The RAAS Goodfellas in Cardiovascular System
Abstract
:1. Introduction
2. ACE2/Ang 1-7/MasR Axis and Ang 1-9
2.1. Oxidative Stress
2.2. Endothelial and Vascular Damage
2.3. Organ Damage
2.3.1. Heart
2.3.2. Kidney
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Patel, S.; Rauf, A.; Khan, H.; Abu-Izneid, T. Renin-Angiotensin-Aldosterone (RAAS): The Ubiquitous System for Homeostasis and Pathologies. Biomed. Pharmacother. 2017, 94, 317–325. [Google Scholar] [CrossRef]
- De Mello, W.C. Local Renin Angiotensin Aldosterone Systems and Cardiovascular Diseases. Med. Clin. N. A. 2017, 101, 117–127. [Google Scholar] [CrossRef]
- Montezano, A.C.; Nguyen Dinh Cat, A.; Rios, F.J.; Touyz, R.M. Angiotensin II and Vascular Injury. Curr. Hypertens. Rep. 2014, 16, 431. [Google Scholar] [CrossRef]
- Paul, M.; Mehr, A.P.; Kreutz, R. Physiology of Local Renin-Angiotensin Systems. Physiol. Rev. 2006, 86, 747–803. [Google Scholar] [CrossRef]
- Muñoz-Durango, N.; Fuentes, C.A.; Castillo, A.E.; González-Gómez, L.M.; Vecchiola, A.; Fardella, C.E.; Kalergis, A.M. Role of the Renin-Angiotensin-Aldosterone System beyond Blood Pressure Regulation: Molecular and Cellular Mechanisms Involved in End-Organ Damage during Arterial Hypertension. Int. J. Mol. Sci. 2016, 17, 797. [Google Scholar] [CrossRef]
- Putnam, K.; Shoemaker, R.; Yiannikouris, F.; Cassis, L.A. The Renin-Angiotensin System: A Target of and Contributor to Dyslipidemias, Altered Glucose Homeostasis, and Hypertension of the Metabolic Syndrome. Am. J. Physiol.-Hear. Circ. Physiol. 2012, 302, 85–86. [Google Scholar] [CrossRef]
- Kaschina, E.; Steckelings, U.M.; Unger, T. Hypertension and the Renin–Angiotensin–Aldosterone System. In Encyclopedia of Endocrine Diseases; Elsevier: Amsterdam, The Netherlands, 2018; pp. 505–510. ISBN 9780128122006. [Google Scholar]
- Chung, M.K.; Karnik, S.; Saef, J.; Bergmann, C.; Barnard, J.; Lederman, M.M.; Tilton, J.; Cheng, F.; Harding, C.V.; Young, J.B.; et al. SARS-CoV-2 and ACE2: The Biology and Clinical Data Settling the ARB and ACEI Controversy. EBioMedicine 2020, 58, 102907. [Google Scholar] [CrossRef]
- Sharma, J.; Al-Banoon, A. The Role of Inflammatory Mediator Bradykinin in Cardiovascular and Renal Diseases. J. Autacoids 2012, 1, 142. [Google Scholar] [CrossRef]
- Catt, K.J.; Cain, M.D.; Zimmet, P.Z.; Cran, E. Blood Angiotensin II Levels of Normal and Hypertensive Subjects. Br. Med. J. 1969, 1, 819–821. [Google Scholar] [CrossRef]
- Bullock, G.R.; Steyaert, I.; Bilbe, G.; Carey, R.M.; Kips, J.; De Paepe, B.; Pauwels, R.; Praet, M.; Siragy, H.M.; De Gasparo, M. Distribution of Type-1 and Type-2 Angiotensin Receptors in the Normal Human Lung and in Lungs from Patients with Chronic Obstructive Pulmonary Disease. Histochem. Cell Biol. 2001, 115, 117–124. [Google Scholar] [CrossRef]
- Nakamura, Y.; Yamazaki, Y.; Konosu-Fukaya, S.; Ise, K.; Satoh, F.; Sasano, H. Aldosterone Biosynthesis in the Human Adrenal Cortex and Associated Disorders. J. Steroid Biochem. Mol. Biol. 2015, 153, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; He, M.; Hu, C. Regulation of Aldosterone Production by Ion Channels: From Basal Secretion to Primary Aldosteronism. Biochim. Biophys. Acta-Mol. Basis Dis. 2018, 1864, 871–881. [Google Scholar] [CrossRef] [PubMed]
- Bothou, C.; Beuschlein, F.; Spyroglou, A. Links between Aldosterone Excess and Metabolic Complications: A Comprehensive Review. Diabetes Metab. 2020, 46, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Calò, L.A.; Davis, P.A.; Rossi, G.P. Understanding Themechanisms of Angiotensin II Signaling Involved in Hypertension and Its Long-Term Sequelae: Insights from Bartter’s and Gitelman’s Syndromes, Humanmodels of Endogenous Angiotensin II Signaling Antagonism. J. Hypertens. 2014, 32, 2109–2119. [Google Scholar] [CrossRef] [PubMed]
- Calò, L.A.; Pessina, A.C.; Semplicini, A. Angiotensin II Signalling in Bartter’s and Gitelman’s Syndromes: A Negative Human Model of Hypertension. High Blood Press. Cardiovasc. Prev. 2005, 12, 17–26. [Google Scholar] [CrossRef]
- Ravarotto, V.; Bertoldi, G.; Stefanelli, L.F.; Nalesso, F.; Calò, L.A. Gitelman’s and Bartter’s Syndromes: From Genetics to the Molecular Basis of Hypertension and More. Kidney Blood Press. Res. 2022, 47, 556–564. [Google Scholar] [CrossRef]
- Calò, L.A.; Schiavo, S.; Davis, P.A.; Pagnin, E.; Mormino, P.; D’Angelo, A.; Pessina, A.C. Angiotensin II Signaling via Type 2 Receptors in a Human Model of Vascular Hyporeactivity: Implications for Hypertension. J. Hypertens. 2010, 28, 111–118. [Google Scholar] [CrossRef]
- Sgarabotto, L.; Ravarotto, V.; Stefanelli, L.F.; Cacciapuoti, M.; Davis, P.A.; Nalesso, F.; Calò, L.A. Oxidants and Cardiorenal Vascular Remodeling—Insights from Rare Genetic Tubulopathies: Bartter’s and Gitelman’s Syndromes. Antioxidants 2023, 12, 811. [Google Scholar] [CrossRef]
- Karnik, S.S.; Singh, K.D.; Tirupula, K.; Unal, H. Significance of Angiotensin 1–7 Coupling with MAS1 Receptor and Other GPCRs to the Renin-Angiotensin System: IUPHAR Review 22. Br. J. Pharmacol. 2017, 174, 737–753. [Google Scholar] [CrossRef]
- Ocaranza, M.P.; Jalil, J.E. Protective Role of the ACE2/Ang-(19) Axis in Cardiovascular Remodeling. Int. J. Hypertens. 2012, 2012, 594361. [Google Scholar] [CrossRef]
- Tikellis, C.; Thomas, M.C. Angiotensin-Converting Enzyme 2 (ACE2) Is a Key Modulator of the Renin Angiotensin System in Health and Disease. Int. J. Pept. 2012, 2012, 256294. [Google Scholar] [CrossRef] [PubMed]
- Caputo, I.; Caroccia, B.; Frasson, I.; Poggio, E.; Zamberlan, S.; Morpurgo, M.; Seccia, T.M.; Calì, T.; Brini, M.; Richter, S.N.; et al. Angiotensin II Promotes SARS-CoV-2 Infection via Upregulation of ACE2 in Human Bronchial Cells. Int. J. Mol. Sci. 2022, 23, 5125. [Google Scholar] [CrossRef] [PubMed]
- Mancia, G.; Rea, F.; Ludergnani, M.; Apolone, G.; Corrao, G. Renin–Angiotensin–Aldosterone System Blockers and the Risk of COVID-19. N. Engl. J. Med. 2020, 382, 2431–2440. [Google Scholar] [CrossRef] [PubMed]
- Rossi, G.P.; Sanga, V.; Barton, M. Potential Harmful Effects of Discontinuing Ace-Inhibitors and Arbs in Covid-19 Patients. eLife 2020, 9, e57278. [Google Scholar] [CrossRef] [PubMed]
- Lopes, R.D.; Macedo, A.V.S.; De Barros E Silva, P.G.M.; Moll-Bernardes, R.J.; Dos Santos, T.M.; Mazza, L.; Feldman, A.; D’Andréa Saba Arruda, G.; De Albuquerque, D.C.; Camiletti, A.S.; et al. Effect of Discontinuing vs Continuing Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers on Days Alive and out of the Hospital in Patients Admitted with COVID-19: A Randomized Clinical Trial. JAMA-J. Am. Med. Assoc. 2021, 325, 254–264. [Google Scholar] [CrossRef]
- Macedo, A.V.S.; de Barros e Silva, P.G.M.; de Paula, T.C.; Moll-Bernardes, R.J.; Mendonça dos Santos, T.; Mazza, L.; Feldman, A.; Arruda, G.D.A.S.; de Albuquerque, D.C.; de Sousa, A.S.; et al. Discontinuing vs Continuing ACEIs and ARBs in Hospitalized Patients with COVID-19 According to Disease Severity: Insights from the BRACE CORONA Trial. Am. Heart J. 2022, 249, 86–97. [Google Scholar] [CrossRef]
- Sato, K.; White, N.; Fanning, J.P.; Obonyo, N.; Yamashita, M.H.; Appadurai, V.; Ciullo, A.; May, M.; Worku, E.T.; Helms, L.; et al. Impact of Renin-Angiotensin-Aldosterone System Inhibition on Mortality in Critically Ill COVID-19 Patients with Pre-Existing Hypertension: A Prospective Cohort Study. BMC Cardiovasc. Disord. 2022, 22, 123. [Google Scholar] [CrossRef]
- Bertoldi, G.; Ravarotto, V.; Sgarabotto, L.; Davis, P.A.; Gobbi, L.; Calò, L.A. Impaired ACE2 Glycosylation and Protease Activity Lowers COVID-19 Susceptibility in Gitelman’s and Bartter’s Syndromes. J. Intern. Med. 2022, 291, 522–524. [Google Scholar] [CrossRef]
- Stefanelli, L.F.; Gobbi, L.; Ravarotto, V.; Bertoldi, G.; Calò, L.A. The Counter-Regulatory Arm of the Renin-Angiotensin System and COVID-19: Insights from Gitelman’s and Bartter’s Syndromes. J. Hypertens. 2022, 40, 648–649. [Google Scholar] [CrossRef]
- Donoghue, M.; Hsieh, F.; Baronas, E.; Godbout, K.; Gosselin, M.; Stagliano, N.; Donovan, M.; Woolf, B.; Robison, K.; Jeyaseelan, R.; et al. UltraRapid Communication A Novel Angiotensin-Converting Enzyme–Related to Angiotensin 1-9. Circ. Res. 2000, 87, e1–e9. [Google Scholar] [CrossRef]
- Tipnis, S.R.; Hooper, N.M.; Hyde, R.; Karran, E.; Christie, G.; Turner, A.J. A Human Homolog of Angiotensin-Converting Enzyme: Cloning and Functional Expression as a Captopril-Insensitive Carboxypeptidase. J. Biol. Chem. 2000, 275, 33238–33243. [Google Scholar] [CrossRef] [PubMed]
- Tikellis, C.; Bialkowski, K.; Pete, J.; Sheehy, K.; Su, Q.; Johnston, C.; Cooper, M.E.; Thomas, M.C. ACE2 Deficiency Modifies Renoprotection Afforded by ACE Inhibition in Experimental Diabetes. Diabetes 2008, 57, 1018–1025. [Google Scholar] [CrossRef] [PubMed]
- Crackower, M.A.; Sarao, R.; Oliveira-dos-Santos, A.J.; Da Costa, J.; Zhang, L. Angiotensin-Converting Enzyme 2 Is an Essential Regulator of Heart Function. Nature 2002, 417, 822–828. [Google Scholar] [CrossRef] [PubMed]
- Oudit, G.Y.; Kassiri, Z.; Patel, M.P.; Chappell, M.; Butany, J.; Backx, P.H.; Tsushima, R.G.; Scholey, J.W.; Khokha, R.; Penninger, J.M. Angiotensin II-Mediated Oxidative Stress and Inflammation Mediate the Age-Dependent Cardiomyopathy in ACE2 Null Mice. Cardiovasc. Res. 2007, 75, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K.; Ohishi, M.; Katsuya, T.; Ito, N.; Ikushima, M.; Kaibe, M.; Tatara, Y.; Shiota, A.; Sugano, S.; Takeda, S.; et al. Deletion of Angiotensin-Converting Enzyme 2 Accelerates Pressure Overload-Induced Cardiac Dysfunction by Increasing Local Angiotensin II. Hypertension 2006, 47, 718–726. [Google Scholar] [CrossRef]
- Lovren, F.; Pan, Y.; Quan, A.; Teoh, H.; Wang, G.; Shukla, P.C.; Levitt, K.S.; Oudit, G.Y.; Al-Omran, M.; Stewart, D.J.; et al. Angiotensin Converting Enzyme-2 Confers Endothelial Protection and Attenuates Atherosclerosis. Am. J. Physiol.-Heart Circ. Physiol. 2008, 295, 1377–1384. [Google Scholar] [CrossRef]
- Wu, H.T.; Chuang, Y.W.; Huang, C.P.; Chang, M.H. Loss of Angiotensin Converting Enzyme II (ACE2) Accelerates the Development of Liver Injury Induced by Thioacetamide. Exp. Anim. 2018, 67, 41–49. [Google Scholar] [CrossRef]
- Fang, F.; Liu, G.C.; Zhou, X.; Yang, S.; Reich, H.N.; Williams, V.; Hu, A.; Pan, J.; Konvalinka, A.; Oudit, G.Y.; et al. Loss of ACE2 Exacerbates Murine Renal Ischemia-Reperfusion Injury. PLoS ONE 2013, 8, e71433. [Google Scholar] [CrossRef]
- Wong, D.W.; Oudit, G.Y.; Reich, H.; Kassiri, Z.; Zhou, J.; Liu, Q.C.; Backx, P.H.; Penninger, J.M.; Herzenberg, A.M.; Scholey, J.W. Loss of Angiotensin-Converting Enzyme-2 (Ace2) Accelerates Diabetic Kidney Injury. Am. J. Pathol. 2007, 171, 438–451. [Google Scholar] [CrossRef]
- Unger, T.; Steckelings, U.M.; Souza dos Santos, R.A. The Protective Arm of the Renin Angiotensin System; Academic Press: Cambridge, MA, USA, 2015; ISBN 978-0-12-801364-9. [Google Scholar]
- Huentelman, M.J.; Grobe, J.L.; Vazquez, J.; Stewart, J.M.; Mecca, A.P.; Katovich, M.J.; Ferrario, C.M.; Raizada, M.K. Protection from Angiotensin II-Induced Cardiac Hypertrophy and Fibrosis by Systemic Lentiviral Delivery of ACE2 in Rats. Exp. Physiol. 2005, 90, 783–790. [Google Scholar] [CrossRef]
- Ye, R.; Liu, Z. ACE2 Exhibits Protective Effects against LPS-Induced Acute Lung Injury in Mice by Inhibiting the LPS-TLR4 Pathway. Exp. Mol. Pathol. 2020, 113, 104350. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.A.S.; Oudit, G.Y.; Verano-Braga, T.; Canta, G.; Steckelings, U.M.; Bader, M. The Renin-Angiotensin System: Going beyond the Classical Paradigms. Am. J. Physiol.-Heart Circ. Physiol. 2019, 316, H958–H970. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Cong, M.; Wang, N.; Li, X.; Zhang, H.; Zhang, K.; Jin, M.; Wu, N.; Qiu, C.; Li, J. Association of Angiotensin-Converting Enzyme 2 Gene Polymorphism and Enzymatic Activity with Essential Hypertension in Different Gender. Medicine 2018, 97, e12917. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Chen, Y.; Zhang, P.; Zhong, J.; Jin, L.; Zhang, C.; Lin, S.; Wu, S.; Yu, H. Association between Circulating Levels of ACE2-Ang-(1–7)-MAS Axis and ACE2 Gene Polymorphisms in Hypertensive Patients. Medicine 2016, 95, e3876. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Zhang, P.; Zhou, X.M.; Liu, D.; Zhong, J.C.; Zhang, C.J.; Jin, L.J.; Yu, H.M. Relationship between Genetic Variants of ACE2 Gene and Circulating Levels of ACE2 and Its Metabolites. J. Clin. Pharm. Ther. 2018, 43, 189–195. [Google Scholar] [CrossRef]
- Wang, S.; Fu, C.; Zou, Y.; Wang, H.; Shi, Y.; Xu, X.; Chen, J.; Song, X.; Huan, T.; Hui, R. Polymorphisms of Angiotensin-Converting Enzyme 2 Gene Associated with Magnitude of Left Ventricular Hypertrophy in Male Patients with Hypertrophic Cardiomyopathy. Chin. Med. J. 2008, 121, 27–31. [Google Scholar] [CrossRef]
- Lieb, W.; Graf, J.; Götz, A.; König, I.R.; Mayer, B.; Fischer, M.; Stritzke, J.; Hengstenberg, C.; Holmer, S.R.; Döring, A.; et al. Association of Angiotensin-Converting Enzyme 2 (ACE2) Gene Polymorphisms with Parameters of Left Ventricular Hypertrophy in Men. J. Mol. Med. 2006, 84, 88–96. [Google Scholar] [CrossRef]
- Bosso, M.; Thanaraj, T.A.; Abu-Farha, M.; Alanbaei, M.; Abubaker, J.; Al-Mulla, F. The Two Faces of ACE2: The Role of ACE2 Receptor and Its Polymorphisms in Hypertension and COVID-19. Mol. Ther.-Methods Clin. Dev. 2020, 18, 321–327. [Google Scholar] [CrossRef]
- Vangjeli, C.; Dicker, P.; Tregouet, D.-A.; Shields, D.C.; Evans, A.; Stanton, A. V A Polymorphism in ACE2 Is Associated with a Lower Risk for Fatal Cardiovascular Events in Females: The MORGAM Project. J. Renin-Angiotensin-Aldosterone Syst. 2011, 12, 504–509. [Google Scholar] [CrossRef]
- Serfozo, P.; Wysocki, J.; Gulua, G.; Schulze, A.; Ye, M.; Liu, P.; Jin, J.; Bader, M.; Myöhänen, T.; García-Horsman, J.A.; et al. Ang II (Angiotensin II) Conversion to Angiotensin-(1-7) in the Circulation Is POP (Prolyloligopeptidase)-Dependent and ACE2 (Angiotensin-Converting Enzyme 2)-Independent. Hypertens (1979) 2020, 75, 173–182. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, Y.; Shang, J.; Yuan, Z.; Ping, F.; Yao, S.; Guo, Y.; Li, Y. Ang-(1-7) Treatment Attenuates Lipopolysaccharide-Induced Early Pulmonary Fibrosis. Lab. Investig. 2019, 99, 1770–1783. [Google Scholar] [CrossRef]
- Patel, V.B.; Zhong, J.C.; Grant, M.B.; Oudit, G.Y. Role of the ACE2/Angiotensin 1-7 Axis of the Renin-Angiotensin System in Heart Failure. Circ. Res. 2016, 118, 1313–1326. [Google Scholar] [CrossRef]
- Abuohashish, H.M.; Ahmed, M.M.; Sabry, D.; Khattab, M.M.; Al-Rejaie, S.S. ACE-2/Ang1-7/Mas Cascade Mediates ACE Inhibitor, Captopril, Protective Effects in Estrogen-Deficient Osteoporotic Rats. Biomed. Pharmacother. 2017, 92, 58–68. [Google Scholar] [CrossRef]
- Savoia, C.; Arrabito, E.; Parente, R.; Nicoletti, C.; Madaro, L.; Battistoni, A.; Filippini, A.; Steckelings, U.M.; Touyz, R.M.; Volpe, M. Mas Receptor Activation Contributes to the Improvement of Nitric Oxide Bioavailability and Vascular Remodeling during Chronic AT1R (Angiotensin Type-1 Receptor) Blockade in Experimental Hypertension. Hypertension 2020, 76, 1753–1761. [Google Scholar] [CrossRef]
- Ocaranza, M.P.; Godoy, I.; Jalil, J.E.; Varas, M.; Collantes, P.; Pinto, M.; Roman, M.; Ramirez, C.; Copaja, M.; Diaz-Araya, G.; et al. Enalapril Attenuates Downregulation of Angiotensin-Converting Enzyme 2 in the Late Phase of Ventricular Dysfunction in Myocardial Infarcted Rat. Hypertension 2006, 48, 572–578. [Google Scholar] [CrossRef]
- Flores-Muñoz, M.; Smith, N.J.; Haggerty, C.; Milligan, G.; Nicklin, S.A. Angiotensin1-9 Antagonises pro-Hypertrophic Signalling in Cardiomyocytes via the Angiotensin Type 2 Receptor. J. Physiol. 2011, 589, 939–951. [Google Scholar] [CrossRef]
- Norambuena-Soto, I.; Lopez-Crisosto, C.; Martinez-Bilbao, J.; Hernandez-Fuentes, C.; Parra, V.; Lavandero, S.; Chiong, M. Angiotensin-(1–9) in Hypertension. Biochem. Pharmacol. 2022, 203, 115183. [Google Scholar] [CrossRef]
- Ravarotto, V.; Bertoldi, G.; Innico, G.; Gobbi, L.; Calò, L.A. The Pivotal Role of Oxidative Stress in the Pathophysiology of Cardiovascular-Renal Remodeling in Kidney Disease. Antioxidants 2021, 10, 1041. [Google Scholar] [CrossRef]
- Loperena, R.; Harrison, D.G. Oxidative Stress and Hypertensive Diseases. Med. Clin. N. A. 2017, 101, 169–193. [Google Scholar] [CrossRef]
- Demaurex, N.; Petheö, G.L. Electron and Proton Transport by NADPH Oxidases. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 2315–2325. [Google Scholar] [CrossRef]
- Rabelo, L.A.; Alenina, N.; Bader, M. ACE2-Angiotensin-(1-7)-Mas Axis and Oxidative Stress in Cardiovascular Disease. Hypertens. Res. 2011, 34, 154–160. [Google Scholar] [CrossRef]
- Farah, C.; Michel, L.Y.M.; Balligand, J.L. Nitric Oxide Signalling in Cardiovascular Health and Disease. Nat. Rev. Cardiol. 2018, 15, 292–316. [Google Scholar] [CrossRef]
- Sepúlveda-Fragoso, V.; Alexandre-Santos, B.; Salles, A.C.P.; Proença, A.B.; de Paula Alves, A.P.; Vázquez-Carrera, M.; Nóbrega, A.C.L.; Frantz, E.D.C.; Magliano, D.C. Crosstalk between the Renin-Angiotensin System and the Endoplasmic Reticulum Stress in the Cardiovascular System: Lessons Learned so Far. Life Sci. 2021, 284, 119919. [Google Scholar] [CrossRef]
- Ma, H.; Wang, Y.; Hei, N.; Li, J.; Cao, X.; Dong, B.; Yan, W. Angiotensin II–Induced Abdominal Aortic Aneurysm Formation in Apolipoprotein E Knockout Mice. J. Mol. Med. 2020, 98, 541–551. [Google Scholar]
- Calò, L.A.; Pessina, A.C. RhoA/Rho-Kinase Pathway: Much More than Just a Modulation of Vascular Tone. Evidence from Studies in Humans. J. Hypertens. 2007, 25, 259–264. [Google Scholar] [CrossRef]
- Shimokawa, H.; Sunamura, S.; Satoh, K. RhoA/Rho-Kinase in the Cardiovascular System. Circ. Res. 2016, 118, 352–366. [Google Scholar] [CrossRef]
- Seccia, T.M.; Rigato, M.; Ravarotto, V.; Calò, L.A. ROCK (RhoA/Rho Kinase) in Cardiovascular–Renal Pathophysiology: A Review of New Advancements. J. Clin. Med. 2020, 9, 1328. [Google Scholar] [CrossRef]
- Kondrikov, D.; Caldwell, R.B.; Dong, Z.; Su, Y. Reactive Oxygen Species-Dependent RhoA Activation Mediates Collagen Synthesis in Hyperoxic Lung Fibrosis. Free Radic. Biol. Med. 2011, 50, 1689–1698. [Google Scholar] [CrossRef]
- Sampaio, W.O.; Dos Santos, R.A.S.; Faria-Silva, R.; Da Mata Machado, L.T.; Schiffrin, E.L.; Touyz, R.M. Angiotensin-(1-7) through Receptor Mas Mediates Endothelial Nitric Oxide Synthase Activation via Akt-Dependent Pathways. Hypertension 2007, 49, 185–192. [Google Scholar] [CrossRef]
- Yang, G.; Istas, G.; Höges, S.; Yakoub, M.; Hendgen-Cotta, U.; Rassaf, T.; Rodriguez-Mateos, A.; Hering, L.; Grandoch, M.; Mergia, E.; et al. Angiotensin-(1-7)-Induced Mas Receptor Activation Attenuates Atherosclerosis through a Nitric Oxide-Dependent Mechanism in ApolipoproteinE-KO Mice. Pflügers Arch.-Eur. J. Physiol. 2018, 470, 661–667. [Google Scholar] [CrossRef]
- Xu, P.; Costa-Goncalves, A.C.; Todiras, M.; Rabelo, L.A.; Sampaio, W.O.; Moura, M.M.; Santos, S.S.; Luft, F.C.; Bader, M.; Gross, V.; et al. Endothelial Dysfunction and Elevated Blood Pressure in Mas Gene-Deleted Mice. Hypertension 2008, 51, 574–580. [Google Scholar] [CrossRef]
- Meng, Y.; Li, T.; Zhou, G.; Chen, Y.; Yu, C.-H.; Pang, M.-X.; Li, W.; Li, Y.; Zhang, W.-Y.; Li, X. The Angiotensin-Converting Enzyme 2/Angiotensin (1–7)/Mas Axis Protects Against Lung Fibroblast Migration and Lung Fibrosis by Inhibiting the NOX4-Derived ROS-Mediated RhoA/Rho Kinase Pathway. Antioxid. Redox Signal. 2015, 22, 241–258. [Google Scholar] [CrossRef] [PubMed]
- Ocaranza, M.P.; Rivera, P.; Novoa, U.; Pinto, M.; González, L.; Chiong, M.; Lavandero, S.; Jalil, J.E. Rho Kinase Inhibition Activates the Homologous Angiotensin-Converting Enzyme-Angiotensin-(1-9) Axis in Experimental Hypertension. J. Hypertens. 2011, 29, 706–715. [Google Scholar] [CrossRef] [PubMed]
- Song, B.; Jin, H.; Yu, X.; Zhang, Z.; Yu, H.; Ye, J.; Xu, Y.; Zhou, T.; Oudit, G.Y.; Ye, J.-Y.; et al. Angiotensin-Converting Enzyme 2 Attenuates Oxidative Stress and VSMC Proliferation via the JAK2/STAT3/SOCS3 and Profilin-1/MAPK Signaling Pathways. Regul. Pept. 2013, 185, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Ocaranza, M.P.; Moya, J.; Barrientos, V.; Alzamora, R.; Hevia, D.; Morales, C.; Pinto, M.; Escudero, N.; García, L.; Novoa, U.; et al. Angiotensin-(1-9) Reverses Experimental Hypertension and Cardiovascular Damage by Inhibition of the Angiotensin Converting Enzyme/Ang II Axis. J. Hypertens. 2014, 32, 771–783. [Google Scholar] [CrossRef]
- Ravarotto, V.; Bertoldi, G.; Stefanelli, L.F.; Nalesso, F.; Calò, L.A. Pathomechanism of Oxidative Stress in Cardiovascular-Renal Remodeling and Therapeutic Strategies. Kidney Res. Clin. Pract. 2022, 41, 533–544. [Google Scholar] [CrossRef]
- Calò, L.A.; Davis, P.A.; Pagnin, E.; Dal Maso, L.; Maiolino, G.; Seccia, T.M.; Pessina, A.C.; Rossi, G.P. Increased Level of P63RhoGEF and RhoA/Rho Kinase Activity in Hypertensive Patients. J. Hypertens. 2014, 32, 331–338. [Google Scholar] [CrossRef]
- Ravarotto, V.; Carraro, G.; Pagnin, E.; Bertoldi, G.; Simioni, F.; Maiolino, G.; Martinato, M.; Landini, L.; Davis, P.A.; Calò, L.A. Oxidative Stress and the Altered Reaction to It in Fabry Disease: A Possible Target for Cardiovascular-Renal Remodeling? PLoS ONE 2018, 13, e0204618. [Google Scholar] [CrossRef]
- Bertoldi, G.; Carraro, G.; Ravarotto, V.; Di Vico, V.; Baldini Anastasio, P.; Vitturi, N.; Francini, F.; Stefanelli, L.F.; Calò, L.A. The Effect of Green Tea as an Adjuvant to Enzyme Replacement Therapy on Oxidative Stress in Fabry Disease: A Pilot Study. Front. Nutr. 2022, 9, 924710. [Google Scholar] [CrossRef]
- Epstein, F.H.; Gibbons, G.H.; Dzau, V.J. The Emerging Concept of Vascular Remodeling. N. Engl. J. Med. 1994, 330, 1431–1438. [Google Scholar] [CrossRef]
- Intengan, H.D.; Schiffrin, E.L. Vascular Remodeling in Hypertension. Hypertension 2001, 38, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Nguyen Dinh Cat, A.; Touyz, R.M. Cell Signaling of Angiotensin II on Vascular Tone: Novel Mechanisms. Curr. Hypertens. Rep. 2011, 13, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Calò, L.A.; Schiavo, S.; Davis, P.A.; Pagnin, E.; Mormino, P.; D’Angelo, A.; Pessina, A.C. ACE2 and Angiotensin 1-7 Are Increased in a Human Model of Cardiovascular Hyporeactivity: Pathophysiological Implications. J. Nephrol. 2010, 23, 472–477. [Google Scholar] [PubMed]
- Zhang, Z.Z.; Chen, L.J.; Zhong, J.C.; Gao, P.J.; Oudit, G.Y. ACE2/Ang-(1-7) Signaling and Vascular Remodeling. Sci. China Life Sci. 2014, 57, 802–808. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.H.; Zhang, Y.-H.; Dong, X.F.; Hao, Q.Q.; Zhou, X.M.; Yu, Q.T.; Li, S.Y.; Chen, X.; Tengbeh, A.F.; Dong, B.; et al. ACE2 and Ang-(1–7) Protect Endothelial Cell Function and Prevent Early Atherosclerosis by Inhibiting Inflammatory Response. Inflamm. Res. 2015, 64, 253–260. [Google Scholar] [CrossRef]
- Rabelo, L.A.; Todiras, M.; Nunes-Souza, V.; Qadri, F.; Szijártó, I.A.; Gollasch, M.; Penninger, J.M.; Bader, M.; Santos, R.A.; Alenina, N. Genetic Deletion of ACE2 Induces Vascular Dysfunction in C57BL/6 Mice: Role of Nitric Oxide Imbalance and Oxidative Stress. PLoS ONE 2016, 11, e0150255. [Google Scholar] [CrossRef]
- Thomas, M.C.; Pickering, R.J.; Tsorotes, D.; Koitka, A.; Sheehy, K.; Bernardi, S.; Toffoli, B.; Nguyen-Huu, T.-P.; Head, G.A.; Fu, Y.; et al. Genetic Ace2 Deficiency Accentuates Vascular Inflammation and Atherosclerosis in the ApoE Knockout Mouse. Circ. Res. 2010, 107, 888–897. [Google Scholar] [CrossRef]
- Langeveld, B.; Van Gilst, W.H.; Tio, R.A.; Zijlstra, F.; Roks, A.J.M. Angiotensin-(1-7) Attenuates Neointimal Formation after Stent Implantation in the Rat. Hypertension 2005, 45, 138–141. [Google Scholar] [CrossRef]
- Rentzsch, B.; Todiras, M.; Iliescu, R.; Popova, E.; Campos, L.A.; Oliveira, M.L.; Baltatu, O.C.; Santos, R.A.; Bader, M. Transgenic Angiotensin-Converting Enzyme 2 Overexpression in Vessels of SHRSP Rats Reduces Blood Pressure and Improves Endothelial Function. Hypertension 2008, 52, 967–973. [Google Scholar] [CrossRef]
- Faria-Silva, R.; Duarte, F.V.; Santos, R.A.S. Short-Term Angiotensin(1-7) Receptor MAS Stimulation Improves Endothelial Function in Normotensive Rats. Hypertension 2005, 46, 948–952. [Google Scholar] [CrossRef]
- Strawn, W.B.; Ferrario, C.M.; Tallant, E.A. Angiotensin-(1-7) Reduces Smooth Muscle Growth after Vascular Injury. Hypertension 1999, 33, 207–211. [Google Scholar] [CrossRef]
- Freeman, E.J.; Chisolm, G.M.; Ferrario, C.M.; Tallant, E.A. Angiotensin-(1-7) Inhibits Vascular Smooth Muscle Cell Growth. Hypertension 1996, 28, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Kucharewicz, I.; Pawlak, R.; Matys, T.; Pawlak, D.; Buczko, W. Antithrombotic Effect of Captopril and Losartan Is Mediated by Angiotensin-(1-7). Hypertension 2002, 40, 774–779. [Google Scholar] [CrossRef] [PubMed]
- Xue, F.; Yang, J.; Cheng, J.; Sui, W.; Cheng, C.; Li, H.; Zhang, M.; Zhang, J.; Xu, X.; Ma, J.; et al. Angiotensin-(1-7) Mitigated Angiotensin II-Induced Abdominal Aortic Aneurysms in Apolipoprotein E-Knockout Mice. Br. J. Pharmacol. 2020, 177, 1719–1734. [Google Scholar] [CrossRef] [PubMed]
- Jadli, A.S.; Ballasy, N.N.; Gomes, K.P.; Mackay, C.D.A.; Meechem, M.; Wijesuriya, T.M.; Belke, D.; Thompson, J.; Fedak, P.W.M.; Patel, V.B. Attenuation of Smooth Muscle Cell Phenotypic Switching by Angiotensin 1-7 Protects against Thoracic Aortic Aneurysm. Int. J. Mol. Sci. 2022, 23, 15566. [Google Scholar] [CrossRef]
- Pandey, K.N. Guanylyl Cyclase/Natriuretic Peptide Receptor-A Signaling Antagonizes Phosphoinositide Hydrolysis, Ca2+ Release, and Activation of Protein Kinase C. Front. Mol. Neurosci. 2014, 7, 75. [Google Scholar] [CrossRef]
- Ghatage, T.; Singh, S.; Mandal, K.; Dhar, A. MasR and PGCA Receptor Activation Protects Primary Vascular Smooth Muscle Cells and Endothelial Cells against Oxidative Stress via Inhibition of Intracellular Calcium. J. Cell. Biochem. 2023, 124, 943–960. [Google Scholar] [CrossRef]
- Ghatage, T.; Singh, S.; Mandal, K.; Jadhav, K.B.; Dhar, A. Activation of Mas and PGCA Receptor Pathways Protects Renal Epithelial Cell Damage against Oxidative-Stress-Induced Injury. Peptides 2023, 162, 170959. [Google Scholar] [CrossRef]
- Norambuena-Soto, I.; Ocaranza, M.P.; Cancino-Arenas, N.; Sanhueza–Olivares, F.; Villar-Fincheira, P.; Leiva–Navarrete, S.; Mancilla-Medina, C.; Moya, J.; Novoa, U.; Jalil, J.E.; et al. Angiotensin-(1–9) Prevents Vascular Remodeling by Decreasing Vascular Smooth Muscle Cell Dedifferentiation through a FoxO1-Dependent Mechanism. Biochem. Pharmacol. 2020, 180, 114190. [Google Scholar] [CrossRef]
- Marfella, R.; D’Onofrio, N.; Mansueto, G.; Grimaldi, V.; Trotta, M.C.; Sardu, C.; Sasso, F.C.; Scisciola, L.; Amarelli, C.; Esposito, S.; et al. Glycated ACE2 Reduces Anti-Remodeling Effects of Renin-Angiotensin System Inhibition in Human Diabetic Hearts. Cardiovasc. Diabetol. 2022, 21, 146. [Google Scholar] [CrossRef]
- Santos, R.A.S.; Castro, C.H.; Gava, E.; Pinheiro, S.V.B.; Almeida, A.P.; de Paula, R.D.; Cruz, J.S.; Ramos, A.S.; Rosa, K.T.; Irigoyen, M.C.; et al. Impairment of In Vitro and In Vivo Heart Function in Angiotensin-(1-7) Receptor Mas Knockout Mice. Hypertension 2006, 47, 996–1002. [Google Scholar] [CrossRef]
- Loot, A.E.; Roks, A.J.M.; Henning, R.H.; Tio, R.A.; Suurmeijer, A.J.H.; Boomsma, F.; van Gilst, W.H. Angiotensin-(1–7) Attenuates the Development of Heart Failure After Myocardial Infarction in Rats. Circulation 2002, 105, 1548–1550. [Google Scholar] [CrossRef]
- Ferreira, A.J.; Santos, R.A.S.; Almeida, A.P. Angiotensin-(1-7) Improves the Post-Ischemic Function in Isolated Perfused Rat Hearts. Braz. J. Med. Biol. Res. 2002, 35, 1083–1090. [Google Scholar] [CrossRef]
- Averill, D.B.; Ishiyama, Y.; Chappell, M.C.; Ferrario, C.M. Cardiac Angiotensin-(1-7) in Ischemic Cardiomyopathy. Circulation 2003, 108, 2141–2146. [Google Scholar] [CrossRef]
- Cohen-Segev, R.; Nativ, O.; Kinaneh, S.; Aronson, D.; Kabala, A.; Hamoud, S.; Karram, T.; Abassi, Z. Effects of Angiotensin 1-7 and Mas Receptor Agonist on Renal System in a Rat Model of Heart Failure. Int. J. Mol. Sci. 2023, 24, 11470. [Google Scholar] [CrossRef]
- Mendes, A.C.R.; Ferreira, A.J.; Pinheiro, S.V.B.; Santos, R.A.S. Chronic Infusion of Angiotensin-(1–7) Reduces Heart Angiotensin II Levels in Rats. Regul. Pept. 2005, 125, 29–34. [Google Scholar] [CrossRef]
- Grobe, J.L.; Mecca, A.P.; Lingis, M.; Shenoy, V.; Bolton, T.A.; Machado, J.M.; Speth, R.C.; Raizada, M.K.; Katovich, M.J. Prevention of Angiotensin II-Induced Cardiac Remodeling by Angiotensin-(1–7). Am. J. Physiol. Circ. Physiol. 2007, 292, H736–H742. [Google Scholar] [CrossRef]
- Ocaranza, M.P.; Lavandero, S.; Jalil, J.E.; Moya, J.; Pinto, M.; Novoa, U.; Apablaza, F.; González, L.; Hernández, C.; Varas, M.; et al. Angiotensin-(1–9) Regulates Cardiac Hypertrophy in Vivo and in Vitro. J. Hypertens. 2010, 28, 1054–1064. [Google Scholar] [CrossRef]
- Mendoza-Torres, E.; Riquelme, J.A.; Vielma, A.; Sagredo, A.R.; Gabrielli, L.; Bravo-Sagua, R.; Jalil, J.E.; Rothermel, B.A.; Sanchez, G.; Ocaranza, M.P.; et al. Protection of the Myocardium against Ischemia/Reperfusion Injury by Angiotensin-(1–9) through an AT2R and Akt-Dependent Mechanism. Pharmacol. Res. 2018, 135, 112–121. [Google Scholar] [CrossRef]
- Kassiri, Z.; Zhong, J.; Guo, D.; Basu, R.; Wang, X.; Liu, P.P.; Scholey, J.W.; Penninger, J.M.; Oudit, G.Y. Loss of Angiotensin-Converting Enzyme 2 Accelerates Maladaptive Left Ventricular Remodeling in Response to Myocardial Infarction. Circ. Hear. Fail. 2009, 2, 446–455. [Google Scholar] [CrossRef]
- Jackman, H.L.; Massad, M.G.; Sekosan, M.; Tan, F.; Brovkovych, V.; Marcic, B.M.; Erdös, E.G. Angiotensin 1-9 and 1-7 Release in Human Heart. Hypertension 2002, 39, 976–981. [Google Scholar] [CrossRef] [PubMed]
- Flores-Muñoz, M.; Godinho, B.M.D.C.; Almalik, A.; Nicklin, S.A. Adenoviral Delivery of Angiotensin-(1-7) or Angiotensin-(1-9) Inhibits Cardiomyocyte Hypertrophy via the Mas or Angiotensin Type 2 Receptor. PLoS ONE 2012, 7, e45564. [Google Scholar] [CrossRef] [PubMed]
- Garrido, A.M.; Griendling, K.K. NADPH Oxidases and Angiotensin II Receptor Signaling. Mol. Cell. Endocrinol. 2009, 302, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Lely, A.; Hamming, I.; van Goor, H.; Navis, G. Renal ACE2 Expression in Human Kidney Disease. J. Pathol. 2004, 204, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Rianto, F.; Hoang, T.; Revoori, R.; Sparks, M.A. Angiotensin Receptors in the Kidney and Vasculature in Hypertension and Kidney Disease. Mol. Cell. Endocrinol. 2021, 529, 111259. [Google Scholar] [CrossRef]
- Williams, V.R.; Scholey, J.W. Angiotensin-Converting Enzyme 2 and Renal Disease. Curr. Opin. Nephrol. Hypertens. 2018, 27, 35–41. [Google Scholar] [CrossRef]
- Wysocki, J.; Ortiz-Melo, D.I.; Mattocks, N.K.; Xu, K.; Prescott, J.; Evora, K.; Ye, M.; Sparks, M.A.; Haque, S.K.; Batlle, D.; et al. ACE2 Deficiency Increases NADPH-Mediated Oxidative Stress in the Kidney. Physiol. Rep. 2014, 2, e00264. [Google Scholar] [CrossRef]
- Chen, L.-J.; Xu, Y.-L.; Song, B.; Yu, H.-M.; Oudit, G.Y.; Xu, R.; Zhang, Z.-Z.; Jin, H.-Y.; Chang, Q.; Zhu, D.-L.; et al. Angiotensin-Converting Enzyme 2 Ameliorates Renal Fibrosis by Blocking the Activation of MTOR/ERK Signaling in Apolipoprotein E-Deficient Mice. Peptides 2016, 79, 49–57. [Google Scholar] [CrossRef]
- Abdel-Fattah, M.M.; Elgendy, A.N.A.M.; Mohamed, W.R. Xanthenone, ACE2 Activator, Counteracted Gentamicin-Induced Nephrotoxicity in Rats: Impact on Oxidative Stress and ACE2/Ang-(1–7) Signaling. Life Sci. 2021, 275, 119387. [Google Scholar] [CrossRef]
- Azouz, A.A.; Omar, H.A.; Hersi, F.; Ali, F.E.M.; Hussein Elkelawy, A.M.M. Impact of the ACE2 Activator Xanthenone on Tacrolimus Nephrotoxicity: Modulation of Uric Acid/ERK/P38 MAPK and Nrf2/SOD3/GCLC Signaling Pathways. Life Sci. 2022, 288, 120154. [Google Scholar] [CrossRef]
- Dibo, P.; Marañón, R.O.; Chandrashekar, K.; Mazzuferi, F.; Silva, G.B.; Juncos, L.A.; Juncos, L.I. Angiotensin-(1-7) Inhibits Sodium Transport via Mas Receptor by Increasing Nitric Oxide Production in Thick Ascending Limb. Physiol. Rep. 2019, 7, e14015. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Lo, C.-S.; Padda, R.; Abdo, S.; Chenier, I.; Filep, J.G.; Ingelfinger, J.R.; Zhang, S.-L.; Chan, J.S.D. Angiotensin-(1–7) Prevents Systemic Hypertension, Attenuates Oxidative Stress and Tubulointerstitial Fibrosis, and Normalizes Renal Angiotensin-Converting Enzyme 2 and Mas Receptor Expression in Diabetic Mice. Clin. Sci. 2015, 128, 649–663. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.S.; Kim, I.J.; Bae, E.H.; Ma, S.K.; Lee, J.; Kim, S.W. Angiotensin-(1-7) Attenuates Kidney Injury Due to Obstructive Nephropathy in Rats. PLoS ONE 2015, 10, e0142664. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Tang, L.; Huang, W.; Yan, R.; Ren, F.; Luo, L.; Zhang, L. Anti-Inflammatory Effects of Ang-(1-7) in Ameliorating HFD-Induced Renal Injury through LDLr-SREBP2-SCAP Pathway. PLoS ONE 2015, 10, e0136187. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, J.; Healy, V.; Johns, E.J. Intrarenal Mas and AT 1 Receptors Play a Role in Mediating the Excretory Actions of Renal Interstitial Angiotensin-(1-7) Infusion in Anaesthetized Rats. Exp. Physiol. 2017, 102, 1700–1715. [Google Scholar] [CrossRef]
- Dzau, P.D.V.J. Renal and Circulatory Mechanisms in Congestive Heart Failure. Kidney Int. 1987, 31, 1402–1415. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caputo, I.; Bertoldi, G.; Driussi, G.; Cacciapuoti, M.; Calò, L.A. The RAAS Goodfellas in Cardiovascular System. J. Clin. Med. 2023, 12, 6873. https://doi.org/10.3390/jcm12216873
Caputo I, Bertoldi G, Driussi G, Cacciapuoti M, Calò LA. The RAAS Goodfellas in Cardiovascular System. Journal of Clinical Medicine. 2023; 12(21):6873. https://doi.org/10.3390/jcm12216873
Chicago/Turabian StyleCaputo, Ilaria, Giovanni Bertoldi, Giulia Driussi, Martina Cacciapuoti, and Lorenzo A. Calò. 2023. "The RAAS Goodfellas in Cardiovascular System" Journal of Clinical Medicine 12, no. 21: 6873. https://doi.org/10.3390/jcm12216873