Effect of Pemafibrate on Hemorheology in Patients with Hypertriglyceridemia and Aggravated Blood Fluidity Associated with Type 2 Diabetes or Metabolic Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Assessment of Whole Blood Rheology and Leukocyte Activity Using an Ex Vivo Microchannel Model
2.3. Measurement of Derivatives of Reactive Oxygen Metabolites in Serum
2.4. Statistical Analysis
3. Results
3.1. Effect of Reduced TG Levels on Hemorheology in Ex Vivo Microvascular Models
3.2. Effect of Pemafibrate on Biological Antioxidant Potential and Oxidative stress
3.3. Effect of Pemafibrate on FFA Levels
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Laws, A.; Hoen, H.M.; Selby, J.V.; Saad, M.F.; Haffner, S.M.; Howard, B.V. Differences in insulin suppression of free fatty acid levels by gender and glucose tolerance status: Relation to plasma triglyceride and apolipoprotein B concentrations: Insulin Resistance Atherosclerosis Study (IRAS) Investigators. Arter. Thromb. Vasc. Biol. 1997, 17, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Pilz, S.; Scharnagl, H.; Tiran, B.; Wellnitz, B.; Seelhorst, U.; Boehm, B.O.; März, W. Elevated plasma free fatty acids predict sudden cardiac death: A 6.85-year follow-up of 3315 patients after coronary angiography. Eur. Heart J. 2007, 28, 2763–2769. [Google Scholar] [CrossRef] [PubMed]
- Pilz, S.; Scharnagl, H.; Tiran, B.; Seelhorst, U.; Wellnitz, B.; Boehm, B.O.; Schaefer, J.R.; März, W. Free fatty acids are independently associated with all-cause and cardiovascular mortality in subjects with coronary artery disease. J Clin. Endocrinol. Metab. 2006, 90, 3622–3628. [Google Scholar]
- Sacks, F.M.; Hermans, M.P.; Fioretto, P.; Valensi, P.; Davis, T.; Horton, E.; Wanner, C.; Al-Rubeaan, K.; Aronson, R.; Barzon, I.; et al. Association between plasma triglycerides and high-density lipoprotein cholesterol and microvascular kidney disease and retinopathy in type 2 diabetes mellitus: A global case-control study in 13 countries. Circulation 2014, 129, 999–1008. [Google Scholar] [CrossRef]
- Catapano, A.L.; Graham, I.; De Backer, G.; Wiklund, O.; Chapman, M.J.; Drexel, H.; Hoes, A.W.; Jennings, C.S.; Landmesser, U.; Pedersen, T.R.; et al. 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias. Eur. Heart J. 2016, 37, 2999–3058. [Google Scholar] [CrossRef]
- AIM-HIGH Investigators; Boden, W.E.; Probstfield, J.L.; Anderson, T.; Chaitman, B.R.; Desvignes-Nickens, P.; Koprowicz, K.; McBride, R.; Teo, K.; Weintraub, W. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N. Engl. J. Med. 2011, 365, 2255–2267. [Google Scholar]
- Keech, A.; Simes, R.J.; Barter, P.; Best, J.; Scott, R.; Taskinen, M.R.; Forder, P.; Pillai, A.; Davis, T.; Glasziou, P.; et al. FIELD study investigators. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): Randomized controlled trial. Lancet 2005, 366, 1849–1861. [Google Scholar]
- ACCORD Study Group; Ginsberg, H.N.; Elam, M.B.; Lovato, L.C.; Crouse, J.R., III; Leiter, L.A.; Linz, P.; Friedewald, W.T.; Buse, J.B.; Gerstein, H.C.; et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N. Engl. J. Med. 2010, 362, 1563–1574. [Google Scholar]
- Jun, M.; Foote, C.; Lv, J.; Neal, B.; Patel, A.; Nicholls, S.J.; Grobbee, D.E.; Cass, A.; Chalmers, J.; Perkovic, V. Effects of fibrates on cardiovascular outcomes: A systematic review and meta-analysis. Lancet 2010, 375, 1875–1884. [Google Scholar] [CrossRef]
- Sahebkar, A.; Hernández-Aguilera, A.; Abelló, D.; Sancho, E.; Camps, J. Joven J Systematic review and meta-analysis deciphering the impact of fibrates on paraoxonase-1 status. Metabolism 2016, 65, 609–622. [Google Scholar] [CrossRef]
- Ghani, R.A.; Bin Yaakob, I.; Wahab, N.A.; Zainudin, S.; Mustafa, N.; Sukor, N.; Wan Mohamud, W.N.; Kadir, K.A.; Kamaruddin, N.A. The influence of fenofibrate on lipid profile, endothelial dysfunction, and inflammatory markers in type 2 diabetes mellitus patients with typical and mixed dyslipidemia. J. Clin. Lipidol. 2013, 7, 446–453. [Google Scholar] [CrossRef]
- Calder, P.C. Omega-3 fatty acids and inflammatory processes: From molecules to man. Biochem. Soc. Trans. 2017, 45, 1105–1115. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, D.L.; Steg, P.G.; Miller, M.; Brinton, E.A.; Jacobson, T.A.; Ketchum, S.B.; Doyle, R.T., Jr.; Juliano, R.A.; Jiao, L.; Granowitz, C.; et al. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N. Engl. J. Med. 2019, 380, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, S.J.; Lincoff, A.M.; Garcia, M.; Bash, D.; Ballantyne, C.M.; Barter, P.J.; Davidson, M.H.; Kastelein, J.J.P.; Koenig, W.; McGuire, D.K.; et al. Effect of high-dose omega-3 fatty acids vs corn oil on major adverse cardiovascular events in patients at high cardiovascular risk: The STRENGTH randomized clinical trial. JAMA 2020, 324, 2268–2280. [Google Scholar] [CrossRef]
- Watanabe, S.; Tagawa, T.; Yamakawa, K.; Shimabukuro, M.; Ueda, S. Inhibition of the Renin-Angiotensin System Prevents Free Fatty Acid–Induced Acute Endothelial Dysfunction in Humans. Arter. Thromb. Vasc. Biol. 2005, 25, 2376–2380. [Google Scholar] [CrossRef] [PubMed]
- Azekoshi, Y.; Yasu, T.; Watanabe, S.; Tagawa, T.; Abe, S.; Yamakawa, K.; Uehara, Y.; Momomura, S.; Urata, H.; Ueda, S. Free Fatty Acid Causes Leukocyte Activation and Resultant Endothelial Dysfunction Through Enhanced Angiotensin II Production in Mononuclear and Polymorphonuclear Cells. Hypertension 2010, 56, 136–142. [Google Scholar] [CrossRef]
- Yasu, T.; Kobayashi, M.; Mutoh, A.; Yamakawa, K.; Momomura, S.; Ueda, S. Dihydropyridine calcium channel blockers inhibit free fatty acid-induced endothelial and rheological dysfunction. Clin. Sci. 2013, 125, 247–255. [Google Scholar] [CrossRef]
- Yasu, T.; Mutoh, A.; Wada, H.; Kobayashi, M.; Kikuchi, Y.; Momomura, S.; Ueda, S. Renin-Angiotensin System Inhibitors Can Prevent Intravenous Lipid Infusion-Induced Myocardial Microvascular Dysfunction and Leukocyte Activation. Circ. J. 2018, 82, 494–501. [Google Scholar] [CrossRef]
- Maki, T.; Maeda, Y.; Sonoda, N.; Makimura, H.; Kimura, S.; Maeno, S.; Takayanagi, R.; Inoguchi, T. Renoprotective effect of a novel selective PPAR alpha modulator K-877 in db/db mice: A role of diacylglycerol-protein kinase C-NAD(P)H oxidase pathway. Metabolism 2017, 71, 33–34. [Google Scholar] [CrossRef]
- Matsuzawa, Y. Metabolic Syndrome—Definition and Diagnostic Criteria in Japan. J. Atheroscler. Thromb. 2005, 12, 301. [Google Scholar] [CrossRef]
- Kikuchi, Y.; Sato, K.; Ohki, H.; Kaneko, T. Optically accessible microchannels formed in a single-crystal silicon substrate for studies of blood rheology. Microvasc. Res. 1992, 44, 226–240. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, Y.; Sato, K.; Mizuguchi, Y. Modified Cell-Flow Microchannels in a Single-Crystal Silicon Substrate and Flow Behavior of Blood Cells. Microvasc. Res. 1994, 47, 126–139. [Google Scholar] [CrossRef] [PubMed]
- Das Pradhan, A.; Glynn, R.J.; Fruchart, J.-C.; MacFadyen, J.G.; Zaharris, E.S.; Everett, B.M.; Campbell, S.E.; Oshima, R.; Amarenco, P.; Blom, D.J.; et al. Triglyceride lowering with pemafibrate to reduce cardiovascular risk. N. Engl. J. Med. 2022, 387, 1923–1934. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.; Stone, N.J.; Ballantyne, C.; Bittner, V.; Criqui, M.H.; Ginsberg, H.N.; Goldberg, A.C.; Howard, W.J.; Jacobson, M.S.; Kris-Etherton, P.M.; et al. Triglycerides and cardiovascular disease: A scientific statement from the American Heart Association. Circulation 2011, 123, 2292–2333. [Google Scholar]
- Ginsberg, H.N. New perspectives on atherogenesis: Role of abnormal triglyceride-rich lipoprotein metabolism. Circulation 2002, 106, 2137–2142. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.; Puranik, R.; Nakhla, S.; Lundman, P.; Stocker, R.; Wang, X.S.; Lambert, G.; Rye, K.-A.; Barter, P.J.; Nicholls, S.J.; et al. Acute hypertriglyceridaemia in humans increases the triglyceride content and decreases the anti-inflammatory capacity of high density lipoproteins. Atherosclerosis 2009, 204, 424–428. [Google Scholar] [CrossRef]
- Palmer, A.M.; Murphy, N.; Graham, A. Triglyceride-rich lipoproteins inhibit cholesterol efflux to apolipoprotein (apo) A1 from human macrophage foam cells. Atherosclerosis 2004, 173, 27–38. [Google Scholar] [CrossRef]
- Staels, B.; Dallongeville, J.; Auwerx, J.; Schoonjans, K.; Leitersdorf, E.; Fruchart, J.-C. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation 1998, 98, 2088–2093. [Google Scholar] [CrossRef]
- Tilly-Kiesi, M.; Tikkanen, M.J. Low density lipoprotein density and composition in hypercholesterolaemic men treated with HMG CoA reductase inhibitors and gemfibrozil. J. Intern. Med. 1991, 229, 427–434. [Google Scholar] [CrossRef]
- Franceschini, G.; Lovati, M.R.; Manzoni, C.; Michelagnoli, S.; Pazzucconi, F.; Gianfranceschi, G.; Vecchio, G.; Sirtori, C.R. Effect of gemfibrozil treatment in hypercholesterolemia on low density lipoprotein (LDL) subclass distribution and LDL-cell interaction. Atherosclerosis 1995, 114, 61–71. [Google Scholar] [CrossRef]
- Fruchart, J.-C. Pemafibrate (K-877), a novel selective peroxisome proliferator-activated receptor alpha modulator for management of atherogenic dyslipidaemia. Cardiovasc. Diabetol. 2017, 16, 124. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, S.; Yamashita, S.; Arai, H.; Araki, E.; Yokote, K.; Suganamig, H.; Frucharth, J.C.; Kodama, T. Effects of K-877, a novel selective PPARα modulator (SPPARMα), in dyslipidaemic patients: A randomized, double blind, active- and placebo-controlled, phase 2 trial. Atherosclerosis 2016, 249, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Arai, H.; Yamashita, S.; Yokote, K.; Araki, E.; Suganami, H.; Ishibashi, S. Efficacy and safety of K-877, a novel selective peroxisome proliferator-activated receptor α modulator (SPPARMα), in combination with statin treatment: Two randomized, double-blind, placebo-controlled clinical trials in patients with dyslipidaemia. Atherosclerosis 2017, 261, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, S.; Arai, H.; Yokote, K.; Araki, E.; Suganami, H.; Yamashita, S. Efficacy and safety of pemafibrate (K-877), a selective peroxisome proliferator-activated receptor α modulator, in patients with dyslipidemia: Results from a 24-week, randomized, double blind, active-controlled, phase 3 trial. J. Clin. Lipidol. 2018, 12, 173–184. [Google Scholar] [CrossRef]
- Araki, E.; Yamashita, S.; Arai, H.; Yokote, K.; Satoh, J.; Inoguchi, T.; Nakamura, J.; Maegawa, H.; Yoshioka, N.; Tanizawa, Y.; et al. Effects of pemafibrate, a novel selective PPARα modulator, on lipid and glucose metabolism in patients with type 2 diabetes and hypertriglyceridemia: A randomized, double-blind, placebo-controlled, phase 3 trial. Diabetes Care 2018, 41, 538–546. [Google Scholar] [CrossRef] [Green Version]
- Ginsberg, H.N.; Hounslow, N.J.; Senko, Y.; Suganami, H.; Bogdanski, P.; Ceska, R.; Kalina, A.; Libis, R.A.; Supryadkina, T.V.; Hovingh, G.K. Efficacy and safety of K-877 (pemafibrate), a selective PPARα modulator, in European patients on statin therapy. Diabetes Care 2022, 45, 898–908. [Google Scholar] [CrossRef]
- Shaikh, M.; Wootton, R.; Nordestgaard, B.G.; Baskerville, P.; Lumley, J.S.; La Ville, A.E.; Quiney, J.; Lewis, B. Quantitative studies of transfer in vivo of low density, Sf 12-60, and Sf 60-400 lipoproteins between plasma and arterial intima in humans. Arter. Thromb. A J. Vasc. Biol. 1991, 11, 569–577. [Google Scholar] [CrossRef]
- Nordestgaard, B.G.; Tybjaerg-Hansen, A.; Lewis, B. Influx in vivo of low density, intermediate density, and very low density lipoproteins into aortic intimas of genetically hyperlipidemic rabbits. Roles of plasma concentrations, extent of aortic lesion, and lipoprotein particle size as determinants. Arter. Thromb. A J. Vasc. Biol. 1992, 12, 6–18. [Google Scholar] [CrossRef]
- Nordestgaard, B.G.; Wootton, R.; Lewis, B. Selective retention of VLDL, IDL, and LDL in the arterial intima of genetically hyperlipidemic rabbits in vivo. Molecular size as a determinant of fractional loss from the intima-inner media. Arter. Thromb. Vasc. Biol. 1995, 15, 534–542. [Google Scholar] [CrossRef]
- Tesauro, M.; Canale, M.P.; Rodia, G.; Di Daniele, N.; Lauro, D.; Scuteri, A.; Cardillo, C. Metabolic Syndrome, Chronic Kidney, and Cardiovascular Diseases: Role of Adipokines. Cardiol. Res. Pract. 2011, 2011, 653182. [Google Scholar] [CrossRef]
- Matsuba, I.; Matsuba, R.; Ishibashi, S.; Yamashita, S.; Arai, H.; Yokote, K.; Suganami, H.; Araki, E. Effects of a novel selective peroxisome proliferator-activated receptor-α modulator, pemafibrate, on hepatic and peripheral glucose uptake in patients with hypertriglyceridemia and insulin resistance. J. Diabetes Investig. 2018, 9, 1323–1332. [Google Scholar] [CrossRef] [PubMed]
- Nordestgaard, B.G.; Hjelms, E.; Stender, S.; Kjeldsen, K. Different efflux pathways for high and low density lipoproteins from porcine aortic intima. Arteriosclerosis 1990, 10, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Vega, G.L.; Cater, N.B.; Hadizadeh, D.R., III; Meguro, S.; Grundy, S.M. Free fatty acid metabolism during fenofibrate treatment of the metabolic syndrome. Clin. Pharmacol. Ther. 2003, 74, 236–244. [Google Scholar] [CrossRef] [PubMed]
Overall (n = 96) | Non–Pemafibrate (n = 46) | Pemafibrate (n = 50) | p Value | |
---|---|---|---|---|
Age (years)(IQR) | 67.39 (61–74) | 67.2 (60.2–74) | 67.5 (62–73.7) | 0.9 |
Female | 79.1% (20) | 21.7% (10) | 20% (10) | 1 |
Hight (cm) | 165.0 ± 7.7 | 165.5 ± 7.8 | 164.5 ± 7.6 | 0.56 |
Bodyweight (kg) | 71.8 ± 11.0 | 73.3 ± 12.4 | 70.6 ± 9.8 | 0.25 |
Smoking habit | 30.2% (29) | 28.2% (13) | 32% (16) | 0.58 |
Drinking habit | 47.9% (46) | 47.8% (22) | 48% (24) | 1 |
Diabetes mellitus | 79.1% (71) | 76% (35) | 72% (36) | 0.82 |
Duration of diabetes (years) | 11.5 ± 8.2 | 12.8 ± 8.4 | 10.1 ± 8.0 | 0.18 |
Diabetic retinopathy | 11.4% (11) | 13% (6) | 10% (5) | <0.05 |
Old myocardial infarction | 7.2% (7) | 8.6% (4) | 6% (3) | 0.71 |
Angina pectoris | 9.3% (9) | 8.6% (4) | 10% (5) | 1 |
Percutaneous coronary intervention | 7.2% (7) | 2.1% (1) | 12% (6) | 0.11 |
Peripheral artery disease | 2% (2) | 2.1% (1) | 2% (1) | 1 |
Congestive heart failure | 5.2% (5) | 8.6% (4) | 2% (1) | 0.19 |
Arrhythmia | 9.3% (9) | 13% (6) | 6% (3) | 0.3 |
Hypertension | 64.5% (62) | 67.3% (31) | 62% (31) | 0.67 |
Chronic kidney disease | 28.7% (19) | 30.4% (14) | 10% (5) | <0.05 |
Liver disfunction | 17.7% (17) | 23.9% (11) | 32% (16) | 0.5 |
DPP–4 | 37.5% (36) | 43.4% (20) | 32% (16) | 0.29 |
Statin | 56.2% (54) | 67.3% (31) | 46% (23) | <0.05 |
Leukocyte (×103/μL) | 7.1 ± 1.8 | 7.2 ± 1.7 | 7.0 ± 2.0 | 0.5 |
Hematocrit (%) | 44.1 ± 3.4 | 43.4 ± 3.4 | 44.8 ± 3.0 | <0.05 |
Platelet (×104/μL) | 220.1 ± 57.4 | 223.4 ± 65.3 | 217.1 ± 50.3 | 0.60 |
Glucose (mg/dL) | 140.3 ± 43.7 | 139.1 ± 42.2 | 141 ± 45.8 | 0.80 |
HbA1c (%) | 7.12 ± 1.21 | 7.2 ± 1.17 | 7.0 ± 1.26 | 0.59 |
CPK (mg/dL) | 108.9 ± 59.7 | 118.08 ± 69.2 | 100.4 ± 49.2 | 0.15 |
AST (mg/dL) | 29.7 ± 15.4 | 27.4 ± 11.8 | 31.7 ± 18.1 | 0.18 |
ALT (mg/dL) | 28.5 ± 16.4 | 28.6 ± 16.4 | 28.4 ± 16.8 | 0.95 |
γGTP (mg/dL) | 59.8 ± 80.0 | 49.6 ± 48.2 | 69.4 ± 101.4 | 0.23 |
Total cholesterol (mg/dL) | 178.5 ± 31.3 | 171.7 ± 23.4 | 184.8 ± 36.6 | <0.05 |
Low–Density Lipoprotein cholesterol (mg/dL) | 82.4 ± 33.3 | 79.4 ± 27.3 | 85.1 ± 38.5 | 0.41 |
Triglyceride (mg/dL) | 262.9 ± 117.6 | 245.8 ± 112.6 | 278.6 ± 122.2 | 0.18 |
High–Density Lipoprotein cholesterol (mg/dL) | 44.7 ± 9.9 | 44.1 ± 10.5 | 45.2 ± 9.4 | 0.60 |
Remnant like particles cholesterol (mg/dL) | 11.9 ± 7.7 | 10.6 ± 6.4 | 13.2 ± 8.7 | 0.10 |
hsCRP (mg/dL) | 0.13 ± 0.15 | 0.15 ± 0.14 | 0.12 ± 0.16 | 0.30 |
BAP (μmol/L) | 2078.1 ± 304.9 | 2164.7 ± 331.7 | 1998.4 ± 260.0 | <0.01 |
d–ROMs (U.CARR) | 338.0 ± 66.2 | 358.3 ± 65.7 | 319.4 ± 62.3 | <0.01 |
FFA (mEq/L) | 0.66 ± 0.31 | 0.63 ± 0.29 | 0.69 ± 0.32 | 0.32 |
Whole blood transit time (s) | 71.2 ± 40.3 | 71.6 ± 43.3 | 70.9 ± 38.1 | 0.93 |
Number of adhesive leukocytes (/HPF) | 11.7 ± 5.7 | 11.6 ± 5.7 | 11.9 ± 5.8 | 0.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iwakura, T.; Yasu, T.; Tomoe, T.; Ueno, A.; Sugiyama, T.; Otani, N.; Kawamoto, S.; Nakajima, H. Effect of Pemafibrate on Hemorheology in Patients with Hypertriglyceridemia and Aggravated Blood Fluidity Associated with Type 2 Diabetes or Metabolic Syndrome. J. Clin. Med. 2023, 12, 1481. https://doi.org/10.3390/jcm12041481
Iwakura T, Yasu T, Tomoe T, Ueno A, Sugiyama T, Otani N, Kawamoto S, Nakajima H. Effect of Pemafibrate on Hemorheology in Patients with Hypertriglyceridemia and Aggravated Blood Fluidity Associated with Type 2 Diabetes or Metabolic Syndrome. Journal of Clinical Medicine. 2023; 12(4):1481. https://doi.org/10.3390/jcm12041481
Chicago/Turabian StyleIwakura, Tomohiro, Takanori Yasu, Takashi Tomoe, Asuka Ueno, Takushi Sugiyama, Naoyuki Otani, Shinya Kawamoto, and Hiroyuki Nakajima. 2023. "Effect of Pemafibrate on Hemorheology in Patients with Hypertriglyceridemia and Aggravated Blood Fluidity Associated with Type 2 Diabetes or Metabolic Syndrome" Journal of Clinical Medicine 12, no. 4: 1481. https://doi.org/10.3390/jcm12041481
APA StyleIwakura, T., Yasu, T., Tomoe, T., Ueno, A., Sugiyama, T., Otani, N., Kawamoto, S., & Nakajima, H. (2023). Effect of Pemafibrate on Hemorheology in Patients with Hypertriglyceridemia and Aggravated Blood Fluidity Associated with Type 2 Diabetes or Metabolic Syndrome. Journal of Clinical Medicine, 12(4), 1481. https://doi.org/10.3390/jcm12041481