Feasibility and Short-Term SpO2/FiO2 Changes in Hospitalized Adults with COVID-19 Pneumonia after Chest Physiotherapy with Threshold PEP Valve: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [PubMed]
- WHO Coronavirus (COVID-19) Dashboard, n.d. Available online: https://covid19.who.int/ (accessed on 10 August 2023).
- Ministerio de Sanidad—Profesionales—Enfermedad por SARS-CoV-2 en España n.d. Available online: https://www.sanidad.gob.es/areas/alertasEmergenciasSanitarias/alertasActuales/nCov/situacionActual.htm (accessed on 10 August 2023).
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S.; et al. Post-acute COVID-19 syndrome. Nat. Med. 2021, 27, 601–615. [Google Scholar] [CrossRef]
- Asselah, T.; Durantel, D.; Pasmant, E.; Lau, G.; Schinazi, R.F. COVID-19: Discovery, diagnostics and drug development. J. Hepatol. 2021, 74, 168–184. [Google Scholar] [CrossRef]
- George, P.M.; Barratt, S.L.; Condliffe, R.; Desai, S.R.; Devaraj, A.; Forrest, I.; Gibbons, M.A.; Hart, N.; Jenkins, R.G.; McAuley, D.F.; et al. Respiratory follow-up of patients with COVID-19 pneumonia. Thorax 2020, 75, 1009–1016. [Google Scholar] [CrossRef]
- Pandey, P.; Agarwal, S. Rajkumar null Lung pathology in COVID-19: A systematic review. Int. J. Appl. Basic Med. Res. 2020, 10, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Torres-Castro, R.; Vasconcello-Castillo, L.; Alsina-Restoy, X.; Solis-Navarro, L.; Burgos, F.; Puppo, H.; Vilaró, J. Respiratory function in patients post-infection by COVID-19: A systematic review and meta-analysis. Pulmonology 2021, 27, 328–337. [Google Scholar] [CrossRef]
- Luján, M.; Sayas, J.; Mediano, O.; Egea, C. Non-invasive Respiratory Support in COVID-19: A Narrative Review. Front. Med. 2022, 8, 788190. [Google Scholar] [CrossRef]
- Nay, M.-A.; Hindre, R.; Perrin, C.; Clément, J.; Plantier, L.; Sève, A.; Druelle, S.; Morrier, M.; Lainé, J.-B.; Colombain, L.; et al. Prone position versus usual care in hypoxemic COVID-19 patients in medical wards: A randomised controlled trial. Crit. Care 2023, 27, 240. [Google Scholar] [CrossRef]
- Volpe, M.S.; Dias, L.M.S.; Leite, C.F.; Annoni, R.; Paro, F.M.; Oliveira, A.C.O.; Accioly, M.; Guimaraes, F.S. Chest physiotherapy techniques administered by certified specialists to hospitalized patients with COVID-19 in Brazil: A look towards future practice. Heart Lung 2023, 62, 87–94. [Google Scholar] [CrossRef]
- Kader, M.; Hossain, A.; Reddy, V.; Perera, N.K.P.; Rashid, M. Effects of short-term breathing exercises on respiratory recovery in patients with COVID-19: A quasi-experimental study. BMC Sports Sci. Med. Rehabil. 2022, 14, 60. [Google Scholar] [CrossRef] [PubMed]
- Demchuk, A.M.; Chatburn, R.L. Performance Characteristics of Positive Expiratory Pressure Devices. Respir. Care 2021, 66, 482–493. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, B.B.; Bø, E. Early physiotherapy management of patients with COVID-19 admitted to a university hospital in Norway (March 2020 to July 2021). Physiother. Res. Int. 2023, 28, e1998. [Google Scholar] [CrossRef]
- Olsén, M.F.; Lannefors, L.; Westerdahl, E. Positive expiratory pressure—Common clinical applications and physiological effects. Respir. Med. 2015, 109, 297–307. [Google Scholar] [CrossRef]
- Lee, A.L.; Burge, A.T.; Holland, A.E. Airway clearance techniques for bronchiectasis. Cochrane Database Syst. Rev. 2015, 2015, CD008351. [Google Scholar] [CrossRef]
- Burdon, J.G.; Juniper, E.F.; Killian, K.J.; Hargreave, F.E.; Campbell, E.J. The perception of breathlessness in asthma. Am. Rev. Respir. Dis. 1982, 126, 825–828. [Google Scholar]
- Nascimento, W.L.C.D.; Moura, D.M.; Almeida, K.D.O.; Gomes-Neto, M.; Jezler, S.F.d.O.; Alves, I.G.N. Lung and physical function in post COVID-19 and clinical and functional associations: A cross-sectional study in Brazil. Rev. Da Assoc. Médica Bras. 2023, 69, e20221436. [Google Scholar] [CrossRef]
- de la Plaza San Frutos, M.; Abuín Porras, V.; Blanco Morales, M.; Arrabé, M.G.; Estrada Barranco, C.; Rubio Alonso, M. Telemedicine in pulmonary rehabilitation—Benefits of a telerehabilitation program in post-COVID-19 patients: A controlled quasi-experimental study. Ther. Adv. Respir. Dis. 2023, 17, 17534666231167354. [Google Scholar] [CrossRef]
- Sedaghati, P.; Derakhshan, K.F.; Ahmadabadi, S.; Moghaddam, S.R.R. Effects of corrective and breathing exercises on respiratory function of older adults with a history of COVID-19 infection: A randomized controlled trial. BMC Complement. Med. Ther. 2023, 23, 199. [Google Scholar] [CrossRef]
- McNarry, M.A.; Berg, R.M.; Shelley, J.; Hudson, J.; Saynor, Z.L.; Duckers, J.; Lewis, K.; Davies, G.A.; Mackintosh, K.A. Inspiratory muscle training enhances recovery post-COVID-19: A randomised controlled trial. Eur. Respir. J. 2022, 60, 2103101. [Google Scholar] [CrossRef] [PubMed]
- Lazzeri, M.; Lanza, A.; Bellini, R.; Bellofiore, A.; Cecchetto, S.; Colombo, A.; D’Abrosca, F.; Del Monaco, C.; Gaudellio, G.; Paneroni, M.; et al. Respiratory physiotherapy in patients with COVID-19 infection in acute setting: A Position Paper of the Italian Association of Respiratory Physiotherapists (ARIR). Monaldi Arch. Chest Dis. 2020, 90, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Thomas, P.; Baldwin, C.; Beach, L.; Bissett, B.; Boden, I.; Cruz, S.M.; Gosselink, R.; Granger, C.L.; Hodgson, C.; Holland, A.E.; et al. Physiotherapy management for COVID-19 in the acute hospital setting and beyond: An update to clinical practice recommendations. J. Physiother. 2022, 68, 8–25. [Google Scholar] [CrossRef]
- Battaglini, D.; Robba, C.; Ball, L.; Silva, P.L.; Cruz, F.F.; Pelosi, P.; Rocco, P.R. Noninvasive respiratory support and patient self-inflicted lung injury in COVID-19: A narrative review. Br. J. Anaesth. 2021, 127, 353–364. [Google Scholar] [CrossRef]
- Xu, Z.; Han, Z.; Ma, D. Efficacy and safety of long-term use of a positive expiratory pressure device in chronic obstructive pulmonary disease patients, a randomized controlled trial. BMC Pulm. Med. 2023, 23, 17. [Google Scholar] [CrossRef] [PubMed]
- Wig, N.; Soneja, M.; Ray, A.; Dhochak, N.; Kabra, S.K.; Lodha, R. Positive Expiratory Pressure Oxygen Therapy for Respiratory Distress: A Single-arm Feasibility Trial. Indian J. Crit. Care Med. Peer-Rev. Off. Publ. Indian Soc. Crit. Care Med. 2022, 26, 1169–1174. [Google Scholar] [CrossRef]
- Mollerup, A.; Henriksen, M.; Larsen, S.C.; Bennetzen, A.S.; Simonsen, M.K.; Kofod, L.M.; Knudsen, J.D.; Nielsen, X.C.; Weis, N.; Heitmann, B.L. Effect of PEP flute self-care versus usual care in early COVID-19: Non-drug, open label, randomised controlled trial in a Danish community setting. BMJ 2021, 375, e066952. [Google Scholar] [CrossRef] [PubMed]
- Bland, J.M.; Altman, D.G. Regression towards the mean. BMJ 1994, 308, 1499. [Google Scholar] [CrossRef] [PubMed]
Age (years) | 66 (29 ; 91) 1 |
Female gender | 38 (30.6) 2 |
Charlson Index | 3 (0 ; 12) 1 |
FiO2 | 0.35 (0.24 ; 0.80) 1 |
Oxygen therapy devices | |
Nasal prongs | 15 (12) 2 |
Venturi Mask | 75 (60) 2 |
Reservoir Mask | 29 (23.2) 2 |
High-flow nasal oxygen | 6 (4.8) 2 |
Oxygen therapy days | 17 (5 ; 63) 1 |
Days until start of physiotherapy | 17.5 (3 ; 46) 1 |
Physiotherapy treatment days | 8 (1 ; 62) 1 |
Days of hospitalization | 18 (5 ; 73) 1 |
Orotracheal intubation rate | 4 (3.2) 2 |
Mortality rate | 6 (4.8) 2 |
Baseline (Day 1) | Post-Intervention (Day 1) | p | 95% CI | |
---|---|---|---|---|
Heart rate (heartbeats/min) | 78.5 ±14 | 80.8 ± 14 | 0.07 | −5.2–0.22 |
Respiratory rate (breaths/min) | 20.6 ± 6 | 19.6 ± 6 | 0.054 | −2.11–0.19 |
SpO2/FiO2 ratio | 250.1 ± 88.4 | 275.6 ± 97.5 | <0.001 | 11.4–39.1 |
Borg Scale | 0.5 ± 0.7 | 0.6 ± 0.6 | 0.64 | −0.05–0.08 |
No Improvement (n = 80) | Improvement (n = 45) | p | 95% CI | |
---|---|---|---|---|
Anthropometric and comorbidity | ||||
Female gender (%) | 20 (52) | 18 (47) | 0.1 | 0.22–1.09 |
Age (years, mean ± SD) | 63.5 ±12.5 | 66.4 ± 13.0 | 0.24 | −7.4–1.3 |
Charlson index (mean ± SD) | 2.9 ± 2.1 | 3.6 ± 2.6 | 0.13 | −1.52–0.19 |
Time-related variables | ||||
Hospital stay (days, mean ± SD) | 20.1 ± 11.8 | 24.8 ± 15.2 | 0.053 | −9.6–0.07 |
Days from admission until start of physiotherapy (mean ± SD) | 9.5 ± 6.7 | 11.1 ± 5.9 | 0.2 | −3.9–0.84 |
Clinical and gas exchange variables | ||||
SpO2/FiO2 ratio pre-intervention (mean ± SD) | 266.9 ± 86.0 | 220.7 ± 86.0 | 0.04 | 17.2–80.5 |
Need for FiO2 >0.4 (%) | 29 (36.2) | 25 (55) | 0.04 | 1.04–4.62 |
Respiratory rate pre (breaths /min, mean ± SD) | 21.3 ± 6.6 | 19.4 ± 6.4 | 0.12 | −0.5–4.2 |
Heart rate pre (beats/min, mean ± SD) | 78.0 ± 13.7 | 77.7 ± 14.1 | 0.62 | −6.4–3.9 |
Baseline dyspnoea (BORG Scale, mean ± SD) | 0.7 ± 1.5 | 0.2 ± 0.7 | 0.05 | 0.05–0.9 |
Outcome variables | ||||
Change in SpO2/FiO2 ratio (day 5 CR, mean ± SD) | 86.6 7 ± 6.1 | 135.5 ± 94.9 | 0.01 | 21.2–81.5 |
Endotracheal intubation (%) | 3 (3) | 1 (2) | 0.99 | 0.05–5.77 |
Mortality (%) | 3 (3) | 3 (6) | 0.37 | 0.35–9.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Estela, J.; Sánchez, E.J.; Mateu, G.; Fernández, E.; Robert, E.; Pozo, S.; Noray, M.; Oliva, J.C.; Caballero, F.M.; Luján, M. Feasibility and Short-Term SpO2/FiO2 Changes in Hospitalized Adults with COVID-19 Pneumonia after Chest Physiotherapy with Threshold PEP Valve: A Cross-Sectional Study. J. Clin. Med. 2023, 12, 5544. https://doi.org/10.3390/jcm12175544
Estela J, Sánchez EJ, Mateu G, Fernández E, Robert E, Pozo S, Noray M, Oliva JC, Caballero FM, Luján M. Feasibility and Short-Term SpO2/FiO2 Changes in Hospitalized Adults with COVID-19 Pneumonia after Chest Physiotherapy with Threshold PEP Valve: A Cross-Sectional Study. Journal of Clinical Medicine. 2023; 12(17):5544. https://doi.org/10.3390/jcm12175544
Chicago/Turabian StyleEstela, Júlia, Emilio José Sánchez, Georgina Mateu, Elena Fernández, Eva Robert, Silvia Pozo, Mariona Noray, Joan C. Oliva, Fernanda M. Caballero, and Manel Luján. 2023. "Feasibility and Short-Term SpO2/FiO2 Changes in Hospitalized Adults with COVID-19 Pneumonia after Chest Physiotherapy with Threshold PEP Valve: A Cross-Sectional Study" Journal of Clinical Medicine 12, no. 17: 5544. https://doi.org/10.3390/jcm12175544
APA StyleEstela, J., Sánchez, E. J., Mateu, G., Fernández, E., Robert, E., Pozo, S., Noray, M., Oliva, J. C., Caballero, F. M., & Luján, M. (2023). Feasibility and Short-Term SpO2/FiO2 Changes in Hospitalized Adults with COVID-19 Pneumonia after Chest Physiotherapy with Threshold PEP Valve: A Cross-Sectional Study. Journal of Clinical Medicine, 12(17), 5544. https://doi.org/10.3390/jcm12175544