Impact of Dry Eye Disease on the Uncorrected Distance Visual Acuity after Small Incision Lenticule Extraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Ocular Examinations
2.2.1. Order of Ocular Examinations
2.2.2. OSDI
2.2.3. Oculus Keratograph 5M
2.2.4. Slit-Lamp Biomicroscopy
2.2.5. SIT
2.3. Image Analysis and Measurement
2.3.1. Assessment of DED Parameters Obtained by K5M
2.3.2. Measurement of FBUT
2.3.3. Evaluation of CFS
2.4. Surgical Procedure and Postoperative Treatment
2.5. Statistical Analysis
3. Results
3.1. Postoperative UDVA and Refractive Status
3.2. Postoperative DED Parameters
3.3. Regression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baird, P.N.; Saw, S.M.; Lanca, C.; Guggenheim, J.A.; Smith Iii, E.L.; Zhou, X.; Matsui, K.O.; Wu, P.C.; Sankaridurg, P.; Chia, A.; et al. Myopia. Nat. Rev. Dis. Primers 2020, 6, 99. [Google Scholar] [CrossRef]
- Holden, B.A.; Fricke, T.R.; Wilson, D.A.; Jong, M.; Naidoo, K.S.; Sankaridurg, P.; Wong, T.Y.; Naduvilath, T.J.; Resnikoff, S. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology 2016, 123, 1036–1042. [Google Scholar] [CrossRef] [PubMed]
- Xia, F.; Chen, Z.; Miao, H.; Wei, R.; Li, M.; Zhao, J.; Zhou, X. Ten-year outcomes following small incision lenticule extraction for up to -10Dioptres myopia. Clin. Exp. Optom. 2023, 16, 1–6. [Google Scholar] [CrossRef]
- Fu, Y.; Yin, Y.; Wu, X.; Li, Y.; Xiang, A.; Lu, Y.; Fu, Q.; Hu, T.; Du, K.; Wen, D. Clinical outcomes after small-incision lenticule extraction versus femtosecond laser-assisted LASIK for high myopia: A meta-analysis. PLoS ONE 2021, 16, e0242059. [Google Scholar] [CrossRef]
- Lau, Y.T.; Shih, K.C.; Tse, R.H.; Chan, T.C.; Jhanji, V. Comparison of Visual, Refractive and Ocular Surface Outcomes between Small Incision Lenticule Extraction and Laser-Assisted In Situ Keratomileusis for Myopia and Myopic Astigmatism. Ophthalmol. Ther. 2019, 8, 373–386. [Google Scholar] [CrossRef]
- Wu, Y.; Huang, Z. Comparison of early visual quality in patients with moderate myopia using different optical zones in small incision lenticule extraction (SMILE). BMC Ophthalmol. 2021, 21, 46. [Google Scholar] [CrossRef]
- Jin, Y.; Wang, Y.; Xu, L.; Zuo, T.; Li, H.; Dou, R.; Zhang, J. Comparison of the Optical Quality between Small Incision Lenticule Extraction and Femtosecond Laser LASIK. J. Ophthalmol. 2016, 2016, 2507973. [Google Scholar] [CrossRef]
- Goto, E.; Yagi, Y.; Matsumoto, Y.; Tsubota, K. Impaired functional visual acuity of dry eye patients. Am. J. Ophthalmol. 2002, 133, 181–186. [Google Scholar] [CrossRef]
- Benitez-Del-Castillo, J.; Labetoulle, M.; Baudouin, C.; Rolando, M.; Akova, Y.A.; Aragona, P.; Geerling, G.; Merayo-Lloves, J.; Messmer, E.M.; Boboridis, K. Visual acuity and quality of life in dry eye disease: Proceedings of the OCEAN group meeting. Ocul. Surf. 2017, 15, 169–178. [Google Scholar] [CrossRef]
- Craig, J.P.; Nichols, K.K.; Akpek, E.K.; Caffery, B.; Dua, H.S.; Joo, C.K.; Liu, Z.; Nelson, J.D.; Nichols, J.J.; Tsubota, K.; et al. TFOS DEWS II Definition and Classification Report. Ocul. Surf. 2017, 15, 276–283. [Google Scholar] [CrossRef]
- Tamimi, A.; Sheikhzadeh, F.; Ezabadi, S.G.; Islampanah, M.; Parhiz, P.; Fathabadi, A.; Poudineh, M.; Khanjani, Z.; Pourmontaseri, H.; Orandi, S.; et al. Post-LASIK dry eye disease: A comprehensive review of management and current treatment options. Front. Med. 2023, 10, 1057685. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Xia, W.; Wang, M.; Chang, X.; Wang, J.; Jin, S.; Wang, J.; Wei, W.; Rudan, I. Variations of dry eye disease prevalence by age, sex and geographic characteristics in China: A systematic review and meta-analysis. J. Glob. Health 2018, 8, 020503. [Google Scholar] [CrossRef] [PubMed]
- Stapleton, F.; Alves, M.; Bunya, V.; Jalbert, I.; Lekhanont, K.; Malet, F.; Na, K.; Schaumberg, D.; Uchino, M.; Vehof, J.; et al. TFOS DEWS II Epidemiology Report. Ocul. Surf. 2017, 15, 334–365. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.I.; Alio Del Barrio, J.L.; Wilkins, M.; Cochener, B.; Ang, M. Refractive surgery. Lancet 2019, 393, 2085–2098. [Google Scholar] [CrossRef] [PubMed]
- Toda, I. Dry Eye After LASIK. Investig. Ophthalmol. Vis. Sci. 2018, 59, DES109–DES115. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.C.; Yam, G.H.; Lin, M.T.; Teo, E.; Koh, S.K.; Deng, L.; Zhou, L.; Tong, L.; Mehta, J.S. Comparison of tear proteomic and neuromediator profiles changes between small incision lenticule extraction (SMILE) and femtosecond laser-assisted in-situ keratomileusis (LASIK). J. Adv. Res. 2021, 29, 67–81. [Google Scholar] [CrossRef] [PubMed]
- Kobashi, H.; Kamiya, K.; Shimizu, K. Dry Eye After Small Incision Lenticule Extraction and Femtosecond Laser-Assisted LASIK: Meta-Analysis. Cornea 2017, 36, 85–91. [Google Scholar] [CrossRef]
- Dong, Z.; Zhou, X.; Wu, J.; Zhang, Z.; Li, T.; Zhou, Z.; Zhang, S.; Li, G. Small incision lenticule extraction (SMILE) and femtosecond laser LASIK: Comparison of corneal wound healing and inflammation. Br. J. Ophthalmol. 2014, 98, 263–269. [Google Scholar] [CrossRef]
- Moshirfar, M.; Somani, S.N.; Patel, B.C. Small Incision Lenticule Extraction. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2023. [Google Scholar]
- Reinstein, D.Z.; Archer, T.J.; Randleman, J.B. Mathematical model to compare the relative tensile strength of the cornea after PRK, LASIK, and small incision lenticule extraction. J. Refract. Surg. 2013, 29, 454–460. [Google Scholar] [CrossRef]
- Ishii, R.; Shimizu, K.; Igarashi, A.; Kobashi, H.; Kamiya, K. Influence of femtosecond lenticule extraction and small incision lenticule extraction on corneal nerve density and ocular surface: A 1-year prospective, confocal, microscopic study. J. Refract. Surg. 2015, 31, 10–15. [Google Scholar] [CrossRef]
- Krueger, R.R.; Meister, C.S. A review of small incision lenticule extraction complications. Curr. Opin. Ophthalmol. 2018, 29, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.C.; Teo, E.P.; Lwin, N.C.; Yam, G.H.; Mehta, J.S. Early Corneal Wound Healing and Inflammatory Responses after SMILE: Comparison of the Effects of Different Refractive Corrections and Surgical Experiences. J. Refract. Surg. 2016, 32, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Shen, Q.; Jia, Y.; Zhou, D.; Zhou, J. Clinical Outcomes of SMILE and FS-LASIK Used to Treat Myopia: A Meta-analysis. J. Refract. Surg. 2016, 32, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Chung, B.; Choi, M.; Lee, K.Y.; Kim, E.K.; Seo, K.Y.; Jun, I.; Kim, K.Y.; Kim, T.I. Comparing Dry Eye Disease after Small Incision Lenticule Extraction and Laser Subepithelial Keratomileusis. Cornea 2020, 39, 501–507. [Google Scholar] [CrossRef]
- Moshirfar, M.; McCaughey, M.V.; Reinstein, D.Z.; Shah, R.; Santiago-Caban, L.; Fenzl, C.R. Small-incision lenticule extraction. J. Cataract. Refract. Surg. 2015, 41, 652–665. [Google Scholar] [CrossRef]
- Le, Q.; Ge, L.; Li, M.; Wu, L.; Xu, J.; Hong, J.; Gong, L. Comparison on the vision-related quality of life between outpatients and general population with dry eye syndrome. Acta Ophthalmol. 2014, 92, e124–e132. [Google Scholar] [CrossRef]
- Lemp, M.A. Report of the National Eye Institute/Industry workshop on Clinical Trials in Dry Eyes. CLAO J. 1995, 21, 221–232. [Google Scholar]
- Toker, E.; Asfuroglu, E. Corneal and conjunctival sensitivity in patients with dry eye: The effect of topical cyclosporine therapy. Cornea 2010, 29, 133–140. [Google Scholar] [CrossRef]
- GB/T 11533-2011; Standard for Logarithmic Visual Acuity Charts. People’s Republic of China Ministry of Health: Beijing, China, 2011.
- Schiffman, R.M.; Christianson, M.D.; Jacobsen, G.; Hirsch, J.D.; Reis, B.L. Reliability and validity of the Ocular Surface Disease Index. Arch. Ophthalmol. 2000, 118, 615–621. [Google Scholar] [CrossRef]
- Wei, A.; Le, Q.; Hong, J.; Wang, W.; Wang, F.; Xu, J. Assessment of Lower Tear Meniscus. Optom. Vis. Sci. 2016, 93, 1420–1425. [Google Scholar] [CrossRef]
- Shimazaki, J.; Sakata, M.; Tsubota, K. Ocular surface changes and discomfort in patients with meibomian gland dysfunction. Arch. Ophthalmol. 1995, 113, 1266–1270. [Google Scholar] [CrossRef] [PubMed]
- Peterson, R.C.; Wolffsohn, J.S.; Fowler, C.W. Optimization of anterior eye fluorescein viewing. Am. J. Ophthalmol. 2006, 142, 572–575. [Google Scholar] [CrossRef] [PubMed]
- Sekundo, W.; Kunert, K.S.; Blum, M. Small incision corneal refractive surgery using the small incision lenticule extraction (SMILE) procedure for the correction of myopia and myopic astigmatism: Results of a 6 month prospective study. Br. J. Ophthalmol. 2011, 95, 335–339. [Google Scholar] [CrossRef] [PubMed]
- Ang, M.; Tan, D.; Mehta, J.S. Small incision lenticule extraction (SMILE) versus laser in-situ keratomileusis (LASIK): Study protocol for a randomized, non-inferiority trial. Trials 2012, 13, 75. [Google Scholar] [CrossRef] [PubMed]
- Stapleton, F.; Bakkar, M.; Carnt, N.; Chalmers, R.; Vijay, A.K.; Marasini, S.; Ng, A.; Tan, J.; Wagner, H.; Woods, C.; et al. CLEAR—Contact lens complications. Cont. Lens Anterior Eye 2021, 44, 330–367. [Google Scholar] [CrossRef] [PubMed]
- Edorh, N.A.; El Maftouhi, A.; Djerada, Z.; Arndt, C.; Denoyer, A. New model to better diagnose dry eye disease integrating OCT corneal epithelial mapping. Br. J. Ophthalmol. 2022, 106, 1488–1495. [Google Scholar] [CrossRef] [PubMed]
- Koh, S.; Maeda, N.; Ikeda, C.; Asonuma, S.; Mitamura, H.; Oie, Y.; Soma, T.; Tsujikawa, M.; Kawasaki, S.; Nishida, K. Ocular forward light scattering and corneal backward light scattering in patients with dry eye. Investig. Ophthalmol. Vis. Sci. 2014, 55, 6601–6606. [Google Scholar] [CrossRef]
- Rieger, G. The importance of the precorneal tear film for the quality of optical imaging. Br. J. Ophthalmol. 1992, 76, 157–158. [Google Scholar] [CrossRef]
- Shah, R.; Shah, S.; Sengupta, S. Results of small incision lenticule extraction: All-in-one femtosecond laser refractive surgery. J. Cataract. Refract. Surg. 2011, 37, 127–137. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, Y. Dry eye after small incision lenticule extraction and LASIK for myopia. J. Refract. Surg. 2014, 30, 186–190. [Google Scholar] [CrossRef]
- Li, M.; Zhao, J.; Shen, Y.; Li, T.; He, L.; Xu, H.; Yu, Y.; Zhou, X. Comparison of dry eye and corneal sensitivity between small incision lenticule extraction and femtosecond LASIK for myopia. PLoS ONE 2013, 8, e77797. [Google Scholar] [CrossRef] [PubMed]
- Paulsen, A.J.; Cruickshanks, K.J.; Fischer, M.E.; Huang, G.H.; Klein, B.E.; Klein, R.; Dalton, D.S. Dry eye in the beaver dam offspring study: Prevalence, risk factors, and health-related quality of life. Am. J. Ophthalmol. 2014, 157, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.L.; Morgan, P.; Cai, Z.Q.; Straughan, R.A. Prevalence of and risk factors for symptomatic dry eye disease in Singapore. Clin. Exp. Optom. 2015, 98, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Vehof, J.; Kozareva, D.; Hysi, P.G.; Hammond, C.J. Prevalence and risk factors of dry eye disease in a British female cohort. Br. J. Ophthalmol. 2014, 98, 1712–1717. [Google Scholar] [CrossRef] [PubMed]
- Arita, R.; Itoh, K.; Inoue, K.; Kuchiba, A.; Yamaguchi, T.; Amano, S. Contact lens wear is associated with decrease of meibomian glands. Ophthalmology 2009, 116, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Eom, Y.; Lee, J.S.; Kang, S.Y.; Kim, H.M.; Song, J.S. Correlation between quantitative measurements of tear film lipid layer thickness and meibomian gland loss in patients with obstructive meibomian gland dysfunction and normal controls. Am. J. Ophthalmol. 2013, 155, 1104–1110.e2. [Google Scholar] [CrossRef]
- Dogan, A.S.; Gurdal, C.; Arslan, N. Corneal confocal microscopy and dry eye findings in contact lens discomfort patients. Cont. Lens Anterior Eye 2018, 41, 101–104. [Google Scholar] [CrossRef]
- Holly, F.J. Physical chemistry of the normal and disordered tear film. Trans Ophthalmol. Soc. UK (1962) 1985, 104 Pt 4, 374–380. [Google Scholar]
- Savini, G.; Barboni, P.; Zanini, M. Tear meniscus evaluation by optical coherence tomography. Ophthalmic Surg. Lasers Imaging 2006, 37, 112–118. [Google Scholar] [CrossRef]
- Mainstone, J.C.; Bruce, A.S.; Golding, T.R. Tear meniscus measurement in the diagnosis of dry eye. Curr. Eye Res. 1996, 15, 653–661. [Google Scholar] [CrossRef]
- Wolffsohn, J.S.; Arita, R.; Chalmers, R.; Djalilian, A.; Dogru, M.; Dumbleton, K.; Gupta, P.K.; Karpecki, P.; Lazreg, S.; Pult, H.; et al. TFOS DEWS II Diagnostic Methodology report. Ocul. Surf. 2017, 15, 539–574. [Google Scholar] [CrossRef] [PubMed]
- Le, Q.; Jiang, C.; Jiang, A.C.; Xu, J. The analysis of tear meniscus in soft contact lens wearers by spectral optical coherence tomography. Cornea 2009, 28, 851–855. [Google Scholar] [CrossRef] [PubMed]
- Golding, T.R.; Bruce, A.S.; Mainstone, J.C. Relationship between tear-meniscus parameters and tear-film breakup. Cornea 1997, 16, 649–661. [Google Scholar] [CrossRef]
- Benito, A.; Perez, G.M.; Mirabet, S.; Vilaseca, M.; Pujol, J.; Marin, J.M.; Artal, P. Objective optical assessment of tear-film quality dynamics in normal and mildly symptomatic dry eyes. J. Cataract. Refract. Surg. 2011, 37, 1481–1487. [Google Scholar] [CrossRef] [PubMed]
- Kobashi, H.; Kamiya, K.; Yanome, K.; Igarashi, A.; Shimizu, K. Longitudinal assessment of optical quality and intraocular scattering using the double-pass instrument in normal eyes and eyes with short tear breakup time. PLoS ONE 2013, 8, e82427. [Google Scholar] [CrossRef] [PubMed]
DED Group (n = 11) | Non-DED Group (n = 18) | p Value | |
---|---|---|---|
Age (yrs) | 23.27 ± 2.76 | 26.50 ± 6.35 | 0.071 |
Gender (male/female) | 4/7 | 8/11 | 0.717 |
Eye (OD/OS) | 6/5 | 9/9 | 1.000 |
Wearing CL (SCL/RGP/non) | 6/0/5 | 8/1/9 | 1.000 |
Wearing duration (yrs) | 4.92 ± 0.97 | 5.50 ± 4.17 | 0.696 |
Wearing frequency (days/wk) | 0.23 (0.03–5.00) | 2.60 ± 2.83 | 0.262 |
Daily wearing time (hrs) | 8.67 ± 1.75 | 7.72 ± 2.69 | 0.464 |
LogMAR UDVA | 1.19 ± 0.15 | 0.98 ± 0.36 | 0.036 |
SE (D) | −5.56 ± 1.37 | −4.78 ± 1.76 | 0.225 |
Dry eye related parameters | |||
OSDI | 14.58 (5.56–40.00) | 1.94 ± 3.74 | <0.001 |
SIT (mm/5 min) | 7.36 ± 5.16 | 13.22 ± 8.06 | 0.041 |
FBUT (s) | 3.55 ± 1.69 | 4.00 (2.00–18.00) | 0.162 |
Positive CFS | 45.45% (5/11) | 38.89% (7/18) | 1.000 |
CFS score | 0.00 (0.00–8.00) | 0.00 (0.00–3.00) | 0.543 |
First NIBUT (s) | 10.16 ± 6.09 | 7.27 (2.29–20.20) | 0.574 |
Average NIBUT (s) | 12.90 ± 5.42 | 13.01 ± 4.74 | 0.957 |
TMH (mm) | 0.25 (0.15–0.52) | 0.25 ± 0.10 | 0.404 |
Grade score of MG loss | 2.00 (1.00–6.00) | 1.67 ± 0.91 | 0.365 |
Abnormal LLC | 90.91% (10/11) | 38.89% (7/18) | 0.008 |
Uneven LLU | 72.73% (8/11) | 38.89% (7/18) | 0.128 |
DED Group (n = 11) | Non-DED Group (n = 18) | p Value (DED vs. Non-DED on Day 20) | p Value (DED vs. Non-DED: Pre- Postoperative Alterations) | |||||
---|---|---|---|---|---|---|---|---|
Day 20 after Surgery | Pre-Postoperative Alterations | p Value (Pre- vs. Day 20) | Day 20 after Surgery | Pre-Postoperative Alterations | p Value (Pre- vs. Day 20) | |||
LogMAR UDVA | −0.05 ± 0.07 | −1.24 ± 0.18 | <0.001 | −0.01 ± 0.09 | −1.00 (−2.00–(−0.48)) | <0.001 | 0.248 | 0.008 |
SE (D) | −0.01 ± 0.39 | 5.55 ± 1.23 | <0.001 | −0.34 ± 0.35 | 4.44 ± 1.80 | <0.001 | 0.026 | 0.085 |
OSDI | 17.49 ± 9.20 | −0.52 ± 15.00 | 0.911 | 9.76 (0.00–56.82) | 8.30 (0.00–52.65) | <0.001 | 0.333 | 0.031 |
SIT (mm/5 min) | 9.27 ± 6.17 | 1.91 ± 7.01 | 0.387 | 13.17 ± 10.21 | −0.06 ± 7.49 | 0.975 | 0.265 | 0.489 |
FBUT (s) | 3.00 ± 1.00 | −0.55 ± 1.57 | 0.277 | 3.00 (2.00–7.00) | −1.00 (−11.00–2.00) | 0.048 | 0.183 | 0.424 |
Positive CFS | 27.27% (3/11) | −18.18% (−2/11) | 0.625 | 27.78% (5/18) | −11.11% (−2/18) | 0.754 | 1.000 | 1.000 |
CFS score | 0.00 (0.00–15.00) | −1.00 (−8.00–15.00) | 0.814 | 0.00 (0.00–3.00) | −0.06 ± 1.39 | 0.868 | 0.732 | 0.743 |
First NIBUT (s) | 9.33 ± 3.64 | −0.84 ± 6.95 | 0.698 | 5.26 (2.48–23.00) | −1.63 ± 6.95 | 0.333 | 0.200 | 0.767 |
Average NIBUT (s) | 13.97 ± 2.72 | 1.07 ± 4.31 | 0.428 | 11.83 ± 4.77 | −1.18 ± 6.29 | 0.438 | 0.135 | 0.306 |
TMH (mm) | 0.30 ± 0.09 | 0.02 ± 0.14 | 0.688 | 0.28 (0.14–0.67) | 0.00 (−0.12–0.43) | 0.727 | 0.345 | 0.822 |
Abnormal LLC | 63.64% (7/11) | −27.27% (−3/11) | 0.250 | 44.44% (8/18) | 5.56% (1/18) | 1.000 | 0.450 | 0.693 |
Uneven LLU | 54.55% (6/11) | −18.18% (−2/11) | 0.625 | 66.67% (12/18) | 27.78% (5/18) | 0.180 | 0.696 | 0.197 |
R2/Coef | p Value | ||
---|---|---|---|
Univariate linear regression | Age | 0.493 | 0.004 |
Wearing duration | 0.094 | 0.266 | |
Wearing frequency | 0.302 | 0.034 | |
Daily wearing time | 0.138 | 0.172 | |
LogMAR UDVA | 0.186 | 0.108 | |
SE | 0.009 | 0.744 | |
OSDI | 0.052 | 0.415 | |
SIT | 0.037 | 0.494 | |
FBUT | 0.010 | 0.727 | |
CFS score | 0.111 | 0.225 | |
First NIBUT | 0.028 | 0.549 | |
Average NIBUT | 0.038 | 0.485 | |
TMH | 0.072 | 0.334 | |
Grade score of MG loss | 0.074 | 0.326 | |
Multiple linear regression | Age | 0.021 | 0.006 |
Wearing duration | −0.012 | 0.053 | |
Wearing frequency | −0.009 | 0.097 | |
Daily wearing time | 0.018 | 0.010 | |
LogMAR UDVA | −0.002 | 0.982 | |
CFS score | −0.004 | 0.564 | |
TMH | −0.286 | 0.043 | |
Grade score of MG loss | −0.002 | 0.917 | |
Cons | −0.540 | 0.029 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Y.; Wang, J.; Zhou, X.; Yu, Z.; Hong, J.; Le, Q. Impact of Dry Eye Disease on the Uncorrected Distance Visual Acuity after Small Incision Lenticule Extraction. J. Clin. Med. 2023, 12, 6179. https://doi.org/10.3390/jcm12196179
Shen Y, Wang J, Zhou X, Yu Z, Hong J, Le Q. Impact of Dry Eye Disease on the Uncorrected Distance Visual Acuity after Small Incision Lenticule Extraction. Journal of Clinical Medicine. 2023; 12(19):6179. https://doi.org/10.3390/jcm12196179
Chicago/Turabian StyleShen, Yan, Jiajia Wang, Xingtao Zhou, Zhiqiang Yu, Jiaxu Hong, and Qihua Le. 2023. "Impact of Dry Eye Disease on the Uncorrected Distance Visual Acuity after Small Incision Lenticule Extraction" Journal of Clinical Medicine 12, no. 19: 6179. https://doi.org/10.3390/jcm12196179
APA StyleShen, Y., Wang, J., Zhou, X., Yu, Z., Hong, J., & Le, Q. (2023). Impact of Dry Eye Disease on the Uncorrected Distance Visual Acuity after Small Incision Lenticule Extraction. Journal of Clinical Medicine, 12(19), 6179. https://doi.org/10.3390/jcm12196179