Benboubker, L.; Facon, T.; Amiot, M.; Moreau, P.; et al. Efficacy of venetoclax as targeted therapy for relapsed/refractory t(11;14) multiple myeloma. Blood 2017, 130, 2401–2409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Premkumar, V.J.; Lentzsch, S.; Pan, S.; Bhutani, D.; Richter, J.; Jagannath, S.; Liedtke, M.; Jaccard, A.; Wechalekar, A.D.; Comenzo, R.; et al. Venetoclax induces deep hematologic remissions in t(11;14) relapsed/refractory AL amyloidosis. Blood Cancer J. 2021, 11, 10. [Google Scholar] [CrossRef] [PubMed]
- Bochtler, T.; Hegenbart, U.; Kunz, C.; Benner, A.; Seckinger, A.; Dietrich, S.; Granzow, M.; Neben, K.; Goldschmidt, H.; Ho, A.D.; et al. Gain of chromosome 1q21 is an independent adverse prognostic factor in light chain amyloidosis patients treated with melphalan/dexamethasone. Amyloid 2014, 21, 9–17. [Google Scholar] [CrossRef]
- Granzow, M.; Hegenbart, U.; Hinderhofer, K.; Hose, D.; Seckinger, A.; Bochtler, T.; Hemminki, K.; Goldschmidt, H.; Schönland, S.O.; Jauch, A. Novel recurrent chromosomal aberrations detected in clonal plasma cells of light chain amyloidosis patients show potential adverse prognostic effect: First results from a genome-wide copy number array analysis. Haematologica 2017, 102, 1281–1290. [Google Scholar] [CrossRef] [Green Version]
- Szalat, R.E.; Gustine, J.; Sloan, J.M.; Edwards, C.V.; Sanchorawala, V. Predictive factors of outcomes in patients with AL amyloidosis treated with daratumumab. Am. J. Hematol. 2022, 97, 79–89. [Google Scholar] [CrossRef]
- Wong, S.W.; Hegenbart, U.; Palladini, G.; Shah, G.L.; Landau, H.J.; Warner, M.; Toskic, D.; Jaccard, A.; Hansen, T.; Bladé, J.; et al. Outcome of Patients with Newly Diagnosed Systemic Light-Chain Amyloidosis Associated With Deletion of 17p. Clin. Lymphoma Myeloma Leuk. 2018, 18, e493–e499. [Google Scholar] [CrossRef] [Green Version]
AL Amyloidosis Alone (n = 80) | AL Amyloidosis with MM (n = 62) | p Value | |
---|---|---|---|
Age (median, range), years | 62.0 (53.0–67.3) | 62.0 (56.2–67.8) | 0.758 |
Gender, male, n(%) | 94 (66.2) | 56 (70.0) | 0.363 |
M protein type, n(%) | 0.010 | ||
IgG | 23 (28.8) | 28 (45.2) | |
IgA | 13 (16.3) | 11 (17.7) | |
IgD | 0 (0.0) | 4 (6.5) | |
Light-chain only | 40 (50.0) | 18 (29.0) | |
Others | 4 (5.0) | 1 (1.6) | |
Lambda light-chain type, n (%) | 63 (78.8) | 46 (74.2) | 0.662 |
Mayo stage 2004, n (%) | 0.765 | ||
I | 28 (43.1) | 20 (38.5) | |
II | 22 (33.9) | 17 (32.7) | |
III | 15 (23.1) | 15 (28.9) | |
Mayo stage 2012 IV, n (%) | 0.007 | ||
I | 35 (46.1) | 9 (18.0) | |
II | 16 (21.1) | 21 (42.0) | |
III | 14 (18.4) | 13 (26.0) | |
IV | 11 (14.5) | 7 (14.0) | |
Hemoglobin (g/dL), median (IQR) | 127.5 (116.2–141.3) | 103.0 (85.3–121.8) | <0.001 |
Cr, median (IQR) | 76.0 (61.0–112.0) | 82.0 (63.0–149.0) | 0.135 |
Albumin (g/dL), median (IQR) | 28.0 (21.0–34.7) | 29.3 (26.0–33.0) | 0.431 |
β2 microglobulin (mg/dL), median (IQR) | 2.63 (2.2–4.2) | 4.86 (2.7–8.7) | 0.001 |
Alkaline phosphatase (U/L), median (IQR) | 86.0 (67.0–106.3) | 73.0 (56.0–110.0) | 0.459 |
LDH (U/L), median (IQR) | 246.0 (194.5–345.8) | 236.5 (170.8–332.8) | |
NT-proBNP (pg/mL), median (IQR) | 689.0 (139.8–2565.0) | 1440.0 (412.0–5000.0) | 0.033 |
dFLC (mg/dL), median (IQR) | 122.9 (45.8–309.3) | 487.9 (131.4–1496.8) | <0.001 |
Involved organ, n (%) | |||
Heart | 36 (45.0) | 22 (35.5) | 0.331 |
Kidney | 71 (88.8) | 46 (74.2) | 0.042 |
Liver | 9 (11.3) | 8 (12.9) | 0.968 |
AL Amyloidosis Alone (n = 80) | AL Amyloidosis with MM (n = 62) | p Value | |
---|---|---|---|
IGH translocation | 73 (91.3) | 51 (82.3) | 0.175 |
t(11;14), n (%) | 12 (15.0) | 6 (9.7) | 0.489 |
t(4;14), n (%) | 4 (5.0) | 8 (12.9) | 0.169 |
t(14;16), n (%) | 0 (0.0) | 2 (3.2) | 0.189 |
17p-, n (%) | 2 (2.5) | 2 (3.2) | 1.000 |
13q-/-13, n (%) | 10 (12.5) | 17 (27.4) | 0.042 |
1q21 gain, n (%) | 43 (53.8) | 35 (56.5) | 0.880 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, H.; Lu, J.; Qiang, W.; Liu, J.; Liang, A.; Du, J. The Landscape of Cytogenetic Aberrations in Light-Chain Amyloidosis with or without Coexistent Multiple Myeloma. J. Clin. Med. 2023, 12, 1624. https://doi.org/10.3390/jcm12041624
He H, Lu J, Qiang W, Liu J, Liang A, Du J. The Landscape of Cytogenetic Aberrations in Light-Chain Amyloidosis with or without Coexistent Multiple Myeloma. Journal of Clinical Medicine. 2023; 12(4):1624. https://doi.org/10.3390/jcm12041624
Chicago/Turabian StyleHe, Haiyan, Jing Lu, Wanting Qiang, Jin Liu, Aibin Liang, and Juan Du. 2023. "The Landscape of Cytogenetic Aberrations in Light-Chain Amyloidosis with or without Coexistent Multiple Myeloma" Journal of Clinical Medicine 12, no. 4: 1624. https://doi.org/10.3390/jcm12041624
APA StyleHe, H., Lu, J., Qiang, W., Liu, J., Liang, A., & Du, J. (2023). The Landscape of Cytogenetic Aberrations in Light-Chain Amyloidosis with or without Coexistent Multiple Myeloma. Journal of Clinical Medicine, 12(4), 1624. https://doi.org/10.3390/jcm12041624