Sustained Treatment Response after Intravenous Cyclophosphamide in a Patient with Therapy-Resistant COVID-19 Acute Respiratory Distress Syndrome: A Case Report
Abstract
:1. Introduction
2. Case Presentation
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AM | alveolar macrophages |
AP | alkaline phosphatase |
ARDS | acute respiratory distress syndrome |
BAL | bronchoalveolar lavage |
CC | cell count |
COVID-19 | coronavirus disease 2019 |
CP1 | cyclophosphamide and prednisolone regimen 1 |
CP2 | cyclophosphamide and prednisolone regimen 2 |
CP3 | cyclophosphamide and prednisolone regimen 3 |
CP4 | cyclophosphamide and prednisolone regimen 4 |
CP5 | cyclophosphamide and prednisolone regimen 5 |
CP6 | cyclophosphamide and prednisolone regimen 6 |
CT | computer tomography |
ECMO | extracorporeal membrane oxygenation |
EG | eosinophile granulocytes |
GGT | γ-glutamyltransferase |
HFNC | high-flow nasal cannula |
ICU | intensive care unit |
IL-6 | interleukin 6 |
ILD | interstitial lung disease |
LYM | lymphocytes |
MIV | mechanical invasive ventilation |
MRI | magnetic resonance imaging |
NG | neutrophile granulocytes |
NIV | non-invasive ventilation |
P/F | pO2/FiO2 |
p-ANCA | perinuclear anti-neutrophil cytoplasmic antibody positive |
PCR | polymerase chain reaction |
PEEP | positive end-expiratory pressure |
SARS-CoV-2 | severe acute respiratory syndrome coronavirus type 2 |
vv-ECMO | venovenous extracorporeal membrane oxygenation |
References
- Montenegro, F.; Unigarro, L.; Paredes, G.; Moya, T.; Romero, A.; Torres, L.; Lopez, J.C.; Gonzalez, F.E.J.; Del Pozo, G.; Lopez-Cortes, A.; et al. Acute respiratory distress syndrome (ARDS) caused by the novel coronavirus disease (COVID-19): A practical comprehensive literature review. Expert Rev. Respir. Med. 2021, 15, 183–195. [Google Scholar] [CrossRef]
- Alhazzani, W.; Evans, L.; Alshamsi, F.; Moller, M.H.; Ostermann, M.; Prescott, H.C.; Arabi, Y.M.; Loeb, M.; Ng Gong, M.; Fan, E.; et al. Surviving Sepsis Campaign Guidelines on the Management of Adults with Coronavirus Disease 2019 (COVID-19) in the ICU: First Update. Crit. Care Med. 2021, 49, e219–e234. [Google Scholar] [CrossRef]
- Welker, C.; Huang, J.; Gil, I.J.N.; Ramakrishna, H. 2021 Acute Respiratory Distress Syndrome Update, with Coronavirus Disease 2019 Focus. J. Cardiothorac. Vasc. Anesth. 2022, 36, 1188–1195. [Google Scholar] [CrossRef]
- Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. Hlh Across Speciality Collaboration UK. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 2020, 395, 1033–1034. [Google Scholar] [CrossRef]
- Coperchini, F.; Chiovato, L.; Croce, L.; Magri, F.; Rotondi, M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev. 2020, 53, 25–32. [Google Scholar] [CrossRef]
- Group, R.C. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial. Lancet 2021, 397, 1637–1645. [Google Scholar]
- Ghosn, L.; Chaimani, A.; Evrenoglou, T.; Davidson, M.; Grana, C.; Schmucker, C.; Bollig, C.; Henschke, N.; Sguassero, Y.; Nejstgaard, C.H.; et al. Interleukin-6 blocking agents for treating COVID-19: A living systematic review. Cochrane Database Syst. Rev. 2021, 3, CD013881. [Google Scholar]
- Rosas, I.O.; Brau, N.; Waters, M.; Go, R.C.; Hunter, B.D.; Bhagani, S.; Skiest, D.; Aziz, M.S.; Cooper, N.; Douglas, I.S.; et al. Tocilizumab in Hospitalized Patients with Severe COVID-19 Pneumonia. N. Engl. J. Med. 2021, 384, 1503–1516. [Google Scholar] [CrossRef]
- Investigators, R.-C.; Gordon, A.C.; Mouncey, P.R.; Al-Beidh, F.; Rowan, K.M.; Nichol, A.D.; Arabi, Y.M.; Annane, D.; Beane, A.; van Bentum-Puijk, W.; et al. Interleukin-6 Receptor Antagonists in Critically Ill Patients with COVID-19. N. Engl. J. Med. 2021, 384, 1491–1502. [Google Scholar] [CrossRef]
- Revannasiddaiah, S.; Kumar Devadas, S.; Palassery, R.; Kumar Pant, N.; Maka, V.V. A potential role for cyclophosphamide in the mitigation of acute respiratory distress syndrome among patients with SARS-CoV-2. Med. Hypotheses 2020, 144, 109850. [Google Scholar] [CrossRef]
- RECOVERY Collaborative Group; Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; et al. Dexamethasone in Hospitalized Patients with COVID-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar]
- Group WHOREAfC-TW; Sterne, J.A.C.; Murthy, S.; Diaz, J.V.; Slutsky, A.S.; Villar, J.; Angus, D.C.; Annane, D.; Azevedo, L.C.P.; Berwanger, O.; et al. Association Between Administration of Systemic Corticosteroids and Mortality Among Critically Ill Patients with COVID-19: A Meta-analysis. JAMA 2020, 324, 1330–1341. [Google Scholar]
- Emadi, A.; Jones, R.J.; Brodsky, R.A. Cyclophosphamide and cancer: Golden anniversary. Nat. Rev. Clin. Oncol. 2009, 6, 638–647. [Google Scholar] [CrossRef]
- Kondoh, Y.; Taniguchi, H.; Yokoi, T.; Nishiyama, O.; Ohishi, T.; Kato, T.; Suzuki, K.; Suzuki, R. Cyclophosphamide and low-dose prednisolone in idiopathic pulmonary fibrosis and fibrosing nonspecific interstitial pneumonia. Eur. Respir. J. 2005, 25, 528–533. [Google Scholar] [CrossRef]
- Nanki, N.; Fujita, J.; Yamaji, Y.; Maeda, H.; Kurose, T.; Kaji, M.; Satoh, K.; Miyatani, K.; Yamadori, I.; Ohtsuki, Y.; et al. Nonspecific interstitial pneumonia/fibrosis completely recovered by adding cyclophosphamide to corticosteroids. Intern. Med. 2002, 41, 867–870. [Google Scholar] [CrossRef]
- Idiopathic Pulmonary Fibrosis Clinical Research Network; Raghu, G.; Anstrom, K.J.; King, T.E., Jr.; Lasky, J.A.; Martinez, F.J. Prednisone, azathioprine, and N-acetylcysteine for pulmonary fibrosis. N. Engl. J. Med. 2012, 366, 1968–1977. [Google Scholar]
- Roig, V.; Herrero, A.; Arroyo-Cozar, M.; Vielba, D.; Juarros, S.; Macias, E. Comparative study between oral azathioprine and intravenous cyclophosphamide pulses in the treatment of idiopathic pulmonary fibrosis. Arch. Bronconeumol. 2010, 46, 15–19. [Google Scholar] [CrossRef]
- Pereira, C.A.; Malheiros, T.; Coletta, E.M.; Ferreira, R.G.; Rubin, A.S.; Otta, J.S.; Rocha, N.S. Survival in idiopathic pulmonary fibrosis-cytotoxic agents compared to corticosteroids. Respir. Med. 2006, 100, 340–347. [Google Scholar] [CrossRef]
- Robles-Perez, A.; Molina-Molina, M. Treatment Considerations of Lung Involvement in Rheumatologic Disease. Respiration 2015, 90, 265–274. [Google Scholar] [CrossRef]
- Corte, T.J.; Ellis, R.; A Renzoni, E.; Hansell, D.M.; Nicholson, A.G.; du Bois, R.M.; Wells, A.U. Use of intravenous cyclophosphamide in known or suspected, advanced non-spec.ific interstitial pneumonia. Sarcoidosis Vasc. Diffuse Lung Dis. 2009, 26, 132–138. [Google Scholar]
- Marigliano, B.; Soriano, A.; Margiotta, D.; Vadacca, M.; Afeltra, A. Lung involvement in connective tissue diseases: A comprehensive review and a focus on rheumatoid arthritis. Autoimmun. Rev. 2013, 12, 1076–1084. [Google Scholar] [CrossRef]
- Schupp, J.C.; Kohler, T.; Muller-Quernheim, J. Usefulness of Cyclophosphamide Pulse Therapy in Interstitial Lung Diseases. Respiration 2016, 91, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Hayat Syed, M.K.; Bruck, O.; Kumar, A.; Surani, S. Acute exacerbation of interstitial lung disease in the intensive care unit: Principles of diagnostic evaluation and management. World J. Crit. Care Med. 2023, 12, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Bouros, D.; Nicholson, A.C.; Polychronopoulos, V.; du Bois, R.M. Acute interstitial pneumonia. Eur. Respir. J. 2000, 15, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, M.; Verleden, S.E.; Kuehnel, M.; Haverich, A.; Welte, T.; Laenger, F.; Vanstapel, A.; Werlein, C.; Stark, H.; Tzankov, A.; et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in COVID-19. N. Engl. J. Med. 2020, 383, 120–128. [Google Scholar] [CrossRef]
- Gonçalves-Venade, G.; Lacerda-Príncipe, N.; Roncon-Albuquerque, R., Jr.; Paiva, J.A. Extracorporeal Membrane Oxygenation for Refractory Severe Respiratory Failure in Acute Interstitial Pneumonia. Artif. Organs 2018, 42, 569–574. [Google Scholar] [CrossRef]
- McDonald, G.B.; Slattery, J.T.; Bouvier, M.E.; Ren, S.; Batchelder, A.L.; Kalhorn, T.F.; Schoch, H.G.; Anasetti, C.; Gooley, T. Cyclophosphamide metabolism, liver toxicity, and mortality following hematopoietic stem cell transplantation. Blood 2003, 101, 2043–2048. [Google Scholar] [CrossRef]
- Malik, S.W.; Myers, J.L.; De Remee, R.A.; Specks, U. Lung toxicity associated with cyclophosphamide use. Two distinct patterns. Am. J. Respir. Crit. Care Med. 1996, 154, 1851–1856. [Google Scholar] [CrossRef]
- Dhesi, S.; Chu, M.P.; Blevins, G.; Paterson, I.; Larratt, L.; Oudit, G.Y.; Kim, D.H. Cyclophosphamide-Induced Cardiomyopathy: A Case Report, Review, and Recommendations for Management. J. Investig. Med. High Impact Case Rep. 2013, 1, 2324709613480346. [Google Scholar] [CrossRef]
- Malpica, L.; Moll, S. Practical approach to monitoring and prevention of infectious complications associated with systemic corticosteroids, antimetabolites, cyclosporine, and cyclophosphamide in nonmalignant hematologic diseases. Hematol. Am. Soc. Hematol. Educ. Program 2020, 2020, 319–327. [Google Scholar] [CrossRef]
- Moeinzadeh, F.; Dezfouli, M.; Naimi, A.; Shahidi, S.; Moradi, H. Newly Diagnosed Glomerulonephritis during COVID-19 Infection Undergoing Immunosuppression Therapy, a Case Report. Iran. J. Kidney Dis. 2020, 14, 239–242. [Google Scholar] [PubMed]
- Zhang, B.; Zhou, X.; Qiu, Y.; Song, Y.; Feng, F.; Feng, J.; Song, Q.; Jia, Q.; Wang, J. Clinical characteristics of 82 cases of death from COVID-19. PLoS ONE 2020, 15, e0235458. [Google Scholar] [CrossRef] [PubMed]
- Tirelli, C.; De Amici, M.; Albrici, C.; Mira, S.; Nalesso, G.; Re, B.; Corsico, A.G.; Mondoni, M.; Centanni, S. Exploring the Role of Immune System and Inflammatory Cytokines in SARS-CoV-2 Induced Lung Disease: A Narrative Review. Biology 2023, 12, 177. [Google Scholar] [CrossRef] [PubMed]
- Amstutz, A.; Speich, B.; Mentré, F.; Rueegg, C.S.; Belhadi, D.; Assoumou, L.; Burdet, C.; Murthy, S.; Dodd, L.E.; Wang, Y.; et al. Effects of remdesivir in patients hospitalised with COVID-19: A systematic review and individual patient data meta-analysis of randomised controlled trials. Lancet Respir. Med. 2023, 11, 453–464. [Google Scholar] [CrossRef] [PubMed]
- Annane, D.; Pastores, S.M.; Rochwerg, B.; Arlt, W.; Balk, R.A.; Beishuizen, A.; Briegel, J.; Carcillo, J.; Christ-Crain, M.; Cooper, M.S.; et al. Guidelines for the diagnosis and management of critical illness-related corticosteroid insufficiency (CIRCI) in critically ill patients (Part I): Society of Critical Care Medicine (SCCM) and European Society of Intensive Care Medicine (ESICM) 2017. Intensive Care Med. 2017, 43, 1751–1763. [Google Scholar] [CrossRef] [PubMed]
- DeVrieze, B.W.; Hurley, J.A. Goodpasture Syndrome; StatPearls: Treasure Island, FL, USA, 2023. [Google Scholar]
- Brummaier, T.; Pohanka, E.; Studnicka-Benke, A.; Pieringer, H. Using cyclophosphamide in inflammatory rheumatic diseases. Eur. J. Intern. Med. 2013, 24, 590–596. [Google Scholar] [CrossRef]
- Teles, K.A.; Medeiros-Souza, P.; Lima, F.A.C.; Araujo, B.G.; Lima, R.A.C. Cyclophosphamide administration routine in autoimmune rheumatic diseases: A review. Rev. Bras. Reumatol. Engl. Ed. 2017, 57, 596–604. [Google Scholar] [CrossRef]
- Gattinoni, L.; Marini, J.J. Isn’t it time to abandon ARDS? The COVID-19 lesson. Crit. Care 2021, 25, 326. [Google Scholar] [CrossRef]
- Goligher, E.C.; Ranieri, V.M.; Slutsky, A.S. Is severe COVID-19 pneumonia a typical or atypical form of ARDS? And does it matter? Intensive Care Med. 2021, 47, 83–85. [Google Scholar] [CrossRef]
- Chiumello, D.; Busana, M.; Coppola, S.; Romitti, F.; Formenti, P.; Bonifazi, M.; Pozzi, T.; Palumbo, M.M.; Cressoni, M.; Herrmann, P.; et al. Physiological and quantitative CT-scan characterization of COVID-19 and typical ARDS: A matched cohort study. Intensive Care Med. 2020, 46, 2187–2196. [Google Scholar] [CrossRef]
- Patel, B.V.; Arachchillage, D.J.; Ridge, C.A.; Bianchi, P.; Doyle, J.F.; Garfield, B.; Ledot, S.; Morgan, C.; Passariello, M.; Price, S.; et al. Pulmonary Angiopathy in Severe COVID-19: Physiologic, Imaging, and Hematologic Observations. Am. J. Respir. Crit. Care Med. 2020, 202, 690–699. [Google Scholar] [CrossRef] [PubMed]
- Garg, M.; Maralakunte, M.; Garg, S.; Dhooria, S.; Sehgal, I.; Bhalla, A.S.; Vijayvergiya, R.; Grover, S.; Bhatia, V.; Jagia, P.; et al. The Conundrum of ‘Long-COVID-19’: A Narrative Review. Int. J. Gen. Med. 2021, 14, 2491–2506. [Google Scholar] [CrossRef] [PubMed]
- Raveendran, A.V.; Jayadevan, R.; Sashidharan, S. Long COVID: An overview. Diabetes Metab. Syndr. 2021, 15, 869–875. [Google Scholar] [CrossRef]
- Castanares-Zapatero, D.; Chalon, P.; Kohn, L.; Dauvrin, M.; Detollenaere, J.; Maertens de Noordhout, C.; Primus-de Jong, C.; Cleemput, I.; Van den Heede, K. Pathophysiology and mechanism of long COVID: A comprehensive review. Ann. Med. 2022, 54, 1473–1487. [Google Scholar] [CrossRef]
- Bartoli, A.; Cursaro, C.; Seferi, H.; Andreone, P. Secondary Sclerosing Cholangitis After SARS-CoV2: ICU Ketamine Use or Virus-Specific Biliary Tropism and Injury in the Context of Biliary Ischemia in Critically Ill Patients? Hepat. Med. 2023, 1, 93–112. [Google Scholar] [CrossRef] [PubMed]
BAL | 1 | 2 | 3 | 4 | Reference Value |
---|---|---|---|---|---|
Cell Count (×106) | 1.2 | 11.75 | 2.35 | 10.5 | 9–24 × 106 |
Alveolar Macrophages (%) | 8 | 77 | 82 | 95 | >84 |
Lymphocytes (%) | 42 | 6 | 10 | 3 | <14 |
Neutrophile Granulocytes (%) | 50 | 15 | 8 | 1 | <3 |
Eosinophile Granulocytes (%) | 0 | 2 | 0 | 1 | <1 |
Basophile Granulocytes (%) | 0 | 0 | 0 | 0 | <1 |
Pulmonary Complications | Pre-Existing | During | After | ICU |
---|---|---|---|---|
Ventilator-associated pneumonia | x | |||
Lung fibrosis | x | x | ||
Sleep apnea | x | |||
Non-pulmonary complications | Pre-existing | During | After | ICU |
Cyclophosphamide-induced neutropenia | x | |||
Atrial fibrillation | x | |||
Cholestasis | x | x | ||
Secondary sclerosing cholangitis | x | |||
Critical illness polyneuropathy | x | x | ||
Peroneal lesion | x | x | ||
One time grand mal seizure | x | |||
Panic attacks | x | x | ||
Comorbidities | Pre-existing | During | After | ICU |
Depression | x | x | x | |
Migraine | x | x | x | |
Obesity | x | x | x | |
Disc herniation | x | x | x |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haselwanter, P.; Bal, C.; Gompelmann, D.; Idzko, M.; Prosch, H.; Zauner, C.; Schneeweiss-Gleixner, M. Sustained Treatment Response after Intravenous Cyclophosphamide in a Patient with Therapy-Resistant COVID-19 Acute Respiratory Distress Syndrome: A Case Report. J. Clin. Med. 2023, 12, 5506. https://doi.org/10.3390/jcm12175506
Haselwanter P, Bal C, Gompelmann D, Idzko M, Prosch H, Zauner C, Schneeweiss-Gleixner M. Sustained Treatment Response after Intravenous Cyclophosphamide in a Patient with Therapy-Resistant COVID-19 Acute Respiratory Distress Syndrome: A Case Report. Journal of Clinical Medicine. 2023; 12(17):5506. https://doi.org/10.3390/jcm12175506
Chicago/Turabian StyleHaselwanter, Patrick, Christina Bal, Daniela Gompelmann, Marco Idzko, Helmut Prosch, Christian Zauner, and Mathias Schneeweiss-Gleixner. 2023. "Sustained Treatment Response after Intravenous Cyclophosphamide in a Patient with Therapy-Resistant COVID-19 Acute Respiratory Distress Syndrome: A Case Report" Journal of Clinical Medicine 12, no. 17: 5506. https://doi.org/10.3390/jcm12175506
APA StyleHaselwanter, P., Bal, C., Gompelmann, D., Idzko, M., Prosch, H., Zauner, C., & Schneeweiss-Gleixner, M. (2023). Sustained Treatment Response after Intravenous Cyclophosphamide in a Patient with Therapy-Resistant COVID-19 Acute Respiratory Distress Syndrome: A Case Report. Journal of Clinical Medicine, 12(17), 5506. https://doi.org/10.3390/jcm12175506