Risk Prediction Models for Peri-Operative Mortality in Patients Undergoing Major Vascular Surgery with Particular Focus on Ruptured Abdominal Aortic Aneurysms: A Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Extraction and Evidence Synthesis
3. Results
3.1. General Overview
3.2. Perioperative Mortality Risk Scores in Major Vascular Surgery/Elective AAA (Table 1 and Table 2)
3.2.1. Comorbidity–Polypharmacy Score (CPPS)
3.2.2. Long-Term Survival Score (LTSS)
3.2.3. Simple Vascular Quality Initiative-Frailty Score (VQI-FS)
3.2.4. Physiological and Operative Severity Score for the enumeration of Mortality and Morbidity (POSSUM)
3.2.5. The New Zealand Vascular Surgical Risk Tool (NZRISK-VASC)
3.2.6. Preoperative Score to Predict Postoperative Mortality (POSPOM)
Risk Score | Author, Year | Algorithm/Variables | Prediction |
---|---|---|---|
Comorbidity–Polypharmacy Score (CCPS) | Evans, 2012 [13] | Sum of the number of preinjury comorbid conditions and home medications | 0–7 (mild), 8–14 (moderate), 15–21 (severe) and >21 (morbid) |
Long-term survival score (LTSS) | Landsberg, 2006 [20] | RCRI criteria (congestive heart failure, ischemic heart disease, insulin-treated diabetes mellitus, chronic renal failure and cerebrovascular disease), +age > 65 years, ST-segment depression on preoperative 12-lead EKG, and both insulin-treated and insulin-independent DM | 0–1 (low risk), 2–3 (intermediate risk) and ≥4 (high risk) |
Simple Vascular Quality Initiative-Frailty Score (VQI-FS) | Kraiss, 2022 [22] | Congestive heart failure, renal impairment, chronic obstructive pulmonary disease, not living at home, not ambulatory, anemia and underweight status | % |
Physiological and Operative Severity Score for the enumeration of Mortality and Morbidity (POSSUM) | Copeland, 1991 [23] | Age, cardiac, respiratory, BP, HR, GCS, HB, WBC, Urea, Sodium, Potassium, EKG, operative severity, number of procedures, EBL, peritoneal soiling, malignancy and urgency | % |
The New Zealand Vascular Surgical Risk Tool (NZRISK-VASC) | Kim, 2021 [33] | ASA score, gender, urgency, malignancy, presence of renal failure, diabetes, anatomical site, structure operated and endovascular procedure | % |
Preoperative Score to Predict Postoperative Mortality (POSPOM) | Le Manach, 2016 [34] | Age, ischemic heart disease, cardiac arrhythmia or heart blocks, chronic heart failure or cardiomyopathy, peripheral vascular disease, dementia, cerebrovascular disease, hemiplegia, chronic obstructive pulmonary disease, chronic respiratory failure, chronic alcohol abuse, cancer, diabetes, transplanted organ(s), chronic dialysis, chronic renal failure, and type of surgery | 0–50. ≤20: ≤0.04% 25: 1.73% 30: 5.65% 40: 11.77% |
British Aneurysm Repair score (BAR) | Grant, 2013 [37] | Open repair, increasing age, female sex, serum creatinine level over 120 µmol/L, cardiac disease, abnormal electrocardiogram, previous aortic surgery or stent, abnormal white cell count, abnormal serum sodium level, AAA diameter and ASA fitness grade | Low risk: 0.8% Medium risk: 2.3% High risk: 7.1% |
Author, Year | Score | n | Score Association | Mortality Association | Mortality ROC Value |
---|---|---|---|---|---|
Khanh, 2020 [19] | CPPS | 466 (61 EVAR) | longer LOS (p < 0.001) | HR 2.2, CI 1.3–3.3 | 1-year value: 0.81 5-year value: 0.72 (p < 0.001) |
Subramaniam, 2011 [21] | LTSS vs. RCRI | 921 | LTSS provides better discrimination between each adjacent two-risk score than RCRI | LTSS provides a better prediction than RCRI | 6-month value: 0.66 ± 0.03 vs. 0.57 ± 0.04, p = 0.02 3-year value: 0.70 ± 0.02 vs. 0.61 ± 0.02, p < 0.0001 |
Byrne, 2009 [30] | V-POSSUM | 106 | Predicted and observed morbidity (41 and 35.8%, respectively) were not significantly different (p = 0.066). V-POSSUM morbidity scores closely correlate with observed outcomes. | Significant association | 0.97250 |
Midwinter, 1999 [31] | POSSUM and P-POSSUM | 221 | The risk of morbidity predicted by the POSSUM was not significantly different from the observed complication rate. | POSSUM score overestimated deaths, while the P-POSSUM score was not significantly different from the observed death rate. | - |
Teixeira, 2018 [32] | POSSUM, P-POSSUM, V-POSSUM, V-POSSUM physiology, and V-POSSUM Cambridge equation | 208 (≥65 years) | Prediction of morbidity was inadequate. | P-POSSUM had the best performance when predicting 30-day mortality. All the others overestimated 30-day mortality. | 0.21 [0.04–0.37], 1.35 [0.27–2.44], 0.39 [0.08–0.71], 0.27 [0.06–0.49], 0.44 [0.09–0.80] and 0.56 [0.42–0.71] |
Layer, 2021 [35] | POSPOM | 199,780 | - | Good performance | 0.771 |
Reis, 2019 [36] | POSSUM and POSPOM | 833 ICU patients | - | Observed mortality was within the predicted range (1–5% after intermediate-risk and >5% after high-risk surgery). POSSUM and POSPOM had slightly better predictive capacity than the ICU risk scores. | - |
3.2.7. British Aneurysm Repair Score (BAR)
3.3. Perioperative Mortality Risk Scores in Ruptured Abdominal Aortic Aneurysm (rAAA) (Table 3 and Table 4)
3.3.1. Hardmann Index (HI)
3.3.2. Glasgow Aneurysm Score (GAS)
3.3.3. Vancouver Score
3.3.4. Edinburgh Ruptured Aneurysm Score (ERAS)
3.3.5. Vascular Study Group of New England (VSGNE) rAAA
3.3.6. Rapid Ruptured Abdominal Aortic Aneurysm Score (RrAAAS)
3.3.7. Dutch Aneurysm Score (DAS)
3.3.8. Clinical Assessment of Instability—Weingarten Score
3.3.9. Artificial Neuronal Network (ANN)
3.3.10. Harborview Medical Center Preoperative Risk Score (HRS)
Risk Score | Author, Year | Algorithm/Variables | Mortality Prediction |
---|---|---|---|
Hardmann Index | Hardman, 1996 [38] | Age > 76 years, serum creatinine >190 μmol/L, HB < 9 g/dL, episode of loss of consciousness (defined as any syncopal episodes), and evidence of cardiac ischemia (>1 mm ST segment depression or associated T-wave change) on EKG | 0 factors: 16% 1 factor: 37% 2 factors; 72% ≥3 factors: 100% No patients had all 5. |
Glasgow aneurysm score (GAS) | Samy, 1994 [40] | Risk score = (age in years) + (17 for shock) + (7 for myocardial disease) + (10 for cerebrovascular disease) + (14 for renal disease). | >95 = >80% |
Updated Glasgow aneuyrys score | Visser, 2004 [44] | Age (years) + 7 for cardiac comorbidity (defined as previous history of myocardial infarction, cardiac surgery, angina pectoris or arrhythmia) + 10 for cerebrovascular comorbidity (defined as previous history of stroke or transient ischemic attack) + 17 for shock (defined as an in hospital systolic blood pressure <80 mmHg) + 14 for renal insufficiency (defined as a pre-operative serum creatinine >160 mmol/L) + 7 for OAR | % |
Vancouver score | Chen, 1996 [45] | [ex/(1 + ex)], where e is the base of the natural logarithm and x = −3.44 + age (years) × 0.062 + loss of Consciousness (yes = 1; no = −1) × 1.14 + cardiac arrest (yes = 1; no = −1) × 0.6 | % |
Edimburgh Ruptured Aneurysm Score (ERAS) | Tambyraja, 2007 [47] | GCS < 15, systolic BP < 90 mmHg, and HB < 5.6 mmol/L | Score ≤ 1 = 30% Score = 2 = 50% Score = 3 = 80% |
Vascular Study Group Of New England (VSGNE) rAAA | Robinson, 2009 [49] | Age > 76 years (OR 5.3; CI 2.8–10.1), preoperative cardiac arrest (OR 4.3; CI 1.6–12), loss of consciousness (OR 2.6; CI 1.2–6), and suprarenal aortic clamp (OR 2.4; CI 1.3–4.6). | 0 = 8% 1 = 25% 2 = 37% 3 = 60% 4 = 80% 5 = 87% |
Rapid Ruptured Abdominal Aortic Aneurysm Score (RrAAAS) | Healey, 2017 [50] | % mortality = 14 + 22 × (age >76) + 9 × (creatinine >1.5) + 20 × (bp <70) | 14–65% |
Dutch aneurysm score (DAS) | von Meijenfeldt, 2017 [52] | Age, lowest in-hospital systolic blood pressure, cardiopulmonary resuscitation, and hemoglobin level | ≥80% = 83% |
Weigarten score | Weigarten, 2015 [53] | Unstable status: hypotension, preoperative cardiac arrest, loss of consciousness, and/or the need for preoperative tracheal intubation | - |
Artificial Neuronal Network (ANN) | Wise, 2015 [55] | Age ≥ 70, loss of consciousness, cardiac arrest, and shock | 0 = 11% 1 = 16% 2 = 44% 3 = 76% 4 = 89% |
Harborview Medical Center preoperative risk score (HRS) | Garland, 2017 [56] | Age >76 years (OR 2.11; CI 1.47–4.97; p = 0.011), creatinine concentration >2.0 mg/dL (OR 3.66; CI 1.85–7.24; p < 0.001), pH <7.2 (OR 2.58; CI 1.27–5.24; p = 0.009), and systolic blood pressure ever <70 mmHg (OR 2.70; CI 1.46–4.97; p = 0.002) | 1 = 22% 2 = 69% 3 = 80% 4 = 100% |
Author, Year | Score | n | Mortality Association |
---|---|---|---|
Conroy, 2020 [39] | Harmann index | 95 EVAR | Increasing scores on the Hardman index showed an increasing mortality rate. Thirty-day mortality score 0–2 = 30.5%; score ≥ 3 = 69.2% (p = 0.01, RR 2.26, CI 0.98–5.17). This is lower than predicted in both patient groups based on the Hardman index score. Loss of consciousness was the only statistically significant independent predictor of 30-day mortality with a risk ratio of 3.16 (CI 2.00–4.97, p < 0.001). |
Özen, 2015 [42] | GAS | 121 OR | The most appropriate cut-off value for GAS was determined as 78.5 (AUC = 0.669, p = 0.002, sensitivity: 64.6%, specificity: 60.3%). GAS value above 78.5 is associated with almost threefold increase in mortality (p = 0.007, OR:2.76, CI 1.30–5.89). In further logistic regression models, GAS value and preoperative hematocrit values were found to be independent predictors for mortality (p = 0.023 and p = 0.007, respectively). |
Korhonen, 2004 [43] | GAS | 835 | Univariate: coronary artery disease (p = 0.005), preoperative shock (p < 0.001), age (p < 0.001), and the GAS (p < 0.001). Multivariate: Preoperative shock [odds ratio [OR] 2.13 (CI 1.45–3.11); p < 0.001] and the GAS [for an increase of ten units: OR 1.81 (CI 1.54–2.12); p < 0.001]. The best cut-off value of the GAS in predicting postoperative death was 84 [AUC 0.75 (9% CI 0.72–0.78), standard error 0.17; p < 0.001]. |
Hsiang, 2001 [46] | Vancouver score | 134 | Preop > 90%, the sensitivity, specificity, and positive and negative predictive values were 25%, 98%, 95% and 54%, respectively. Mortality risk > 80%, values were 37%, 94%, 87% and 57%, respectively. Immediate postoperative mortality risk ≥ 90%; the sensitivity, specificity, and positive and negative predictive values were 17%, 87%, 60% and 49%, respectively. Mortality risk ≥80%; these values were 22%, 84%, 60% and 50%, respectively. |
Tambyraja, 2004 [48] | ERAS vs. GAS, Hardman index, POSSUM and V-POSSUM | 111 | The GAS, Hardman Index and the ERAS were statistically related to mortality. However, the analysis via ROC curve revealed the ERAS to have an AUC of 0.72 (CI, 0.61–0.83). The V-POSSUM and POSSUM models had an ROC value of 0.70 (CI 0.59–0.82). The Hardman Index and GAS had an ROC value of 0.69 (CI 0.57–0.80) and 0.64 (CI 0.52–0.76), respectively. |
Neilson, 2017 [51] | RrAAAS vs. GAS and ERAS | 2704 | Neither GAS nor ERAS provides a direct prediction of mortality; observed mortality in the VQI minus VSGNE cohort tended to be somewhat lower than predictions of the original RrAAAS. A recalibrated equation predicting the percent mortality was as follows: Mortality (%) = 16 + 12 × (age > 76) + 8 × (creatinine > 1.5) + 20 × (systolic blood pressure < 70). |
Von Meijenfeldt, 2017 [52] | DAS | 737 | Age, lowest in-hospital systolic blood pressure, cardiopulmonary resuscitation, and hemoglobin level. ≥80% = 83% |
Jàcome, 2021 [54] | Weingarten vs. GAS and Vancouver score | 120 | The three scores demonstrated some predictive value concerning mortality, although Glasgow Aneurysm Score demonstrated the highest area under the ROC curve (0.74) and the best discriminatory capacity for cut-off points with higher specificity. Neither of the scores demonstrated clinically useful predictive value. |
Hemingway, 2018 [57] | HSR | 118 | Spreoperative risk score and subsequent 30-day mortality for all patients combined (p < 0.0001), for OAR patients alone (p = 0.0003) and for EVAR patients alone (p < 0.0001). |
4. Discussion
Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- O’Connor, A.M.; Bennett, C.L.; Stacey, D.; Barry, M.; Col, N.F.; Eden, K.B.; Entwistle, V.A.; Fiset, V.; Holmes-Rovner, M.; Khangura, S.; et al. Decision aids for people facing health treatment or screening decisions. In The Cochrane Database of Systematic Reviews; O’Connor, A.M., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2003. [Google Scholar]
- Garrioch, M.A.; Pichel, A.C. Reducing the risk of vascular surgery. Curr. Anaesth. Crit. Care 2008, 19, 128–137. [Google Scholar] [CrossRef]
- Lee, T.H.; Marcantonio, E.R.; Mangione, C.M.; Thomas, E.J.; Polanczyk, C.A.; Cook, E.F.; Sugarbaker, D.J.; Donaldson, M.C.; Poss, R.; Ho, K.K.; et al. Derivation and Prospective Validation of a Simple Index for Prediction of Cardiac Risk of Major Noncardiac Surgery. Circulation 1999, 100, 1043–1049. [Google Scholar] [CrossRef] [PubMed]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Charlson, M.; Szatrowski, T.P.; Peterson, J.; Gold, J. Validation of a combined comorbidity index. J. Clin. Epidemiol. 1994, 47, 1245–1251. [Google Scholar] [CrossRef] [PubMed]
- American Society of Anesthesiologists House of Delegates/Executive Commettee. ASA Physical Status Classification System. Available online: https://www.asahq.org/standards-and-guidelines/statement-on-asa-physical-status-classification-system (accessed on 31 May 2023).
- Fleisher, L.A.; Fleischmann, K.E.; Auerbach, A.D.; Barnason, S.A.; Beckman, J.A.; Bozkurt, B.; Davila-Roman, V.G.; Gerhard-Herman, M.D.; Holly, T.A.; Kane, G.C.; et al. 2014 ACC/AHA Guideline on Perioperative Cardiovascular Evaluation and Management of Patients Undergoing Noncardiac Surgery: Executive Summary. Circulation 2014, 130, 2215–2245. [Google Scholar] [CrossRef]
- Bilimoria, K.Y.; Liu, Y.; Paruch, J.L.; Zhou, L.; Kmiecik, T.E.; Ko, C.Y.; Cohen, M.E. Development and Evaluation of the Universal ACS NSQIP Surgical Risk Calculator: A Decision Aid and Informed Consent Tool for Patients and Surgeons. J. Am. Coll. Surg. 2013, 217, 833–842.e3. [Google Scholar] [CrossRef]
- Bertges, D.J.; Neal, D.; Schanzer, A.; Scali, S.T.; Goodney, P.P.; Eldrup-Jorgensen, J.; Cronenwett, J.E. The Vascular Quality Initiative Cardiac Risk Index for prediction of myocardial infarction after vascular surgery. J. Vasc. Surg. 2016, 64, 1411–1421.e4. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, M.C.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. Ann. Intern. Med. 2009, 151, 354–391. [Google Scholar] [CrossRef]
- Stawicki, S.P.; Kalra, S.; Jones, C.; Justiniano, C.; Papadimos, T.; Galwankar, S.; Pappada, S.M.; Feeney, J.J.; Evans, D.C. Comorbidity polypharmacy score and its clinical utility: A pragmatic practitioner′s perspective. J. Emerg. Trauma Shock 2015, 8, 224. [Google Scholar] [CrossRef]
- Evans, D.; Gerlach, A.; Christy, J.; Jarvis, A.; Lindsey, D.; Whitmill, M.; Eiferman, D.; Murphy, V.C.; Cook, C.H.; Beery, P.R., II; et al. Pre-injury polypharmacy as a predictor of outcomes in trauma patients. Int. J. Crit. Illn. Inj. Sci. 2011, 1, 104. [Google Scholar]
- Evans, D.C.; Cook, C.H.; Christy, J.M.; Murphy, C.V.; Gerlach, A.T.; Eiferman, D.; Murphy, C.V.; Cook, C.H.; Beery, P.R.; Steinberg, S.M.; et al. Comorbidity-Polypharmacy Scoring Facilitates Outcome Prediction in Older Trauma Patients. J. Am. Geriatr. Soc. 2012, 60, 1465–1470. [Google Scholar] [CrossRef] [PubMed]
- Nossaman, V.E.; Larsen, B.E.; DiGiacomo, J.C.; Manuelyan, Z.; Afram, R.; Shukry, S.; Luan Kang, A.; Munnangi, S.; George Angus, L.D. Mortality is predicted by Comorbidity Polypharmacy score but not Charlson Comorbidity Index in geriatric trauma patients. Am. J. Surg. 2018, 216, 42–45. [Google Scholar] [CrossRef] [PubMed]
- Mubang, R.N.; Stoltzfus, J.C.; Cohen, M.S.; Hoey, B.A.; Stehly, C.D.; Evans, D.C.; Jones, C.; Papadimos, T.J.; Grell, J.; Hoff, W.S.; et al. Comorbidity–Polypharmacy Score as Predictor of Outcomes in Older Trauma Patients: A Retrospective Validation Study. World J. Surg. 2015, 39, 2068–2075. [Google Scholar] [CrossRef] [PubMed]
- Justiniano, C.F.; Coffey, R.A.; Evans, D.C.; Jones, L.M.; Jones, C.D.; Bailey, J.K.; Miller, F.S.; Stawicki, S.P. Comorbidity-Polypharmacy Score Predicts In-Hospital Complications and the Need for Discharge to Extended Care Facility in Older Burn Patients. J. Burn Care Res. 2015, 36, 193–196. [Google Scholar] [CrossRef] [PubMed]
- Housley, B.C.; Stawicki, S.P.A.; Evans, D.C.; Jones, C. Comorbidity-polypharmacy score predicts readmission in older trauma patients. J. Surg. Res. 2015, 199, 237–243. [Google Scholar] [CrossRef]
- Holmes, M.; Garver, M.; Albrecht, L.; Arbabi, S.; Pham, T.N. Comparison of Two Comorbidity Scoring Systems for Older Adults with Traumatic Injuries. J. Am. Coll. Surg. 2014, 219, 631–637. [Google Scholar] [CrossRef]
- Khanh, L.N.; Helenowski, I.B.; Hoel, A.W.; Ho, K.J. The Comorbidity-Polypharmacy Score is an Objective and Practical Predictor of Outcomes and Mortality after Vascular Surgery. Ann. Vasc. Surg. 2020, 69, 206–216. [Google Scholar] [CrossRef]
- Landesberg, G.; Berlatzky, Y.; Bocher, M.; Alcalai, R.; Anner, H.; Ganon-Rozental, T.; Luria, M.H.; Akopnik, I.; Weissman, C.; Mosseri, M. A clinical survival score predicts the likelihood to benefit from preoperative thallium scanning and coronary revascularization before major vascular surgery. Eur. Heart J. 2006, 28, 533–539. [Google Scholar] [CrossRef]
- Subramaniam, B.; Meroz, Y.; Talmor, D.; Pomposelli, F.B.; Berlatzky, Y.; Landesberg, G. A long-term survival score improves preoperative prediction of survival following major vascular surgery. Ann. Vasc. Surg. 2011, 25, 197–203. [Google Scholar] [CrossRef]
- Kraiss, L.W.; Al-Dulaimi, R.; Allen, C.M.; Mell, M.W.; Arya, S.; Presson, A.P.; Brooke, B.S. A Vascular Quality Initiative frailty assessment predicts postdischarge mortality in patients undergoing arterial reconstruction. J. Vasc. Surg. 2022, 76, 1325–1334.e3. [Google Scholar] [CrossRef]
- Copeland, G.P.; Jones, D.; Walters, M. POSSUM: A scoring system for surgical audit. Br. J. Surg. 1991, 78, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Prytherch, D.R.; Whiteley, M.S.; Higgins, B.; Weaver, P.C.; Prout, W.G.; Powell, S.J. POSSUM and Portsmouth POSSUM for predicting mortality. Br. J. Surg. 1998, 85, 1217–1220. [Google Scholar] [CrossRef] [PubMed]
- Scott, S.; Lund, J.N.; Gold, S.; Elliott, R.; Vater, M.; Chakrabarty, M.P.; Heinink, T.P.; Williams, J.P. An evaluation of POSSUM and P-POSSUM scoring in predicting post-operative mortality in a level 1 critical care setting. BMC Anesthesiol. 2014, 14, 104. [Google Scholar] [CrossRef] [PubMed]
- Neary, W.D.; Heather, B.P.; Earnshaw, J.J. The Physiological and Operative Severity Score for the enUmeration of Mortality and morbidity (POSSUM). Br. J. Surg. 2003, 90, 157–165. [Google Scholar] [CrossRef]
- Sohail, I.; Jonker, L.; Stanton, A.; Walker, M.; Joseph, T. Physiological POSSUM as an Indicator for Long-term Survival in Vascular Surgery. Eur. J. Vasc. Endovasc. Surg. 2013, 46, 223–226. [Google Scholar] [CrossRef]
- Tang, T.Y.; Walsh, S.R.; Prytherch, D.R.; Wijewardena, C.; Gaunt, M.E.; Varty, K.; Boyle, J.R. POSSUM Models in Open Abdominal Aortic Aneurysm Surgery. Eur. J. Vasc. Endovasc. Surg. 2007, 34, 499–504. [Google Scholar] [CrossRef]
- Donati, A.; Ruzzi, M.; Adrario, E.; Pelaia, P.; Coluzzi, F.; Gabbanelli, V.; Pietropaoli, P. A new and feasible model for predicting operative risk. Br. J. Anaesth. 2004, 93, 393–399. [Google Scholar] [CrossRef]
- Byrne, J.S.; Condon, E.T.; Ahmed, M.; Conroy, R.; Mehigan, D.; Sheehan, S.J.; Barry, M.C. Surgical audit using the POSSUM scoring tool in vascular surgery patients. Ir. J. Med. Sci. 2009, 178, 453–456. [Google Scholar] [CrossRef]
- Midwinter, M.J.; Tytherleigh, M.; Ashley, S. Estimation of mortality and morbidity risk in vascular surgery using POSSUM and the Portsmouth predictor equation. Br. J. Surg. 1999, 86, 471–474. [Google Scholar] [CrossRef]
- Teixeira, I.M.; Teles, A.R.; Castro, J.M.; Azevedo, L.F.; Mourão, J.B. Physiological and Operative Severity Score for the enumeration of Mortality and Morbidity (POSSUM) System for Outcome Prediction in Elderly Patients Undergoing Major Vascular Surgery. J. Cardiothorac. Vasc. Anesth. 2018, 32, 960–967. [Google Scholar] [CrossRef]
- Kim, J.Y.; Boyle, L.; Khashram, M.; Campbell, D. Editor’s Choice—Development and Validation of a Multivariable Prediction Model of Peri-operative Mortality in Vascular Surgery: The New Zealand Vascular Surgical Risk Tool (NZRISK-VASC). Eur. J. Vasc. Endovasc. Surg. 2021, 61, 657–663. [Google Scholar] [CrossRef] [PubMed]
- Le Manach, Y.; Collins, G.; Rodseth, R.; Le Bihan-Benjamin, C.; Biccard, B.; Riou, B.; Devereaux, P.J.; Landais, P. Preoperative Score to Predict Postoperative Mortality (POSPOM). Anesthesiology 2016, 124, 570–579. [Google Scholar] [CrossRef]
- Layer, Y.C.; Menzenbach, J.; Layer, Y.L.; Mayr, A.; Hilbert, T.; Velten, M.; Hoeft, A.; Wittmann, M. Validation of the Preoperative Score to Predict Postoperative Mortality (POSPOM) in Germany. PLoS ONE 2021, 16, e0245841. [Google Scholar] [CrossRef] [PubMed]
- Reis, P.; Lopes, A.I.; Leite, D.; Moreira, J.; Mendes, L.; Ferraz, S.; Amaral, T.; Abelha, F. Predicting mortality in patients admitted to the intensive care unit after open vascular surgery. Surg. Today 2019, 49, 836–842. [Google Scholar] [CrossRef]
- Grant, S.W.; Hickey, G.L.; Grayson, A.D.; Mitchell, D.C.; McCollum, C.N. National risk prediction model for elective abdominal aortic aneurysm repair. Br. J. Surg. 2013, 100, 645–653. [Google Scholar] [CrossRef] [PubMed]
- Hardman, D.T.A.; Fisher, C.M.; Patel, M.I.; Neale, M.; Chambers, J.; Lane, R.; Appelberg, M. Ruptured abdominal aortic aneurysms: Who should be offered surgery? J. Vasc. Surg. 1996, 23, 123–129. [Google Scholar] [CrossRef]
- Conroy, D.M.; Altaf, N.; Mrcs, S.D.G.; Braithwaite, B.D.; Macsweeney, S.T.; Richards, T. Use of the Hardman Index in Predicting Mortality in Endovascular Repair of Ruptured Abdominal Aortic Aneurysms. Perspect. Vasc. Surg. Endovasc. Ther. 2011, 23, 247–249. [Google Scholar] [CrossRef]
- Samy, A.K.; Murray, G.; MacBain, G. Glasgow aneurysm score. Cardiovasc. Surg. 1994, 2, 41–44. [Google Scholar]
- Mani, K.; Venermo, M.; Beiles, B.; Menyhei, G.; Altreuther, M.; Loftus, I.; Björck, M. Regional Differences in Case Mix and Peri-operative Outcome After Elective Abdominal Aortic Aneurysm Repair in the Vascunet Database. Eur. J. Vasc. Endovasc. Surg. 2015, 49, 646–652. [Google Scholar] [CrossRef]
- Özen, A.; Unal, E.U.; Mola, S.; Erkengel, I.; Kiris, E.; Aksöyek, A.; Saritas, A.; Birincioğlu, C.L. Glasgow aneurysm score in predicting outcome after ruptured abdominal aortic aneurysm. Vascular 2015, 23, 120–123. [Google Scholar] [CrossRef]
- Korhonen, S.J.; Ylönen, K.; Biancari, F.; Heikkinen, M.; Salenius, J.P.; Lepäntalo, M. Glasgow Aneurysm Score as a predictor of immediate outcome after surgery for ruptured abdominal aortic aneurysm. Br. J. Surg. 2004, 91, 1449–1452. [Google Scholar] [PubMed]
- Visser, J.J.; Williams, M.; Kievit, J.; Bosch, J.L. Prediction of 30-day mortality after endovascular repair or open surgery in patients with ruptured abdominal aortic aneurysms. J. Vasc. Surg. 2009, 49, 1093–1099. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.C.; Hildebrand, H.D.; Salvian, A.J.; Taylor, D.C.; Strandberg, S.; Myckatyn, T.M.; Hsiang, Y.N. Predictors of death in nonruptured and ruptured abdominal aortic aneurysms. J. Vasc. Surg. 1996, 24, 614–623. [Google Scholar] [CrossRef] [PubMed]
- Hsiang, Y.N.; Turnbull, R.G.; Nicholls, S.C.; McCullough, K.; Chen, J.C.; Lokanathan, R.; Taylor, D.C. Predicting death from ruptured abdominal aortic aneurysms. Am. J. Surg. 2001, 181, 30–35. [Google Scholar] [CrossRef]
- Tambyraja, A.; Murie, J.; Chalmers, R. Predictors of Outcome After Abdominal Aortic Aneurysm Rupture: Edinburgh Ruptured Aneurysm Score. World J. Surg. 2007, 31, 2243–2247. [Google Scholar] [CrossRef]
- Tambyraja, A.L.; Lee, A.J.; Murie, J.A.; Chalmers, R.T.A. Prognostic scoring in ruptured abdominal aortic aneurysm: A prospective evaluation. J. Vasc. Surg. 2004, 47, 282–286. [Google Scholar] [CrossRef]
- Robinson, W.P.; Schanzer, A.; Li, Y.; Goodney, P.P.; Nolan, B.W.; Eslami, M.H.; Cronenwett, J.L.; Messina, L.M. Derivation and validation of a practical risk score for prediction of mortality after open repair of ruptured abdominal aortic aneurysms in a U.S. regional cohort and comparison to existing scoring systems. J. Vasc. Surg. 2009, 57, 354–361. [Google Scholar] [CrossRef]
- Healey, C.T.; Neilson, M.; Clark, D.; Schanzer, A.; Robinson, W. Predicting Mortality of Ruptured Abdominal Aortic Aneurysms in the Era of Endovascular Repair. Ann. Vasc. Surg. 2017, 38, 59–63. [Google Scholar] [CrossRef]
- Neilson, M.; Healey, C.; Clark, D.; Nolan, B. External Validation of a Rapid Ruptured Abdominal Aortic Aneurysm Score. Ann. Vasc. Surg. 2016, 46, 162–167. [Google Scholar] [CrossRef]
- Von Meijenfeldt, G.C.I.; Van Beek, S.C.; Gonçalves, F.B.; Verhagen, H.J.M.; Zeebergts, C.J.; Vahl, A.C.; Wisselink, W.; van der Laan, M.J.; Balm, R. Development and External Validation of a Model Predicting Death After Surgery in Patients with a Ruptured Abdominal Aortic Aneurysm: The Dutch Aneurysm Score. Eur. J. Vasc. Endovasc. Surg. 2017, 53, 168–174. [Google Scholar] [CrossRef]
- Weingarten, T.N.; Thompson, L.T.; Licatino, L.K.; Bailey, C.H.; Schroeder, D.R.; Sprung, J. Ruptured Abdominal Aortic Aneurysm_prediction of Mortality from Clinical Presentation and Glasgow Aneurysm Score. J. Cardiothorac. Vasc. Anesth. 2016, 30, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Jácome, F.; Ribeiro, M.; Rocha-Neves, J.; Figueiredo-Braga, S. Mortality Scores in Surgical Correction of Abdominal Aortic Aneurysm in Rupture. Port. J. Card. Thorac. Vasc. Surg. 2021, 28, 39–44. Available online: http://www.ncbi.nlm.nih.gov/pubmed/33834653. [PubMed]
- Wise, E.S.; Hocking, K.M.; Brophy, C.M. Prediction of in-hospital mortality after ruptured abdominal aortic aneurysm repair using an artificial neural network. J. Vasc. Surg. 2015, 62, 8–15. [Google Scholar] [CrossRef]
- Garland, B.T.; Danaher, P.J.; Desikan, S.; Tran, N.T.; Quiroga, E.; Singh, N.; Starnes, B.W. Preoperative risk score for the prediction of mortality after repair of ruptured abdominal aortic aneurysms. J. Vasc. Surg. 2018, 68, 991–997. [Google Scholar] [CrossRef]
- Hemingway, J.F.; French, B.; Caps, M.; Benyakorn, T.; Quiroga, E.; Tran, M.; Singh, N.; Starnes, B.W. Preoperative risk score accuracy confirmed in a modern ruptured abdominal aortic aneurysm experience. J. Vasc. Surg. 2021, 74, 1508–1518. [Google Scholar] [CrossRef]
- Hansen, S.K.; Danaher, P.J.; Starnes, B.W.; Hollis, W.; Garland, B.T. Accuracy evaluations of three ruptured abdominal aortic aneurysm mortality risk scores using an independent dataset. J. Vasc. Surg. 2018, 70, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Van Beek, S.C.; Reimerink, J.J.; Vahl, A.C.; Wisselink, W.; Peters, R.J.G.; Legemate, D.A.; Balm, R. Editor’s Choice—External Validation of Models Predicting Survival After Ruptured Abdominal Aortic Aneurysm Repair. Eur. J. Vasc. Endovasc. Surg. 2015, 49, 10–16. [Google Scholar] [CrossRef]
- Ciaramella, M.A.; Ventarola, D.; Ady, J.; Rahimi, S.; Beckerman, W.E.; Brunswick, N. Modern mortality risk strati fi cation scores accurately and equally predict real-world postoperative mortality after ruptured abdominal aortic aneurysm. J. Vasc. Surg. 2021, 73, 1048–1055. [Google Scholar] [CrossRef]
- Vos, C.G.; de Vries, J.P.M.; Werson, D.A.B.; van Dongen, E.P.A.; Scherve, M.A.; Ünlü, C. Evaluation of fi ve different aneurysm scoring systems to predict mortality in ruptured abdominal aortic aneurysm patients. J. Vasc. Surg. 2016, 64, 1609–1616. [Google Scholar] [CrossRef]
- Troisi, N.; Isernia, G.; Bertagna, G.; Adami, D.; Baccani, L.; Parlani, G.; Berchiolli, R.; Simonte, G. Preoperative factors affecting long-term mortality in patients survived to ruptured abdominal aortic aneurysm repair. Int. Angiol. 2023. [Google Scholar] [CrossRef]
- Troisi, N.; Bertagna, G.; Saratzis, A.; Guadagni, S.; Minichilli, F.; Adami, D.; Ferrari, M.; Berchiolli, R. Intraoperative predictors of in-hospital mortality after open repair of ruptured abdominal aortic aneurysms. Int. Angiol. 2023, 42, 310–317. [Google Scholar] [CrossRef] [PubMed]
- D’Oria, M.; Hansen, K.; Schermerhorn, M.; Bower, T.C.; Mendes, B.C.; Shuja, F.; Oderich, G.S.; DeMartino, R.R. Editor’s Choice—Short-term and long-term outcomes after endovascular or open repair for ruptured infrarenal abdominal aortic aneurysms in the Vascular Quality Initiative. Eur. J. Vasc. Endovasc. Surg. 2020, 59, 703–716. [Google Scholar] [CrossRef] [PubMed]
- Cirillo-Penn, N.C.; Zheng, X.; Mao, J.; Johnston, L.E.; D’Oria, M.D.; Scali, S.; Goodney, P.P.; DeMartino, R. Long-Term Mortality and Reintervention Following Repair of Ruptured Abdominal Aortic Aneurysms using VQI Matched Medicare Claims. Ann. Surg. 2023. epub ahead of print. [Google Scholar] [CrossRef]
- Menges, A.L.; D’Oria, M.; Zimmermann, A.; Dueppers, P. Ruptured abdominal aorto-iliac aneurysms: Diagnosis, treatment, abdominal compartment syndrome, and role of simulation-based training. Semin. Vasc. Surg. 2023, 36, 163–173. [Google Scholar]
- D’Oria, M.; Gunnarsson, K.; Wanhainen, A.; Mani, K. Long-term survival after repair of ruptured abdominal aortic aneurysms is improving over time. Nationwide analysis during 24 years in Sweden (1994–2017). Ann. Surg. 2022, 74, e103–e105. [Google Scholar] [CrossRef]
- Krittanawong, C.; Virk, H.U.H.; Kumar, A.; Aydar, M.; Wang, Z.; Stewart, M.P.; Halperin, J.L. Machine learning and deep learning to predict mortality in patients with spontaneous coronary artery dissection. Sci. Rep. 2021, 11, 8992. [Google Scholar] [CrossRef]
- Khalaji, A.; Behnoush, A.H.; Jameie, M.; Sharifi, A.; Sheikhy, A.; Fallahzadeh, A.; Sadeghian, S.; Pashang, M.; Bagheri, J.; Tafti, S.H.A.; et al. Machine learning algorithms for predicting mortality after coronary artery bypass grafting. Front. Cardiovasc. Med. 2022, 9, 977747. [Google Scholar] [CrossRef] [PubMed]
- Cobianchi, L.; Piccolo, D.; Dal Mas, F.; Agnoletti, V.; Ansaloni, L.; Balch, J.; Biffl, W.; Butturini, G.; Catena, F.; Coccolini, F.; et al. Surgeons’ perspectives on artificial intelligence to support clinical decision-making in trauma and emergency contexts: Results from an international survey. World J. Energency Surg. 2023, 18, 1. [Google Scholar]
- D’Oria, M.; Scali, S.; Mao, J.; Szeberin, Z.; Thomson, I.; Beiles, B.; Stone, D.; Sedrakyan, A.; Eldrup, N.; Venermo, M.; et al. Association between hospital volume and failure to rescue after open or endovascular repair of intact abdominal aortic aneurysms 1n the VASCUNET and International Consortium of Vascular Registries. Ann. Surg. 2021, 274, e452–e459. [Google Scholar] [CrossRef]
- Scali, S.; Columbo, J.A.; Suckow, B.D.; D’Oria, M.D.; Neal, D.; Goodney, P.P.; Beach, J.M.; Cooper, M.A.; Kang, J.L.; Powell, R.J.; et al. Center Volume is Associated with Diminished Failure to Rescue and Improved Outcomes Following Elective Open AAA Repair. J. Vasc. Surg. 2022, 76, 400–408. [Google Scholar] [CrossRef]
- D’Oria, M.; Scali, S.; Neal, D.; DeMartino, R.; Beck, A.W.; Mani, K.; Lepidi, S.; Huber, T.S.; Stone, H.D. Center Volume and Failure to Rescue after Open or Endovascular Repair of Ruptured Abdominal Aortic Aneurysms. J. Vasc. Surg. 2022, 76, 1565–1576.e4. [Google Scholar] [CrossRef] [PubMed]
- Scali, S.; Wanhainen, A.; Neal, D.; Debus, S.; Mani, S.; Behrendt, C.A.; D’Oria, M.; Stone, H.D. Conflicting European and North American Societal AAA Volume Guidelines Differentially Discriminate Perioperative Mortality. Eur. J. Vasc. Endovasc. Surg. 2022. epub ahead of print.. [Google Scholar]
- Cacciamani, G.; Eppler, M.; Sayegh, A.S.; Sholklapper, T.; Mohideen, M.; Miranda, G.; Goldenberg, M.; Sotelo, R.J.; Desai, M.M.; Gill, I.S. Recommendations for Intraoperative Adverse Events Data Collection in Clinical Studies and Study Protocols. An ICARUS Global Surgical Collaboration Study. Int. J. Surg. Protoc. 2023, 27, 23–83. [Google Scholar] [CrossRef] [PubMed]
- Cacciamani, G.; Sholklapper, T.; Sotelo, R.; Desai, M.; Gill, I. A Protocol for the Development of the Intraoperative Complications Assessment and Reporting with Universal Standards Criteria: The ICARUS Project. Int. J. Surg. Protoc. 2021, 25, 160–164. [Google Scholar] [CrossRef]
- ICARUS Classification System Working Group. Assessing, grading, and reporting intraoperative adverse events during and after surgery. Br. J. Surg. 2022, 109, 301–302. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie , E.; Zarin, W.; O'Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMAScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grandi, A.; Bertoglio, L.; Lepidi, S.; Kölbel, T.; Mani, K.; Budtz-Lilly, J.; DeMartino, R.; Scali, S.; Hanna, L.; Troisi, N.; et al. Risk Prediction Models for Peri-Operative Mortality in Patients Undergoing Major Vascular Surgery with Particular Focus on Ruptured Abdominal Aortic Aneurysms: A Scoping Review. J. Clin. Med. 2023, 12, 5505. https://doi.org/10.3390/jcm12175505
Grandi A, Bertoglio L, Lepidi S, Kölbel T, Mani K, Budtz-Lilly J, DeMartino R, Scali S, Hanna L, Troisi N, et al. Risk Prediction Models for Peri-Operative Mortality in Patients Undergoing Major Vascular Surgery with Particular Focus on Ruptured Abdominal Aortic Aneurysms: A Scoping Review. Journal of Clinical Medicine. 2023; 12(17):5505. https://doi.org/10.3390/jcm12175505
Chicago/Turabian StyleGrandi, Alessandro, Luca Bertoglio, Sandro Lepidi, Tilo Kölbel, Kevin Mani, Jacob Budtz-Lilly, Randall DeMartino, Salvatore Scali, Lydia Hanna, Nicola Troisi, and et al. 2023. "Risk Prediction Models for Peri-Operative Mortality in Patients Undergoing Major Vascular Surgery with Particular Focus on Ruptured Abdominal Aortic Aneurysms: A Scoping Review" Journal of Clinical Medicine 12, no. 17: 5505. https://doi.org/10.3390/jcm12175505
APA StyleGrandi, A., Bertoglio, L., Lepidi, S., Kölbel, T., Mani, K., Budtz-Lilly, J., DeMartino, R., Scali, S., Hanna, L., Troisi, N., Calvagna, C., & D’Oria, M. (2023). Risk Prediction Models for Peri-Operative Mortality in Patients Undergoing Major Vascular Surgery with Particular Focus on Ruptured Abdominal Aortic Aneurysms: A Scoping Review. Journal of Clinical Medicine, 12(17), 5505. https://doi.org/10.3390/jcm12175505